首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of dietary exposure to organic anions on the physiology of isolated Malpighian tubules and on tubule gene expression were examined using larvae of Drosophila melanogaster. Acute (24 h) or chronic (7 d) exposure to type I organic anions (fluorescein or salicylate) was associated with increased fluid secretion rates and increased fluxes of both salicylate and the type II organic anion methotrexate. By contrast, chronic exposure to dietary methotrexate was associated with increased fluid secretion rate and increased flux of methotrexate, but not salicylate. Exposure to methotrexate in the diet resulted in increases in the expression of a multidrug efflux transporter gene (MET; CG30344) in the Malpighian tubules. There were also increases in expression of genes for either a Drosophila multidrug resistance–associated protein (dMRP; CG6214) or an organic anion transporting polypeptide (OATP; CG3380), depending on the concentration of methotrexate in the diet. Exposure to salicylate in the diet was associated with an increase in expression of dMRP and with decreases of MET and OATP. Exposure to dietary salicylate or methotrexate was also associated with different patterns of expression of heat shock protein genes. The results suggest that exposure to specific type I or type II organic anions has multiple effects and results not only in increased organic anion transport but also in increased rates of inorganic ion transport, which drives osmotically‐obliged fluid secretion. Increased fluid secretion may enhance secretion of organic anions by eliminating diffusive backflux from the tubule lumen to the hemolymph. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Abstract.  A radioisotope tracer technique is used to study mechanisms and regulation of transepithelial transport of the plant allelochemical salicylate by the Malpighian tubules of Drosophila melanogaster . Transepithelial transport of salicylate is nearly abolished in Na+-free saline, and inhibited by ouabain, low K+ or K+-free bathing saline. In addition, the carboxylates probenecid, unlabelled salicylate, fluorescein, and p -aminohippuric acid (PAH) significantly inhibit transepithelial transport of salicylate. The sulphonates taurocholate and phenol red also inhibit transepithelial transport of salicylate, whereas amaranth has no effect. Stimulation of fluid secretion by cAMP, cGMP or leucokinin I increases transepithelial transport of salicylate, particularly when the concentration of salicylate in the bathing saline is high. The correlation between the fluid secretion rate and transepithelial transport of salicylate shows that 64% of the changes in salicylate transport can be explained on the basis of changes in fluid secretion rate. The results show that naturally-occurring plant secondary metabolite salicylate is transported into the lumen of the Mapighian tubules of D. melanogaster by a mechanism similar to that previously described for the prototypical organic anions PAH and fluorescein. In addition, the transepithelial transport of salicylate increases in response to increases in fluid secretion rate.  相似文献   

3.
This study showed that four factors which stimulate transepithelial fluid secretion and inorganic ion transport across the main segment of the Malpighian tubules of Drosophila melanogaster also stimulate transepithelial secretion of the prototypical organic cation tetraethylammonium (TEA). TEA fluxes across the Malpighian tubules and gut were measured using a TEA-selective self-referencing (TEA-SeR) microelectrode. TEA flux across isolated Malpighian tubules was also measured using a TEA-selective microelectrode positioned in droplets of fluid secreted by tubules set up in a modified Ramsay assay. TEA flux was stimulated by the intracellular second messengers cAMP and cGMP, which increase the lumen-positive transepithelial potential (TEP), and also by tyramine and leucokinin-I (LK-I), which decrease TEP. The largest increase was measured in response to 1 micromol l-1 LK-I which increased transepithelial TEA flux by 72%. TEA flux in the lower tubule was stimulated slightly (13%) by 1 micromol l-1 tyramine but not by any of the other factors. TEA flux across the midgut was unaffected by cAMP, cGMP or tyramine. This is the first study to demonstrate the effects of insect diuretic factors and second messengers on excretion of organic cations.  相似文献   

4.
Abnormal metabolism of tumour cells is closely related to the occurrence and development of breast cancer, during which the expression of NF‐E2‐related factor 2 (Nrf2) is of great significance. Metastatic breast cancer is one of the most common causes of cancer death worldwide; however, the molecular mechanism underlying breast cancer metastasis remains unknown. In this study, we found that the overexpression of Nrf2 promoted proliferation and migration of breast cancers cells. Inhibition of Nrf2 and overexpression of Kelch‐like ECH‐associated protein 1 (Keap1) reduced the expression of glucose‐6‐phosphate dehydrogenase (G6PD) and transketolase of pentose phosphate pathway, and overexpression of Nrf2 and knockdown of Keap1 had opposite effects. Our results further showed that the overexpression of Nrf2 promoted the expression of G6PD and Hypoxia‐inducing factor 1α (HIF‐1α) in MCF‐7 and MDA‐MB‐231 cells. Overexpression of Nrf2 up‐regulated the expression of Notch1 via G6PD/HIF‐1α pathway. Notch signalling pathway affected the proliferation of breast cancer by affecting its downstream gene HES‐1, and regulated the migration of breast cancer cells by affecting the expression of EMT pathway. The results suggest that Nrf2 is a potential molecular target for the treatment of breast cancer and targeting Notch1 signalling pathway may provide a promising strategy for the treatment of Nrf2‐driven breast cancer metastasis.  相似文献   

5.
The organic anion salicylate is a plant secondary metabolite that protects plants against phytophagous insects. In this study, a combination of salicylate-selective microelectrodes and a radioisotope tracer technique was used to study the transepithelial transport of salicylate by the Malpighian tubules of 10 species of insects from five orders. Our results show that salicylate is transported into the lumen of the Malpighian tubules in all the species evaluated, except Rhodnius prolixus. The transepithelial transport of salicylate by the Malpighian tubules of Drosophila simulans, Drosophila erecta, Drosophila sechellia, and Acheta domesticus was saturable, Na+-dependent and inhibited by α-cyano-4-hydroxycinnamic acid. This transport system resembles that previously found in tubules of Drosophila melanogaster. In contrast, transepithelial transport of salicylate by Malpighian tubules of Tenebrio molitor, Plagiodera versicolora, Aedes aegypti, and Trichoplusia ni was unaffected by Na+-free bathing saline. The presence of both salicylate and salicylate metabolites in the secreted fluid samples from the Malpighian tubules of A. domesticus, R. prolixus, T. molitor, and T. ni indicates that insect Malpighian tubules may both transport and metabolize salicylate. The highest capacities to rid the hemolymph of salicylate were found in T. molitor, P. versicolora and Drosphila spp. Our results suggest that transport of salicylate by the Malpighian tubules might contribute to elimination of this organic anion from the hemolymph, particularly in some species that encounter high levels of organic anion in the diet.  相似文献   

6.
The organic anion salicylate is a plant secondary metabolite that can protect plants against herbivores. Transport of salicylate across the basolateral membrane of the Malpighian tubules of Drosophila melanogaster was studied using a radioisotope tracer technique. The uptake of [(14)C]salicylate by the Malpighian tubules was active, saturable and Na(+)-dependent; the maximum uptake rate (J(max)) and the half saturation concentration (K(t)) were 12.6 pmoltubule(-1)min(-1) and 30.7micromoll(-1), respectively. In contrast to organic anion transport by vertebrate renal tissues, salicylate uptake was not trans-stimulated by glutarate (0.01-1.0 mmoll(-1)) or cis-inhibited by high concentrations (5 mmoll(-1)) of various alpha-keto acids (glutaric acid, alpha-ketoglutaric acid, succinic acid, and citric acid). Changes in basolateral membrane potential or physiologically relevant changes in bathing saline pH did not affect the rate of [(14)C]salicylate uptake. Ring-structure monocarboxylic acids (benzoic acid, nicotinic acid, gentisic acid, unlabelled salicylic acid, alpha-cyano-4-hydroxycinnamic acid, probenecid, fluorescein, and P-aminohippuric acid) strongly inhibited [(14)C]salicylate uptake rate. In contrast, short-chain monocarboxylic acids had little (butyric acid) or no effect (lactic acid, pyruvic acid, and propionic acid). Our results suggest that salicylate uptake across the basolateral membrane of D. melanogaster Malpighian tubules is mediated by a non-electrogenic, alpha-cyano-4-hydroxycinnamic acid-sensitive, Na(+):salicylate cotransport system.  相似文献   

7.
Insect renal organs typically exhibit high rates of transport of inorganic and organic anions, and therefore provide useful models for the study of epithelial anion transport and its control. Isolated Malpighian tubules of some species secrete a volume of iso-osmotic fluid equal to their own volume in 10-15 s, which means that cellular Cl(-) content is exchanged every 3-5 s. Anion transport can also be achieved against extreme thermodynamic gradients. The concentration of K(+) and Cl(-) in the lumen of the Malpighian tubules of some desert beetles approaches or exceeds saturation. A basolateral Na(+):K(+):2Cl(-) cotransporter plays an important role in vectorial ion transport in Malpighian tubules of many species, but there is also evidence for coupling of Cl(-) transport to the movement of a single cationic species (Na(+) or K(+)). Although an apical vacuolar H(+)-ATPase plays a primary role in energizing transepithelial secretion of chloride via channels or cotransporters in the secretory segment of the Malpighian tubule, several different ATPases have been implicated in reabsorption of Cl(-) by the lower Malpighian tubule or hindgut. Chloride transport is known to be controlled by several neuropeptides, amines and intracellular second messengers. Insect renal epithelia are also important in excretion of potentially toxic organic anions, and the transporters involved may play a role in resistance to insecticides of natural or anthropogenic origin.  相似文献   

8.
In vitro preparations of locust Malpighian tubules can conveniently be made by a new technique in which the alimentary canal to which the tubules attach is removed from the insect and set up in Ringer's solution under liquid paraffin. Such Malpighian tubules will secrete a fluid iso-osmotic to the bathing fluid at a steady rate of about 1 to 2 nl min?1 for some hours. The secreted fluid is rich in potassium ions, the lumen is at a potential positive to that of the bathing solution, and the rate of secretion can be controlled by changing the potassium concentration of the bathing fluid. It seems likely, therefore, that an active transport of potassium drives secretion ny locust Malpighian tubules. The secreted fluid contains an elevated concentration of phosphate ions. The Malpighian tubules will secrete at a high rate in a chloride-free phosphate-based solution. The rate of fluid secretion can be increased by treatment with cyclic AMP but 5-hydroxytryptamine has no such effect.  相似文献   

9.
10.
摘要 目的:研究卵巢癌组织和细胞中miR-19的表达,探讨其异常表达对卵巢癌细胞Kelch样环氧氯丙烷相关蛋白-1(Kelch-like epichlorohydrin-associated protein1,Keap1)--核因子E2相关因子2(nuclearfactor-E2-relatedfactor2,Nrf2) /血红素氧合酶-1(heme oxygenase1,HO-1)信号通路及卵巢癌细胞增殖的影响。方法:回顾性收集2019年1月至2020年12月于我院就诊的患者经病理切片诊断为卵巢癌上皮细胞的手术标本30例,卵巢良性肿瘤标本30例,正常卵巢组织标本30例。免疫组化检测不同标本中Keap1、Nrf2、HO-1的表达,检测卵巢组织及细胞中miR-19、Keap1、Nrf2、HO-1的mRNA表达水平,及卵巢癌细胞中Keap1、Nrf2、HO-1的蛋白表达水平。在OVCAR-3细胞中沉默miR-19后,Western Blot检测细胞内Keap1、Nrf2、HO-1蛋白表达水平,收集沉默miR-19,对照组,沉默Nrf2、对照组的OVCAR-3细胞,继续培养0 h、24 h、48 h后,检测细胞增殖和凋亡。结果:Keap1蛋白在卵巢癌组织中的阳性表达显著低于良性卵巢肿瘤组织及正常卵巢组织;Nrf2和HO-1蛋白在卵巢癌组织中的阳性表达显著低于良性卵巢肿瘤组织及正常卵巢组织(P<0.05);沉默miR-19抑制其表达后,细胞内Keap1 mRNA、蛋白表达水平明显升高,Nrf2、HO-1 mRNA表达水平无明显变化,蛋白表达水平明显降低(P<0.05);沉默miR-19 组、沉默Nrf2组与转染阴性对照组相比,增殖能力明显降低,凋亡能力明显升高(P<0.05)。结论:卵巢癌细胞中,miR-19表达水平升高,可通过调控Keap1-Nrf2/HO-1信号通路影响卵巢癌细胞的增值、凋亡能力。  相似文献   

11.
12.
Fluid secretion by mosquito Malpighian tubules is critical to maintaining fluid and electrolyte balance after a blood meal. Endogenous cAMP levels increase in Malpighian tubules after a blood meal. Here, we determined if corresponding changes in intracellular actin distribution occur after a blood meal or dibutyryl-cAMP (db-cAMP) stimulation and whether altering actin turnover inhibits secretion. In untreated Malpighian tubules, beta-actin immunostaining was more intense in the apical region of adult Malpighian tubules than in the cytoplasm. Stimulation by a blood meal or db-cAMP significantly decreased beta-actin immunostaining in the non-apical region of the cell. Db-cAMP had similar effects in larvae and pupae Malpighian tubules. In contrast, no detectable shift in F-actin distribution was detected; however, F-actin bundles within the cytoplasm increased in size after treatment with db-cAMP. Pretreatment of Malpighian tubules with agents perturbing actin fiber assembly and disassembly decreased basal secretion rates and inhibited the stimulatory effects of db-cAMP. Our results show (1) beta-actin redistributes toward the apical membrane after a blood meal and this correlates temporally with increase urine flow rate and intracellular cAMP levels, (2) Malpighian tubules from all developmental stages exhibit this same response to db-cAMP-stimulation, and (3) dynamic assembly and disassembly of beta-actin is required for db-cAMP-stimulated secretion.  相似文献   

13.
14.
The effects of stimulants of fluid secretion on net transepithelial transport of the MRP2 substrate Texas Red and the p-glycoprotein substrate daunorubicin were examined in Malpighian tubules of Drosophila melanogaster. Fluid secretion rates were determined using the Ramsay assay and secreted fluid concentrations of Texas Red and daunorubicin were determined using a microfluorometric technique. Nanoliter droplets of secreted fluid were collected in optically flat glass capillaries and dye concentration was determined from fluorescence intensity measured by confocal laser scanning microscopy. Net transepithelial flux of each compound was then calculated as the product of its concentration in the secreted fluid and the fluid secretion rate. Net transepithelial flux of Texas Red increased when fluid secretion was stimulated by tyramine, cyclic AMP or hypoosmotic saline. Net flux decreased when fluid secretion rate of cAMP-stimulated tubules was reduced by elevating saline osmolality with sucrose. Net transepithelial flux of daunorubicin increased when fluid secretion was stimulated by cAMP. Significant increases in dye flux were seen only when the dyes were present at concentrations close to or greater than the concentration required for half maximal transport. Regression analyses showed that 57- 88% of the change in dye flux was attributable to the change in fluid secretion rate when tubules were stimulated with cAMP, cGMP, or tyramine. The results do not suggest that the effects of tyramine and cAMP are mediated through changes in transepithelial potential, nor do they indicate the direct effects of the stimulants on MRP2-like or p-glycoprotein-like transporters (e.g., via protein kinases). Instead, the results suggest that increases in fluid secretion rate minimize diffusive backflux of these dyes and, thus, facilitate higher rates of net transepithelial transport indirectly.  相似文献   

15.
16.
17.
18.
Oxidative stress has been reported to play an important role in progression and prognostication in various kinds of cancers. However, the role and clinical significance of oxidative stress markers Keap1 and Nrf2 in oral squamous cell carcinoma (OSCC) has not been elucidated. This study aimed to investigate the correlation of oxidative stress markers Keap1 and Nrf2 expression and pathological features in OSCC by using tissue microarray. Tissue microarrays containing 17 normal oral mucosa, 7 oral epithelial dysplasia and 43 OSCC specimens were studied by immunohistochemistry. The association among these proteins and pathological features were analyzed. Expression of oxidative stress markers Keap1, Nrf2, and antioxidants PPIA, Prdx6, as well as CD147 was found to increase consecutively from normal oral mucosa to OSCC, and the Keap1, Nrf2, PPIA, Prdx6, CD147 expression in OSCC were significantly higher when compared to normal oral mucosa. Expression of Keap1, Nrf2 in tumors was not found to be significantly associated with T category, lymph node metastases, and pathological grade. Furthermore, we checked the relationship among these oxidative stress markers and found that Keap1 was significantly correlated with Nrf2, Prdx6 and CD147. Significant relationship between Nrf2 and Prdx6 was also detected. Finally, we found patients with overexpression of Keap1 and Nrf2 had not significantly worse overall survival by Kaplan–Meier analysis. These findings suggest that ROS markers are associated with carcinogenesis and progression of OSCC, which may have prognostic value and could be regarded as potential therapeutic targets in OSCC.  相似文献   

19.
Secretion of primary urine by upper Malpighian tubules of the blood-sucking insect Rhodnius prolixus has recently been shown to be inhibited by cyclic GMP (cGMP). In the present work, we have demonstrated that cGMP has effects antagonistic to those of cAMP in Rhodnius tubules and have further characterized the effects of cGMP on tubular secretion. Cyclic GMP inhibited secretion at all concentrations from 5x10(-6) to 10(-3)M, though this inhibition was partially or wholly reversed by large (2mM) doses of cAMP. While sub-maximal concentrations of cGMP did not significantly alter [K(+)] and [Na(+)] of secreted fluid, high external [cGMP] reduced secretion to minimal levels and caused [K(+)] and [Na(+)] to approach pre-stimulation levels. Cyclic GMP does not appear to affect the permeability of the lower Malpighian tubule to water. Both cAMP and cGMP likely enter tubule cells by way of an organic acid transporter whose activity is induced by feeding. Sensitivity of the tubules to exogenous cGMP and cAMP, which is assumed to be a function of transport activity, reaches a peak approximately 5 days after the blood meal and declines rapidly thereafter. Transport of anions into upper tubules involves at least two different transporters: one for acylamides (e.g., p-aminohippuric acid) and another for sulphonates (e.g., amaranth, phenol red). Amaranth and phenol red blocked the actions of both cGMP and cAMP, whereas p-aminohippuric acid was without effect. This suggests that cyclic nucleotides enter by way of the sulphonate transporter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号