首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both direct thermal and maternal photoperiodic effects on diapause induction have been thoroughly investigated in many insect species, while maternal thermal effects have been infrequently studied. We studied the effect of temperature during development of maternal generation on the proportion of diapausing progeny in four species of the genus Trichogramma Westw., minute egg parasitoids, widely used for biological control of lepidopteran pests. The maternal generations were reared at day lengths of 12 and 18 h and temperatures of 17, 20, 25 and 30°C, and their progeny developed under day length of 12 h and temperatures of 13 and 14°C. In T. evanescens and T. piceum, the proportion of diapausing progeny decreased with increasing temperature under all tested photoperiods and thermal regimes of progeny development; the high temperature of 30°C totally averted diapause of progeny. In T. buesi and T. principium, low temperatures of 17 and 20°C resulted in relatively high proportion of diapausing progeny only when the maternal generation developed under short‐day conditions. The threshold of the maternal thermal response varied from 17–18 to 22–23°C. Under field conditions, Trichogramma females are exposed to such high temperatures only during summer, when diapause in their progeny is in any case prevented by the maternal photoperiodic response and by the thermal response of the larvae. We conclude that the maternal thermal effect on diapause induction, although to a different extent, is inherent to Trichogramma species but, at least as suggested by laboratory experiments, it does not play any role in the regulation of seasonal development under natural conditions. However, during mass rearing of Trichogramma wasps, it should be taken into account that high temperature, even when combined with short photoperiod, can avert diapause in the next generation.  相似文献   

2.
Interaction of the photoperiodic conditions of development of maternal females (day lengths of 2 to 22 h at 20°C) with the thermal regime of development of their progeny (temperature of 12 to 15°C at day length of 12 h) in determination of prepupal diapause in Trichogramma piceum was studied under laboratory conditions. At 15°C the diapause was practically absent. At lower temperatures, the proportion of diapausing prepupae was maximal (25% of larvae at 14°C, 70% of larvae at 13°, and 80% of larvae at 12°C) if the maternal females developed under short day conditions (10–12 h). When maternal females developed at day lengths of 18–20 h, diapause was rarely recorded at all temperatures, while ultra-short (less than 8–10 h) days also caused a decrease in the proportion of diapausing progeny. The right (ecologically important) threshold of this maternal long-day photoperiodic response was about 14–15 h independently of the temperature during the progeny development. These results make it possible to clarify the mechanism of the “maternal photoperiodic correction of the progeny thermal response.” Although the impact of the maternal photoperiodic response can be revealed only within a very narrow thermal range, the relative strength of the diapause-inducing effect of different day lengths is independent of the temperature regimen of the progeny development.  相似文献   

3.
Although maternal photoperiodic and maternal thermal effects on the progeny diapause have been demonstrated in a number of insect species, their interaction has been rarely studied. We investigated this interaction in Trichogramma telengai. In a series of experiments, maternal females were reared at day lengths of 12–18 h and at temperatures of 17, 20, 25 and 30°C. Their progeny developed under day length of 12 h and temperatures of 13, 14 and 15°C. The experiments showed that both short day and low temperature experienced by the maternal generation significantly increased the proportion of diapausing progeny. In particular, the threshold of the maternal photoperiodic response decreased with temperature. Under combinations of photoperiod with daily thermoperiod, the role of the “night” temperature in the induction of diapause in the progeny was much more important than that of the “day” temperature. We conclude that the interaction pattern between the photoperiodic and thermal maternal effects in T. telengai is generally the same as that between the photoperiodic and thermal responses directly influencing diapause induction in other long‐day insects. The threshold temperature of the maternal thermal response of T. telengai was about 25–27°C, while diapause can be induced if larvae develop at temperatures not higher than 15–16°C. This suggests that, at least in the studied Trichogramma species, the maternal thermal effect has no ecological value. In the practice of biocontrol, however, rearing of Trichogramma wasps at high temperature can drastically reduce the proportion of diapausing progeny.  相似文献   

4.
A direct photoperiodic reaction of T. embryophagum larvae was investigated in the laboratory. Maternal females developed at 20°C and day length of 12 h. Progeny generation developed at 14°C and day lengths of 0, 4, 8, 12, 16, 20, and 24 h. Experiments showed that under the short days (12, 8, and 4 h) and in continuous darkness, the percentage of diapausing individuals was significantly higher than under the long days of 16 and 20 h. Under permanent light, however, the inclination to diapause also increased. The earlier investigated maternal influence on T. embryophagum progeny diapause showed a somewhat different pattern of photoperiodic reaction. These results suggest that the direct effect of the day length on Trichogramma diapause is a relatively autonomous process rather than just a side-effect of the photoperiodic reaction determining maternal influence. However, this direct effect is very weak and could possibly be a “rudimentary reaction.”  相似文献   

5.
Maternal photoperiodic response is known to influence the percentage of diapausing prepupae in Trichogramma species. However, the influence of several preceding generations has not yet been studied. We have investigated the stability of photoperiod-induced changes in multiple generations of Trichogramma buesi Voegele and Trichogramma principium Sug. et Sor. Short-day conditions during preimaginal development induced an increase in the percentage of diapausing progeny and grand progeny of both Trichogramma species. A similar trend was also detected in the fourth and fifth generations, but the response was weak although statistically significant. This grand-grandmaternal photoperiodic effect (which has not been demonstrated before for Trichogramma or for any other insect parasitoid) is most probably based on the transgenerational transmission of variations in DNA expression. We conclude that in mass rearing, to facilitate diapause induction before cold storage, it is advisable to rear both maternal and grandmaternal generations under the short-day conditions. In scientific studies, several generations preceding the experiment should be kept under equal conditions to exclude multigenerational maternal effects.  相似文献   

6.
The adult photoperiodic responses of two Trichogramma species were investigated by exposing adults during 3 days to one of the seven light: dark regimes: L: D = 4: 20, 8: 16, 12: 12, 14: 10, 16: 8, 18: 6, and 20: 4. The preimaginal stages of these individuals developed under short (L: D = 12: 12), long (L: D = 20: 4) or intermediate photoperiods (L: D = 14: 10 and L: D = 16: 8 for Trichogramma principium and T. embryophagum, respectively). The progeny of these females developed under short day L: D = 12: 12 and at two moderately diapause-inducing temperatures (13 and 14°C for T. principium, 14 and 15°C for T. embryophagum). In both Trichogramma species which developed at both temperatures, the percentage of diapausing prepupae was significantly dependent both on the photoperiodic conditions of the preimaginal development of the maternal generation and on the photoperiod which influenced the adult females. The adults showed a typical long-day photoperiodic response with a threshold day length of ca 13 h in T. principium and ca 16 h in T. embryophagum, which practically coincided with the thresholds of the pupal photoperiodic responses of these species revealed in our previous studies. However, the ultra-short photoperiods (L: D = 4: 20 and 8:16) caused a relatively stronger diapause-inducing effect on the progeny when applied to the adult females than when it was applied to the pupae. Thus, in both the Trichogramma species studied, the patterns of photoperiodic responses of pupa and adult were somewhat different although they almost coincided in the “ecologically significant” part of the photoperiodic scale.  相似文献   

7.
The ability of two Trichogramma species (Trichogramma telengai Sor. and T. principium Sug. et Sor.) to accumulate the effect of the maternal photoperiodic response during 5 consecutive generations reared in the laboratory under the short day (12 h) conditions was investigated. Control individuals developed at the same temperature of 20°C, but under the long day (18 h) conditions. The tendency to diapause was estimated by the proportion of progeny that entered diapause under the short day conditions at the temperatures of 13, 14 and 15°C. Trichogramma principium manifested an evident transgenerational cumulative photoperiodic response: the development of 1, 2, and 3 consecutive generations under the short day conditions caused a gradual increase in the proportion of diapausing progeny. In T. telengai, the progeny of the females that developed under the short day conditions also entered diapause more often than the progeny of those that developed under the long day conditions, but the number of preceding generations which developed under short day had no effect on the tendency to diapause. This interspecific difference can be possibly explained by the different natural geographic ranges of the two studied species. Trichogramma principium occurs in Southern Europe, Southern Kazakhstan, and Central Asia where the autumnal decrease in temperature is very slow and thus two or even more generations can develop under the short day conditions, whereas T. telengai is distributed over Central and North-Western Europe and in Siberia, where the autumnal decrease in temperature is rather fast, the development of one more “autumnal” generation is risky, and thus even the first “short-day signal” induces a very strong tendency of the progeny to diapause.  相似文献   

8.
It is known that the prepupal diapause in Trichogramma is dependent on temperature conditions of embryonic and larval development and on the photoperiodic conditions of preimaginal development of maternal females. However, the relative photosensitivity of different preimaginal stages has been never investigated. We studied the position of the photosensitive period over the preimaginal development of maternal females in T. embryophagum Htg. and T. principium Sug. et Sor. by transferring preimaginal stages between diapause‐averting ‘long’ day (L : D = 20 : 4) and diapause‐inducing ‘short’ day (L : D = 12 : 12). Results showed that the influence of maternal photoperiod on progeny diapause was determined during the late pupal stage (last days of preimaginal development at 20°C). During this time, the critical duration of the photoperiodic induction was extremely small: one short or long day caused almost the same effect as the permanent development under these conditions. As a whole, photoperiodic response in Trichogramma was found to be unusually rapid, labile and easily reversible which is probably explained by extremely small size and fast development of these egg parasitoids. The results of this study could be used for elaboration of optimal methods for Trichogramma mass rearing and storage and for prediction of its seasonal cycles under natural conditions.  相似文献   

9.
Female two‐spotted spider mite Tetranychus urticae are grown under different photoperiods and the photoperiodic regulation of diapause is examined. The photoperiodic response curve for diapause induction was of the long day–short day type, with critical day lengths (CDLs) of 2 and 12.5 h; diapause was induced between these CDLs. The preimaginal period is significantly longer in diapausing females than in non‐diapausing females; moreover, a significant positive correlation is detected between diapause incidence and deutonymphal period. Diapause incidence is high when long‐night photoperiods are applied against a background of continuous darkness in the stages including the deutonymph; this stage appears to be the most sensitive to photoperiod. These observations suggest that diapause‐inducing conditions inhibit nymphal development, particularly in the deutonymphal stage when photoperiodic time measurement for determination of reproduction or diapause is carried out.  相似文献   

10.
Abstract

Photoperiodic insects are able to distinguish between long days and short days. In various models the long day response is classifically considered the “actively” induced state. The short day response is thought to be “passive”, caused by failure of light to coincide with a photosensitive part of the night or failure of coincidence of constituent oscillators. The photoperiodic response curve of Pieris brassicae showed that diapause is induced by short days (4–14 h), and non‐diapause state by several conditions (natural and non‐natural): long days (16 h or more), LL, DD and ultrashort days (0.1 h). By reciprocal transfers of larvae between non‐diapausing determining and diapause determining conditions, it was proved possible to estimate the differential capacity of four non‐diapausing conditions vs. the diapausing action of LD 8: 16 in decreasing sequence: LD 16:8 > LL > DD = LD 0.1: 23.9. DD may be considered a “neutral” condition. In darkness the development seems to be determined by an endogenous program without external influence. LL, although beingan aperiodic signal as DD, has a weak antidiapausingeffect.Thebiological clock of Pieris differentiates between two constant conditions. The four non‐diapausing conditions have the same effect on the development when applied during the entire larval life, but have different effects when only applied during a few days. Both ecological conditions LD 16:8 and LD 8:16 have an action on the development but in an opposite way. There was not a “passive” state caused by failure of another inductive photoperiod. Ultra‐short days, DD and LL are without ecological meaning. Nevertheless, in these experiments, they provided informations in attempts to determine the mechanism of the time measurement. The external coincidence model of Pittendrigh and Minis (1964) was the more adequate to explain theearlier results on the biological clock of Pieris. However, this model has to be modified to account for the differential significance of several non‐diapausing conditions.  相似文献   

11.
Living in seasonally changing environments requires adaptation to seasonal cycles. Many insects use the change in day length as a reliable cue for upcoming winter and respond to shortened photoperiod through diapause. In this study, we report the clinal variation in photoperiodic diapause induction in populations of the parasitoid wasp Nasonia vitripennis collected along a latitudinal gradient in Europe. In this species, diapause occurs in the larval stage and is maternally induced. Adult Nasonia females were exposed to different photoperiodic cycles and lifetime production of diapausing offspring was scored. Females switched to the production of diapausing offspring after exposure to a threshold number of photoperiodic cycles. A latitudinal cline was found in the proportion of diapausing offspring, the switch point for diapause induction measured as the maternal age at which the female starts to produce diapausing larvae, and the critical photoperiod for diapause induction. Populations at northern latitudes show an earlier switch point, higher proportions of diapausing individuals and longer critical photoperiods. Since the photoperiodic response was measured under the same laboratory conditions, the observed differences between populations most likely reflect genetic differences in sensitivity to photoperiodic cues, resulting from local adaptation to environmental cycles. The observed variability in diapause response combined with the availability of genomic tools for N. vitripennis represent a good opportunity to further investigate the genetic basis of this adaptive trait.  相似文献   

12.
ABSTRACT. Females of the flesh fly, Sarcophaga bullata Parker, produce an increasingly higher number of diapausing progeny in successive broods. Though a maternal effect completely eliminates the capacity for diapause in the first brood of females with an embryonic and larval history of short day, diapause is restored at low levels in later broods. Exposure to long daylength at the onset of adult life does not alter the diapause response of later broods, thus suggesting that the age effect cannot be modified by daylength manipulation. The age response implies that changes in maternal physiology exert an important regulatory control on the diapause fate of the pupa.  相似文献   

13.
The interaction of thermoperiod and photoperiod in their influence on the reproductive maturation of females and on the induction of the maternal effect determining larval diapause of the progeny of the blowfly, Calliphora vicina, was first investigated under laboratory conditions. Under the combination of a day length of 12 h with a thermoperiod (the alternation of 12 h long periods with temperatures of 10 and 20°C) the reproductive maturation of females was faster than at the corresponding mean constant temperature of 15°C. Under the “natural” thermoperiod, when the period with a temperature of 10°C coincided with “night-time” (the dark phase of the diurnal light-dark cycle) the maturation of females was slower than that under the “inverted” thermoperiod, when the period with a temperature of 10°C coincided with “day-time” (the light phase of the diurnal light-dark cycle). The proportion of diapausing individuals was maximal in the progeny of females kept at 20°C and decreased with the increase in temperature. Under thermoperiods (the alternations of 12 h long periods with temperatures of 20 and 26°C) the proportion of diapausing progeny was lower than that under the corresponding mean constant temperature of 23°C, but under the inverted thermoperiod with a high night temperature this effect was much stronger. In combination with the results of our previous studies, these data support the hypothesis that the effects of “night” and “day” temperatures are substantially different only when the thermal response interacts with a strong photoperiodic response.  相似文献   

14.
The Asian corn borer Ostrinia furnacalis (Guenée) enters facultative diapause as fully‐developed larvae in response to short‐day conditions. As a consequence of geographical variation in photoperiodic response, moths from Nanchang (28°46′N, 115°50′E) enter diapause in response to short day‐lengths (D strain), even at the high temperatures whereas moths from Ledong (18°47′N, 108°89′E) exhibit almost no diapause under the same conditions (N strain). In the present study, crosses between the two strains are used to evaluate the inheritance of diapause under different photoperiods at temperatures of 22, 25 and 28 °C. The moths, both reciprocal crosses and backcrosses, show a clear long‐day response, similar to that of the D strain, suggesting that the photoperiodic response controlling diapause in this moth is heritable. However, the critical day‐length for induction of diapause is shorter in hybrids than in the D strain. The N strain also shows a short‐day photoperiodic response at the lower temperature of 22 °C, indicating that the N strain still has the capacity to enter a photoperiodically‐induced diapause, depending on the rearing temperature. The incidence of diapause in all crosses is highest with D strain fathers or grandfathers and lowest with N strain fathers or grandfathers, indicating that the male parent has significantly more influence on the incidence of diapause of subsequent progeny than the female. The results obtained from all crosses under LD 12 : 12 h or LD 13 : 11 h photocycles at 25 °C show that inheritance of diapause in O. furnacalis does not fit an additive hypothesis and that the capacity for diapause is transmitted genetically in the manner of incomplete dominance.  相似文献   

15.
Abstract Progeny of Sarcophaga bullata produced from mothers with a history of short day will not enter pupal diapause even if they are reared in a strong diapause-inducing environment (LD 12:12 h at 20oC). Short-day exposure and diapause commitment are normally inseparable, but this maternal effect provides a tool for examining separately the effect of photoperiod and diapause commitment. Duration of the wandering period of the third instar is longer in diapause-destined larvae than in non-diapause-destined larvae, and fecundity of flies that have experienced pupal diapause is lower than in long-day flies that have not been through diapause. The puparia of diapausing pupae contain more hydrocarbons than puparia of nondiapausing pupae, and this contributes to higher rates of net transpiration for the nondiapausing flies. Flies showing the maternal effect (short-day experience but no diapause) show an intermediate response: length of wandering, fecundity rate and quantities of puparial hydrocarbon are between the extremes observed in the other two groups of flies. Thus, the maternal effect switches the developmental programme to nondiapause, but the progeny retain some characteristics of diapause. Evidence from reciprocal crosses indicates that the photoperiodic history of the female, rather than the male, is responsible for the influence on fecundity.  相似文献   

16.
It is known that in some insect species the incidence of diapause among the progeny of females that had undergone diapause is relatively low or zero even under strong diapause-inducing conditions. Moreover, the maternal inhibition, preventing the induction of a maladaptive diapause in spring, can persist over several generations. This multigenerational effect based on hypothetical ‘interval timer’ was thoroughly studied in Aphididae. We first described a similar phenomenon in Hymenoptera: laboratory experiments demonstrated that the proportion of diapausing progeny of Trichogramma females that had undergone diapause was practically zero independently of photoperiodic and temperature conditions used (day lengths of 12 and 18 h and temperatures of 12–15 °C). Then the ability to enter diapause recovered gradually and returned to the normal level over two (in Trichogramma telengai) or even five (in Trichogramma principium) generations. We conclude that the observed effect may be based on an interval timer similar to that in aphids.  相似文献   

17.
The cricket Modicogryllus siamensis Chopard shows photoperiod‐dependent changes in the duration of nymphal development: nymphs become adult within 60 days after hatching, undergoing seven moults under long‐day conditions, whereas, under short‐day conditions, nymphal development takes much longer (approximately 180 days) with an increased number of moults. Because removal of the compound eyes alters this photoperiodic response, the eyes may be involved in light detection during the photoperiodic response. The role of opsins, expressed in the compound eye, is examined in the present study with reference to the photoperiodic response. Molecular cloning identifies cDNAs of three opsins, opsin‐Ultra Violet (Ms'op‐UV), opsin‐Blue (Ms'op‐B) and opsin‐Long Wave (Ms'op‐LW), and in situ hybridization reveals that the opsin genes are expressed in specific regions of the compound eye in a gene‐specific manner. RNA interference (RNAi) technology using the opsin genes results in a partial disruption in the long‐day responses; most of the treated crickets showed eight or more moults and up to 23.5% show a prolonged nymphal period that is typical of short‐day responses. Under short‐day conditions, op‐UV RNAi crickets show earlier adult development, whereas no distinct alterations are observed in op‐B and op‐LW RNAi insects. The results suggest that the opsin genes may play differential roles in the photoperiodic response in the cricket and that the results can be at least partially explained in terms of the external coincidence model of photoperiodic time measurement.  相似文献   

18.
Abstract The Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) diapauses as a last‐instar (fifth) larva. At 30 °C, no larvae enter diapause under any photoperiodic conditions; at 25 °C, the photoperiodic response curve is a long‐day type with a critical length of approximately 13 h light; at 20 °C, diapause is induced moderately even under long days (> 13 h). Cumulative effects of short days or long days on diapause induction are determined by alternate, stepwise and gradually changing regimes of photoperiod at 25 °C. When the larvae are repeatedly exposed to LD 16 : 8 h and LD 12 : 12 h photoperiods every other day, the incidence of diapause is 37%. When the larvae are placed under an LD 16 : 8 h photoperiod for 2 days and then under an LD 12 : 12 h photoperiod for 1 day, it is 38 %. Exposure to an LD 16 : 8 h photoperiod for 1 day and then to an LD 12 : 12 h photoperiod for 2 days induces only 15% diapause. This may indicate that the photoperiodic information is not accumulated in a simple fashion despite the generally accepted hypothesis (i.e. photoperiodic counter). Larvae exposed to an LD 16 : 8 h photoperiod for 5 days after oviposition express a very high incidence of diapause even under short days between an LD 2 : 22 h and LD 12 : 12 h photoperiod. After 10 days exposure to an LD 16 : 8 h photoperiod, however, the short day does not induce diapause strongly. On the other hand, an LD 12 : 12 h photoperiod in the early larval life is highly effective in the induction of diapause. A gradual increase or decrease of photoperiod (2 min day?1) shows that the direction of photoperiodic change does not affect the diapause determination.  相似文献   

19.
The yellow peach moth, Conogethes punctiferalis (Guenée), a multivoltine species that overwinters as diapausing larvae, is one of the most serious insect pests on maize in China. Effect of photoperiod and temperature on larval diapause was examined under empirical laboratory conditions. Short‐day treatments caused larval diapause at 25°C, and the critical photoperiod was between 12 and 13 h (or 12 h 51 min) light per day. No sensitive instar was identified for diapause induction under alternated short‐ (L : D 11 : 13 h) and long‐day (L : D 14 : 10 h) treatments at different larval stages. However, accumulative treatment of three instars and 10 d under short‐day treatment was required for the induction of 50% larval diapause. All larvae entered diapause at 20°C, whereas less than 3% did so at 30°C, irrespective of the long‐ or short‐day treatment. Furthermore, under the short‐day treatment, more than 90% of larvae went into diapause with temperatures ≤ 25°C, but less than 17% did so at 28°C. In contrast, under the long‐day treatment, less than 19% of larvae went into diapause with temperatures ≥ 23°C. The forward shift (5°C) of critical temperature under the long‐day regime demonstrated the compensatory effect of temperature and photoperiod on diapause induction. In conclusion, C. punctiferalis had a temperature‐dependent type I photoperiodic diapause response; there was no sensitive instar for diapause determination, but the photoperiodic accumulation time countermeasures both of the short‐day cycles and the number of instars exposed, and the photoperiodic diapause response, was a temperature‐compensated phenomenon.  相似文献   

20.
1. In the life cycle of monogonont rotifers it is generally assumed that diapausing eggs invariably hatch into amictic stem females which produce female offspring parthenogenetically. Diapausing eggs are only produced by later generations after sexual reproduction has been induced by environmental cues. 2. We show that populations of an undescribed Hexarthra species inhabiting small temporary ponds in the Chihuahuan Desert deviate from this life cycle pattern. These ponds may dry within days and up to 85% of females were mictic. Females producing male offspring and diapausing eggs were observed 1 or 2 days, respectively, after ponds had filled with water. 3. Under laboratory conditions, 7–46% of females hatching from re‐hydrated sediments were sexual. Male offspring of these females can fertilise other mictic stem females leading to diapausing egg formation. In laboratory experiments, females produced fully developed diapausing eggs within 1.9 days at 20 °C and 1.2 days at 30 °C. 4. In addition, embryonic development time (1.1–0.3 days at temperatures between 12 and 30 °C) and juvenile period (2.1–0.5 days for the same temperature range) are shorter than those of other rotifer species. In short‐lived habitats, the potential for rapid population development and production of new diapausing eggs may be crucial in the long‐term survival of populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号