首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant‐insect herbivore‐entomopathogen interactions are one of the hot topics in biological control and humoral immunity, and biochemical metabolism are important responses of herbivores to pathogen infection. Entomopathogens are key biocontrol agents of caterpillars, but how plants affect the responses of caterpillars to these organisms is not well understood. We studied hormonal immunity (lysozyme and phenoloxidase activities) and biochemical metabolism (total protein and lipid contents) of Beauveria bassiana‐infected beet armyworm (Spodoptera exigua) larvae that feed on five different host plants (soya bean, Chinese cabbage, edible amaranth, water convolvulus and pepper). Results indicated that plant species differentially affected lysozyme and phenoloxidase activity and lipid content, but had no effect on protein content of pathogen‐infected caterpillars. Both lysozyme and phenoloxidase activities were generally higher in entomopathogen‐infected larvae that feed on edible amaranth or water convolvulus compared with the other three plants from days 1 to 5 after treatment. Plant species did not affect in regular changes during the 5 days in the lipid content of infected or non‐infected caterpillars. Our study reveals that plants fail to affect the biochemical metabolism but plants can mediate the humoral immunity of caterpillars to defend against pathogens. This study provides insight into plant‐mediated effects on the response of herbivores to pathogens.  相似文献   

2.
1. Plants are frequently under attack by multiple insect herbivores, which may interact indirectly through herbivore‐induced changes in the plant's phenotype. The identity, order, and timing of herbivore arrivals may influence the outcome of interactions between two herbivores. How these aspects affect, in turn, subsequently arriving herbivores that feed on double herbivore‐induced plants has not been widely investigated. 2. This study tested whether the order and timing of arrival of two inducing herbivores from different feeding guilds affected the preference and performance of a subsequently arriving third herbivore, caterpillars of Mamestra brassicae L. (Lepidoptera: Noctuidae). Aphids [Brevicoryne brassicae L. (Hemiptera: Aphididae)] and caterpillars [Plutella xylostella L. (Lepidoptera: Yponomeutidae)] were introduced onto wild Brassica oleracea L. (Brassicaceae) plants in different sequences and with different arrival times. The effects of these plant treatments on M. brassicae caterpillars were assessed in pairwise preference tests and no‐choice performance tests. 3. The caterpillars of M. brassicae preferred to feed from undamaged plants rather than double herbivore‐induced plants. Compared with undamaged plants, they preferred plant material on which aphids had arrived first followed by caterpillars, whereas they avoided plant material with the reverse order of herbivore arrival. Performance of the caterpillars increased with increasing arrival time between herbivore infestations in double herbivore‐induced plants. Although M. brassicae grew faster on plants induced by aphids than on those induced by caterpillars alone, its performance was not affected by the order of previous herbivore arrival. 4. These results imply that the timing of colonisation by multiple herbivores determines the outcome of plant‐mediated herbivore–herbivore interactions.  相似文献   

3.
Females of myrmecophilous butterflies tend to oviposit in plants visited by ant species that engage in stable associations with its larvae. In Banisteriopsis malifolia, caterpillars are attended by the same ants that feed on extrafloral nectaries. A conflict may arise when both the plant and caterpillars compete for ant attention, and ants are assumed to forage on the highest quality resource. By attending caterpillars, ants can be indirectly detrimental to plant fitness because florivorous larvae feed intensively until pupation. In this study, we specifically investigated (i) whether the occurrence of facultative myrmecophilous Synargis calyce (Riodinidae) caterpillars in B. malifolia was based on ant species (Camponotus blandus or Ectatomma tuberculatum) and abundance; (ii) the monopolization of ants by the butterfly larvae and (iii) the florivory rates incurred by the caterpillars on inflorescences. The abundance of S. calyce was six‐fold greater in plants with C. blandus, compared to E. tuberculatum treatments. Caterpillars monopolized up to 50% of C. blandus on the plants, indicating that the resources offered by S. calyce were more attractive to ants than extrafloral nectaries. Florivory by riodinids incurred losses of almost 60% of flower buds. Myrmecophilous riodinids exploited an ant–plant mutualism by attracting aggressive ants that become larvae bodyguards. Thus, this ecological interaction is potentially detrimental to B. malifolia, since the ants, which can provide protection against herbivores, shift to provide defence for one of these herbivores.  相似文献   

4.
Caterpillars living in aggregations may derive several benefits that outweigh the costs, including better survivorship and improved growth rates. I tested whether larval group size had an effect on these two vital rates in Euselasia chrysippe. These caterpillars feed gregariously during all instars and move in processionary form over the host plant and even pupate together. There was a positive relationship between group size and larval survivorship in the field, although genetic variability was not taken into account in this experiment. Under laboratory conditions, there was also a positive relationship between group size, and larval growth rate and adult weight. This supports the hypothesis that aggregations facilitate feeding and larval growth. Single sixth instar larvae in the laboratory also had a lower survivorship than larvae in groups. These results provide further evidence of the benefits of group living for gregarious caterpillars.  相似文献   

5.
Summary Many species of the paleotropic plant genus Macaranga (Euphorbiaceae) live in symbiosis with the ant genus Cremastogaster (Myrmicinae), especially with C. borneensis. The ants protect their plants from many herbivorous enemies. The plants provide food-bodies and nesting space in the internodes. In addition the ants care for honeydew producing scale insects in these spaces. The caterpillars of several species of the genus Arhopala (Lycaenidae) parasitize on this symbiosis system. With the aid of their myrmecophilic organs the caterpillars overcome the aggressivity of the ants and feed on the Macaranga leaves without disturbance. Moreover the caterpillars and their pupae are protected against parasites and predators by the ants. As the female butterflies oviposit the eggs only in low numbers upon young leaves, the plants are not seriously affected.The larvae of the three Arhopala species; A. amphimuta, A. moolaiana, and A. zylda are adapted to their host plant species Macaranga triloba, M. hulletti, and M. hypoleuca by means of color, shape, and behavior. In addition, the different larval stages change their appearance according to the parts of the plant on which they feed and rest. These cryptic adaptations point to a distinct monophagy of these butterflies.The state of phylogenetic relationship within the three lycaenids is parallel to the relationship among the three host plants.This work was supported by the Deutsche Forschungsgemeinschaft. We are indebted to Mr. Eliot, Taunton, UK, for the identification of the lycaenids, for stimulating discussions and literature hints  相似文献   

6.
The leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) is a specialist herbivore, all of whose mobile stages feed on the leaves of salicaceous plants. Both the larval and adult stages of the ladybird Aiolocaria hexaspilota (Coleoptera: Coccinellidae) are dominant natural enemies of the larvae of the leaf beetle. To clarify the role of plant volatiles in prey‐finding behaviour of A. hexaspilota, the olfactory responses of the ladybird in a Y‐tube olfactometer are studied. The ladybird adults show no preference for willow plants Salix eriocarpa that are infested by leaf beetle adults (nonprey) over that for intact plants but move more to the willow plants infested by leaf beetle larvae (prey) than to intact plants. Moreover, ladybird larvae show no preference for willow plants infested by leaf beetle larvae or adults over intact plants. Using gas chromatography‐mass spectrometry, six volatile compounds are released in larger amounts in the headspace of willow plants infested by leaf beetle larvae than in the headspace of willow plants infested by leaf beetle adults. In addition, the total amount of volatiles emitted from willow plants that are either intact or infested by leaf beetle adults is much smaller than that from willow plants infested by leaf beetle larvae. These results indicate that volatiles from S. eriocarpa infested by P. versicolora inform A. hexaspilota adults about the presence of the most suitable stage of their prey, whereas A. hexaspilota larvae do not use such information.  相似文献   

7.
Adult females of the larval parasitoidCotesia glomerata (L.) respond to chemical cues associated with feeding damage inflicted on cabbage plants by its host,Pieris brassicae (L.). The use of these infochemicals by the parasitoid during selection of the most suitable host instar was investigated. The parasitoid can successfully parasitize first-instar host larvae, while contacts with fifth-instar larvae are very risky since these caterpillars react to parasitization attempts by biting, spitting, and hitting, resulting in a high probability of the parasitoid being seriously injured or killed. Observations of the locomotor behavior of individual wasps on leaves with feeding damage inflicted by the first and the fifth larval instars and on host silk and frass showed that several cues affect the duration of searching by the parasitoids after reaching a leaf: cues on the margin of the feeding damage and cues in the host frass and silk. Whole frass, silk, and hexane extracts of frass obtained from first-instar elicited parasitoid's searching behavior significantly longer than frass, silk, and hexane extract of frass from the fifth instar. The results demonstrate thatC. glomerata can discriminate between first instars, which are more suitable hosts, and fifth instars ofP. brassicae without contacting the caterpillars, by exploiting instar-related cues.  相似文献   

8.
The main host plants of the butterfly Zerynthia rumina L. (Lepidoptera: Papilionidae) in southern Spain occur in different habitats and in general do not grow sympatrically. Therefore, each single local butterfly population uses the particular host available within its range. Aristolochia longa L. is a tuberous perennial herb available only in the spring, while A. baetica L. is an evergreen perennial vine with indeterminate growth. However, because of the toughness of older leaves, newly hatched larvae feed only on new leaves of A. baetica, and most of these leaves are produced well before the larvae hatch. In laboratory experiments, caterpillars feeding on either new or mature A. longa leaves grew faster and converted food into biomass more efficiently than those feeding on new A. baetica leaves. These differences are related to variation in nutritional quality among the host plants. Estimates of butterfly abundance were lower in sites where Z. rumina uses A. baetica, compared with those where the host is A. longa. The potential differential effect of these two food plants on the densities of local butterfly populations relying on them is discussed here.  相似文献   

9.
Abstract.
  • 1 Leaf folding is a common behaviour among caterpillars that has many potential benefits such as creation of a favourable microclimate and protection from predation or dislodgment.
  • 2 One cost of leaf folding which has not previously been quantified is the reduction in growth rate that might result from the energetic expenditures of producing silk and applying it to fold leaves.
  • 3 On caged goldenrods in field and forest habitats, early-instar Dichomeris leuconotella (Busck) caterpillars that were repeatedly forced to spin new leaf refuges (either folds or webs of silk) actually had higher growth rates than caterpillars left undisturbed.
  • 4 This surprising result apparently reflected the fact that disturbed caterpillars chose relatively young green leaves for new refuges, whereas undisturbed caterpillars tended to remain in their webs or folds on ageing leaves.
  • 5 In a glasshouse experiment using plants that underwent little senescence, growth rates were unaffected by the amout of refuge-making effort, indicating that the costs of such effort were either negligible or easily compensated for by these caterpillars.
  • 6 On glasshouse plants, caterpillars periodically forced to change refuges had higher disappearance rates than those left undisturbed, despite the absence of predators. Wandering or falling from plants is evidently a major hazard of frequent refuge changes.
  • 7 Thus, early-instar Dichomeris caterpillars face a trade-off in which risks of predation or loss of contact with the host favour the observed low rate of refuge changes, but in which growth rates could actually be improved with more refuge changes.
  相似文献   

10.
Feeding of Pareuchaetes pseudoinsulata caterpillars caused the leaves of Chromolaena odorata to turn yellow. Leaf yellowing could not be induced either by artificial removal of leaves or by drenching the plant with a solution of excreta from P. pseudoinsulata caterpillars. Yellow leaves appeared tougher but had the same energy level as that of green leaves. The amount of nitrate-nitrogen was significantly higher in yellow leaves than green leaves. P. pseudoinsulata caterpillars prefer to feed on green leaves. When forced to feed on yellow leaves, they exhibit slow growth and high mortality. Defensive factors in plants attacked by insects seemed to prevent further infestation of plants. In the field, caterpillars on the yellow plants were found during both day and night whereas on green plants they appeared to feed at night and hide in the ground at daytime.  相似文献   

11.
Summary Caterpillars of Maculinea arion are obligate predators of the brood of Myrmica sabuleti ants. In the aboratory, caterpillars eat the largest available ant larvae, although eggs, small larvae and prepupae are also palatable. This is an efficient way to predate. It ensures that newly-adopted caterpillars consume the final part of the first cohort of ant brood in a nest, before this pupates in early autumn and becomes unavailable as prey. At the same time, the fixed number of larvae in the second cohort is left to grow larger before being killed in late autumn and spring. Caterpillars also improve their feeding efficiency by hibernating for longer than ants in spring, losing just 6% of their weight while the biomass of ant larvae increases by 27%. Final instar caterpillars acquire more than 99% of their ultimate biomass in Myrmica nests, growing from 1.3 mg to an estimated 173 mg. A close correlation was found between the weights of caterpillars throughout autumn and the number of large ant larvae they had eaten. This was used to calculate the number of larvae eaten in spring, allowing both for the loss of caterpillar weight during winter and the increase in the size of their prey in spring. It is estimated that 230 of the largest available larvae, and a minimum nest size of 354 M. sabuleti workers, is needed to support one butterfly. Few wild M. sabuleti nests are this large: on one site, it was estimated that 85% of nests were too small to produce a butterfly, and only 5% could support two or more. This prediction was confirmed by the mortalities of 376 caterpillars in 151 wild M. sabuleti nests there. Mortalities were particularly high in nests that adopted more than two caterpillars, apparently due to scramble competition and starvation in autumn. Survival was higher than predicted in wild nests that adopted one caterpillar. These caterpillars seldom exhaust their food before spring, when there is intense competition among Myrmica for nest sites. Ants often desert their nests in the absence of brood, leaving the caterpillar behind. Vacant nests are frequently repopulated by a neighbouring colony, carrying in a fresh supply of brood. Maculinea arion caterpillars have an exceptional ability to withstand starvation, and sometimes survive to parasitize more than one Myrmica colony. Despite these adaptations, predation is an inefficient way to exploit the resources of a Myrmica nest. By contrast, Maculinea rebeli feeds mainly at a lower trophic level, on the regurgitations of worker ants. Published data show that Myrmica nests can support 6 times more caterpillars of Maculinea rebeli than of M. arion in the laboratory. This is confirmed by field data.  相似文献   

12.
R. Weyh  U. Maschwitz 《Oecologia》1982,52(3):415-416
Summary Starting from permanent resting sites covered with silk, the solitary and territorial larvae of I. podalirius spin silk trails leading to feeding sites. It is shown that the silk contains a volatile trail marker. The larvae recognize their own trails and prefer them to those laid by conspecific caterpillars. Trail marking appears to be widespread among larvae of Lepidoptera.
Individuelle Spurung bei Raupen des Segelfalters Iphiclides podalirius L. (Lepidoptera; Papilionidae)
Zusammenfassung Die solitär lebenden, territorialen Raupen von I. podalirius spinnen, ausgehend von festen, mit Seide besponnenen Ruheplätzen, Seidespuren zu ihren Futterstellen. Es wird gezeigt, dsBsB die Seide einen flüchtigen Spurmarkierungsstoff enthält. Die Raupen erkennen ihre eigenen Spuren und ziehen sie den Spuren von Artgenossen vor. Die Möglichkeit, daß Spurmarkierung unter den Entwicklungsstadien von Schmetterlingen weiter verbreitet sein könnte, wird diskutiert.
  相似文献   

13.
Colonies of the social caterpillar Hylesia lineata (Lepidoptera: Satumiidae) form long, single-file, head-to-tail processions as they move between their shelters and distant feeding sites. Although investigations of other processionary species have implicated a silk trail in the processionary process, silk plays little or no role in initiating or maintaining processions in H. lineata. Studies we report here implicate both tactile stimuli and a trail pheromone in the establishment and maintenance of processions. Processionaries elicit locomotion in the individual preceding them in line by brushing their heads against prominent sulci that project from the tips of their abdomens. Caterpillars mark their pathways with a pheromone deposited by brushing the ventral surfaces of their last abdominal segments against the substrate. The persistent pheromone is soluble in hexanes and appears to be secreted from glandular setae found on the proximal regions of the anal prolegs and the venter. In Y-choice tests, caterpillars selected newer trails over older trails and stronger trails over weaker trails. They did not distinguish between trials deposited by newly fed caterpillars and those deposited by starved caterpillars. Despite the unidirectional nature of processions, there is no indication that caterpillars can determine from the trail alone the direction in which the procession advanced. The significance of these findings to the foraging ecology of the caterpillars is discussed.  相似文献   

14.
15.
1. Predatory ants may reduce infestation by herbivorous insects, and slow‐moving Lepidopteran larvae are often vulnerable on foliage. We investigate whether caterpillars with morphological or behavioural defences have decreased risk of falling prey to ants, and if defence traits mediate host plant use in ant‐rich cerrado savanna. 2. Caterpillars were surveyed in four cerrado localities in southeast Brazil (70–460 km apart). The efficacy of caterpillar defensive traits against predation by two common ant species (Camponotus crassus, C. renggeri) was assessed through experimental trials using caterpillars of different species and captive ant colonies. 3. Although ant presence can reduce caterpillar infestation, the ants' predatory effects depend on caterpillar defence traits. Shelter construction and morphological defences can prevent ant attacks (primary defence), but once exposed or discovered by ants, caterpillars rely on their size and/or behaviour to survive (secondary defence). 4. Defence efficiency depends on ant identity: C. renggeri was more aggressive and lethal to caterpillars than C. crassus. Caterpillars without morphological defences or inside open shelters were found on plants with decreased ant numbers. No unsheltered caterpillar was found on plants with extrafloral nectaries (EFNs). Caterpillars using EFN‐bearing plants lived in closed shelters or presented morphological defences (hairs, spines), and were less frequently attacked by ants during trials. 5. The efficiency of defences against ants is thus crucial for caterpillar survival and determines host plant use by lepidopterans in cerrado. Our study highlights the effect of EFN‐mediated ant‐plant interactions on host plant use by insect herbivores, emphasizing the importance of a tritrophic viewpoint in risky environments.  相似文献   

16.
1. In some lepidopterans, the newly hatched caterpillars feed on chorion (animal protein) as their first food. This is also a frequent behaviour of newly hatched caterpillars of Ascia monuste. 2. According to some parameters tested (time for pupation, number of adults, male imago weight, and fifth‐instar ingestion), chorion ingestion by first‐instar larvae affects adult performance positively. The ingestion of ultraviolet‐sterilised chorion provided the same positive effect on performance. It is thus suggested that young caterpillars may be benefiting from chorion nutritionally, and that chorion ingestion is a chain of events that leads to positive effects on insect performance. 3. Cannibalism in A. monuste was observed in newly hatched caterpillars and is related to the chorion ingestion behaviour. A condition for this to occur was the interval of time of hatching, which means that, if a group of caterpillars hatches very much before another group, once the caterpillars have ingested the chorion of their own eggs, there is a tendency for them to ingest the chorion of other eggs (including unhatched eggs) and, consequently, practice cannibalism. 4. Ascia monuste immatures are considered to be herbivorous, however it is important to know that they eat animal tissue (chorion and conspecific eggs).  相似文献   

17.
We tested whether a plant's life time seed production is increased by parasitization of herbivores in a tritrophic system, Arabidopsis thaliana (Brassicaceae) plants, Pieris rapae (Lepidoptera: Pieridae) caterpillars and the solitary endoparasitoid Cotesia rubecula (Hymenoptera: Braconidae). We established seed production for intact A. thaliana plants, plants that were mechanically damaged, plants fed upon by parasitized caterpillars and plants fed upon by unparasitized caterpillars. In the first experiment, with ecotype Landsberg (erecta mutant), herbivory by unparasitized P. rapae caterpillars resulted in a strongly reduced seed production compared to undamaged plants. In contrast, damage by P. rapae caterpillars that had been parasitized by C. rubecula did not result in a significant reduction in seed production. For the second experiment with the ecotype Columbia, the results were identical. Plants damaged by unparasitized caterpillars only produced seeds on regrown shoots. Seed production of plants that had been mechanically damaged was statistically similar to that of undamaged plants. Production of the first ripe siliques by plants fed upon by unparasitized caterpillars was delayed by 18–22 days for Landsberg and 9–10 days for Columbia. We conclude that parasitization of P. rapae by C. rubecula potentially confers a considerable fitness benefit for A. thaliana plants when compared to plants exposed to feeding damage by unparasitized P. rapae larvae. Plants that attract parasitoids and parasitoids that respond to herbivore-induced plant volatiles will both experience selective advantage, justifying the use of the term mutualism for this parasitoid-plant interaction. This type of mutualism is undoubtedly very common in nature.  相似文献   

18.
Nancy E. Stamp 《Oecologia》1984,63(2):275-280
Summary The effect of defoliation by herbivores, checkerspot caterpillars (Euphydryas phaeton) and sawfly larvae (Macrophya nigra and Tenthredo grandis), on the reproductive output of turtlehead (Chelone spp.) was examined. Defoliation prior to development of flower buds reduced the number of reproductive stalks, flower buds, flowers and seed capsules. Severe herbivory, after flower buds appeared, decreased the final number of seed capsules and seeds per capsule. The availability of the host plants to the herbivores was a function of prior defoliation and environmental conditions. Sawfly larvae, by defoliating the plants in midsummer, forced prediapause checkerspot caterpillars to wander in search of food plants. Decimation of these perenials by postdiapause checkerspot caterpillars in a dry spring retarded growth of turtlehead and, consequently, most of the plants were not available for egg-laying by sawflies and checkerspots.  相似文献   

19.
Toxic plants with sequestering specialists are presented with a problem because plant derived toxins protect herbivores against natural enemies. It has been suggested that early induction of toxins and later relaxation of these defenses may help the plant resolve this problem because neonate caterpillars incur the physiological cost of dealing with toxins in early life, but are denied toxins when they are able to sequester them efficiently. In California, the pipevine swallowtail, Battus philenor L. (Lepidoptera: Papilionidae), feed exclusively on Aristolochia californica Torrey (Aristolochiaceae), an endemic vine that contains toxic alkaloids called aristolochic acids that caterpillars sequester to provide chemical defense in immature and adult stages. In a field experiment, the concentration of aristolochic acids doubled in the plant following leaf damage and returned to constitutive levels after six days. Neonate pipevine swallowtail caterpillars showed no aversion to high levels of aristolochic acid in a preference test. Caterpillars reared on leaves with supplemented aristolochic acid showed no physiological cost or increased mortality compared to caterpillars reared on un-supplemented leaves. Searching efficiency and capture rate of lacewing larvae (Chrysoperla), a common predator of first instar caterpillars, was compromised significantly after feeding on caterpillars reared on leaves with supplemented concentrations of aristolochic acid compared to caterpillars feeding on control plants. Additionally, mortality of lacewings increased when they were provided with a diet of B. philenor caterpillars reared on supplemented leaves compared to caterpillars reared on control leaves. Thus, the induction of aristolochic acids in the plant following leaf damage does not resolve the problem confronted by the plant and may confer benefits to this sequestering specialist.  相似文献   

20.
The caterpillars of Yponomeuta mahalebella Latr. (Lepidoptera: Yponomeutidae) are monophagous on Prunus mahaleb (Rosaceae) leaves. Adult females deposit eggs in batches, which determines larval gregarious behaviour. Coupled with gregarious behaviour, caterpillars spin silk tents within they will feed until pupation. Distribution of tents in the field, their effect in microenvironmental larval growth conditions and the consequences for adult body mass and survival of larvae were studied.There was a significant trend for tents to be placed with a southward orientation. Within-plant tent orientation was related to the sun-shade pattern experienced, which was the main effect determining thermal differences between the inside and the outside of the tent. These differences appeared to affect larval growth and survival, with higher survival of larvae and heavier adults emerging from tents oriented to the south-east and east, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号