首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to explore the mood effects of D1 receptor agonist, SKF-38393 and D1 receptor antagonist, SCH-23390 alone or in combination with a low dose of 17β-estradiol (17β-E2) in the adult ovariectomized female rats (OVX). OVX rats of Wistar strain were used in all experiments. Two weeks after surgery rats were chronically treated with vehicle, a low dose of 17β-E2 (5.0 μg/rat), SKF-38393 (0.1 mg/kg), SCH-23390 (0.1 mg/kg), SKF-38393 plus 17β-E2 or SCH-23390 plus 17β-E2 for 14 days before the forced swimming test. We found that SCH-23390 significantly decreased immobility time in the OVX females. A combination of SCH-23390 with a low dose of 17β-E2 induced more profound decrease of immobility time in the OVX rats compared to the rats treated with SCH-23390 alone. On the contrary, SKF-38393 failed to modify depression-like behavior in the OVX rats. In addition, SKF-38393 significantly blocked the antidepressant-like effect of 17β-E2 in OVX rats. Thus, the D1 receptor antagonist SCH-23390 alone or in combination with a low dose of 17β-E2 exerted antidepressant-like effect in OVX female rats, while the D1 receptor agonist SKF-38393 produced depressant-like profile on OVX rats.  相似文献   

2.
Our aim was to study the specific role of the postsynaptic D(1) receptors on dopaminergic response and analyze the metabolized dopamine (DA) in the rat striatum. We used male Wistar rats to evaluate the effects of different doses of a D(1) agonist (SKF-38393) and a D(1) antagonist (SCH-23390), and their co-administration. The levels of DA and L-3, 4-dihydroxyphenylacetic acid (DOPAC) were measured using high performance liquid chromatography. The systemic injection of SKF-38393 alone at 1, 5 and 10 mg/kg did not alter the DA and DOPAC levels or the DOPAC/DA ratio. In contrast, injection of SCH-23390 alone at 0.25, 0.5 and 1 mg/kg significantly increased the DA and DOPAC levels, as well as the DOPAC/DA ratio, compared with the respective control groups. The co-administration of SCH-23390+SKF-38393 did not alter the DA or DOPAC levels, but it did significantly inhibit the SCH-23390-induced increase of the DA and DOPAC levels. The SCH-23390+SKF-38393 and the SCH-23390-only groups showed an increase in the DOPAC/DA ratio. The co-administration of SCH-23390+PARGYLINE significantly decreased the DOPAC levels and the DOPAC/DA ratio compared with the control and SCH-23390 groups. Taken together, our results showed that selective inhibition with SCH-23390 produced an increase in metabolized DA via striatal monoamine oxidase. These findings also contribute to the understanding of the role of postsynaptic D(1) receptors in the long-loop negative feedback system in the rat striatum.  相似文献   

3.
Abstract: Amphetamine or selective D1 and D2 dopamine receptor agonists and antagonists were administered to the ventral tegmental area (VTA) through a microdialysis probe to determine their effects on glutamate and aspartate efflux in rats pretreated for 5 days with vehicle or 5 mg/kg (+)-amphetamine sulfate. In vehicle rats, glutamate efflux declined during 2 h of perfusion with the D1 receptor agonist SKF-82958 (10 and 100 µ M ). After SKF-82958 perfusion ended, glutamate efflux rebounded to basal levels and continued to increase gradually over the next 2 h. A similar biphasic pattern was observed with intra-VTA amphetamine (10 and 100 µ M ) and with another D1 agonist (100 µ M SKF-38393). The biphasic effects of SKF-82958 were prevented by coperfusion with a D1 antagonist (SCH-23390; 30 µ M ). Glutamate efflux was unaffected by a D2 agonist (100 µ M quinpirole) and by D1 or D2 antagonists administered alone (SCH 23390 and eticlopride; 30 µ M ). In amphetamine-pretreated rats tested 2 days after the last injection, both the decrease during SKF-82958 perfusion and the delayed increase in glutamate efflux were attenuated. In rats tested 12–14 days after the last amphetamine injection, only the decrease during SKF-82958 perfusion was attenuated. None of these drug treatments produced consistent effects on aspartate efflux. We showed previously that systemic amphetamine (5 mg/kg, i.p.) has no immediate effect on VTA glutamate efflux but produces a delayed increase in glutamate efflux that reaches statistical significance 2–3 h after injection. Because behavioral sensitization can be elicited either by repeated systemic or repeated intra-VTA administration, neurochemical effects common to both routes (such as the delayed increase in glutamate efflux) are most likely to contribute to its induction.  相似文献   

4.
The effects of short-term treatment (6 h) with selective D1 or D2 agonists and antagonists on the mRNA for proenkephalin in the medial and anterior aspects of the caudate-putamen and the nucleus accumbens were assessed by in situ hybridization histochemistry. Proenkephalin mRNA abundance was significantly changed in the striatum and accumbens in response to D2 receptor manipulation. D2 blockade with haloperidol or raclopride increased, whereas D2 stimulation with LY-171555 (D2 agonist) decreased, striatal and accumbens proenkephalin mRNA abundance. Antagonism of D1 receptor activity with SCH-23390 significantly decreased proenkephalin mRNA abundance in all brain regions. Concurrent administration of the D1 agonist SKF-38393 prevented the SCH-23390 effect in all brain areas. The data demonstrate that acute treatment with dopaminergic D2 agonists and antagonists affects proenkephalin mRNA abundance in the striatum and accumbens via a D2 receptor mechanism, consistent with the concept that D2 receptor function inhibits the synthesis of the mRNA encoding the enkephalin peptides. Moreover, D1 receptor activity, directly or indirectly, exerts modulatory effects on proenkephalin mRNA abundance in the striatum and nucleus accumbens.  相似文献   

5.
Abstract: The effects of benzazepine derivatives on extracellular levels of dopamine (DA) and l -3,4-dihydroxyphenylacetic acid (DOPAC) in the dorsal striatum of freely moving rats were studied using in vivo microdialysis. Direct injection of SKF-38393 (0.5 or 1.5 µg/0.5 µl), a selective D1 receptor agonist, into the striatum through a cannula secured alongside a microdialysis probe produced a rapid dose-dependent transient increase in striatal DA efflux and a more gradual reduction in efflux of DOPAC. The rapid increase in DA efflux was not affected by infusion of tetrodotoxin (TTX; 2 µ M ) or Ca2+-free Ringer's solution and occurred after either enantiomer of SKF-38393. A TTX-insensitive increase in DA level similar to that induced by SKF-38393 was also seen after other benzazepines acting as agonists (SKF-75670 and SKF-82958, each 1.5 µg in 0.5 µl) and antagonists (SCH-23390, 1.5 µg in 0.5 µl) at the D1 receptor and after (+)-amphetamine. These effects were inhibited by infusion of nomifensine (100 µ M ). It is concluded that the transient increases in striatal DA efflux seen after intrastriatal injection of SKF-38393 and other benzazepines are not mediated by presynaptic D1 receptors but by an amphetamine-like action on the dopamine transporter.  相似文献   

6.
7.
The physiological and pathological roles of dopamine D1 receptors (DR1) in the regulation of functions in tissues and organs have been recognized. However, whether DR1 are expressed in the osteosarcoma cells and inhibit the proliferation of these cells is unknown. In the present study, we found that DR1 were expressed in the osteosarcoma cells (OS732 cells). SKF-38393 (DR1 agonist) and the overexpression of DR1 decreased the proliferation of OS732 cells; SCH-23390 (DR1 antagonist) and the knockdown of DR1 increased the proliferation of OS732 cells, and both SCH-23390 and the knockdown of DR1 abolished the effect of SKF-38393 on the proliferation of OS732 cells. In addition, SKF-38393 down-regulated the phosphorylation of ERK1/2, PI3K, and Akt; SCH-23390 up-regulated the phosphorylation of ERK1/2, PI3K, and Akt, and SCH-23390 cancelled the effect of SKF-38393. The effect of SKF-38393 on the phosphorylation of ERK1/2, PI3K, and Akt and the proliferation of OS732 cells was similar to PD98059 (an ERK inhibitor) or LY294002 (a PI3K inhibitor), respectively. In conclusion, our results suggest that DR1 are expressed in the osteosarcoma cells and inhibit the proliferation of osteosarcoma cells by the down-regulation of the ERK1/2 and PI3K-Akt pathways. These findings provide a novel target for the treatment of the osteosarcoma.  相似文献   

8.
The adenylate cyclase present in membranes prepared from sea urchin eggs is sensitive to dopamine stimulation. The receptor sites coupled to sea urchin adenylate cyclase were characterized by means of specific agonists and antagonists. The D-1 dopamine agonist SKF-38393 was able to stimulate enzyme activity, while the two D-1 dopamine antagonists, SCH-23390 and SKF-83566, suppressed the stimulatory effect of dopamine. In addition, the D-2 dopamine agonists, PPHT and metergoline, brought about a dose-dependent inhibition of dopamine-stimulated adenylate cyclase activity. These data show that: (i) in sea urchin eggs adenylate cyclase is regulated by dopamine receptors; (ii) these receptors share characteristics with D-1 and D-2 dopamine receptors present in the mammalian brain.  相似文献   

9.
The effect of centrally and peripherally administered dopamine D1 and D2 specific compounds on core body temperature in mice was investigated. Quinpirole (LY-17155), a D2 agonist, induced a dose-dependent fall in body temperature (2.4–11.6%; p<0.003) when injected intraperitoneally (ip, 0.3–3.0 mg/kg) and intracerebroventricularly (icv, 0.1 mg/kg). This quinpirole-induced (1.0 mg/kg, ip) hypothermia was reversed by the central and peripheral administration of the D2 antagonists S-(–)-sulpiride (3.0–30.0 mg/kg, ip; 0.1–3.0 mg/kg, icv) and spiperone (0.03 and 0.1 mg/kg, ip; 0.03–3.0 mg/kg, icv). Domperidone, a D2 antagonist which does not cross the blood brain barrier, had no effect on quinpirole-induced hypothermia (1.0–10.0 mg/kg, ip). Domperidone partially reversed quinpirole-induced hypothermia at 0.1–30.0 mg/kg, icv. The D1 agonist, SKF-38393 at a high dose of 10.0 mg/kg, ip mildly attenuated quinpirole-induced hypothermia (a 1.8% increase in temperature). SKF-38393 at 10.0 mg/kg, icv potentiated quinpirole-induced hypothermia. SCH-23390 (0.1–3.0 mg/kg, ip), a D1 antagonist, had no effect on quinpirole-induced hypothermia and potentiated the hypothermia when administered icv. An ineffective icv dose of spiperone (0.01 mg/kg) in reversing quinpirole-induced hypothermia was rendered effective by prior administration of SCH-23390 (0.1–3.0 mg/kg, icv) but not by SKF-38393 (1.0–10.0 mg/kg, icv). These data suggest a central D2 receptor mechanism mediating hypothermia in mice which is capable of being modulated by the D1 receptor.  相似文献   

10.

Sensitization to psychostimulant drugs, as well as morphine, subjected to cross-sensitization with stress. The development of morphine sensitization is associated with enhancements in dopamine overflow in the Nucleus accumbens (NAc). This study aimed to examine the role of accumbal D1/D2-like dopamine receptors in restraint stress (RS) induced sensitization to morphine antinociceptive effects. Adult male Wistar rats weighing 220–250 g underwent stereotaxic surgery. Two stainless steel guide cannulae were bilaterally implanted, 1 mm above the NAc injection site. Different solutions of SCH-23390, as a D1-like receptor antagonist or sulpiride, as a D2-like receptor antagonist, were microinjected into the NAc five min before exposure to RS. Restraint stress lasted for 3 h, 10 min after RS termination; animals received a subcutaneous injection of morphine (1 mg/kg) for 3 consecutive days. The procedure was followed by a 5-day drug and/or stress-free period. After that, on the 9th day, the nociceptive response was evaluated by the tail-flick test. The results revealed that intra-NAc administration of D1/D2-like dopamine receptor antagonists, SCH-23390 or sulpiride, respectively, blocked morphine sensitization-induced by RS and morphine co-administration in rats for three consecutive days. This work provides new insight into the determinant role of accumbal dopamine receptors in morphine sensitization produced by RS-morphine co-administration.

  相似文献   

11.
Dopamine (DA) acts as gut motility modulator, via D1- and D2-like receptors, but its effective role is far from being clear. Since alterations of the dopaminergic system could lead to gastrointestinal dysfunctions, a characterization of the enteric dopaminergic system is mandatory. In this study, we investigated the role of DA and D1- and D2-like receptors in the contractility of the circular muscle of mouse distal colon by organ-bath technique. DA caused relaxation in carbachol-precontracted circular muscle strips, sensitive to domperidone, D2-like receptor antagonist, and mimicked by bromocriptine, D2-like receptor agonist. 7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390), D1-like receptor antagonist, neural toxins, L-NAME (nitric oxide (NO) synthase inhibitor), 2′-deoxy-N6-methyl adenosine 3′,5′-diphosphate diammonium salt (MRS 2179), purinergic P2Y1 antagonist, or adrenergic antagonists were ineffective. DA also reduced the amplitude of neurally evoked cholinergic contractions. The effect was mimicked by (±)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide (SKF-38393), D1-like receptor agonist and antagonized by SCH-23390, MRS 2179, or L-NAME. Western blotting analysis determined the expression of DA receptor proteins in mouse distal colon. Notably, SCH-23390 per se induced an increase in amplitude of spontaneous and neurally evoked cholinergic contractions, unaffected by neural blockers, L-NAME, MRS 2179, muscarinic, adrenergic, or D2-like receptor antagonists. Indeed, SCH-23390-induced effects were antagonized by an adenylyl cyclase blocker. In conclusion, DA inhibits colonic motility in mice via D2- and D1-like receptors, the latter reducing acetylcholine release from enteric neurons, involving nitrergic and purinergic systems. Whether constitutively active D1-like receptors, linked to adenylyl cyclase pathway, are involved in a tonic inhibitory control of colonic contractility is questioned.  相似文献   

12.
Zhu ZT  Fu Y  Hu GY  Jin GZ 《生理学报》2000,52(2):123-130
为确定左旋千金藤啶碱(SPD)对中脑边缘DA神经系统的作用特性,本研究采用细胞外记录的电生理学方法,观察微电泳和尾静脉给药对6-OHDA损毁及未损毁大鼠的伏核(NAc)单位放电的影响。结果显示:SPD累积给药(0.02-2mg/kg,iv)可诱发NAc神经元双相放电特征,即小剂量抑制、大剂量兴奋。预先给予D2受体拮抗剂speperone,SPD则仅产生兴奋效应,并被D1拮抗剂SCH-23390所翻  相似文献   

13.
G L Orr  J W Gole  H J Notman  R G Downer 《Life sciences》1987,41(25):2705-2715
Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 microM and at 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 microM and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 microM respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D2-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 microM. Other dopamine agonists (apomorphine, SKF-82526, SKF-38393) have no stimulatory effects. The octopamine-sensitive AC is inhibited by a variety of antagonists known to affect octopamine and dopamine receptors, with the following order of potency: mianserin greater than phentolamine greater than cyproheptadine greater than piflutixol greater than cis-flupentixol greater than SCH-23390 greater than (+)-butaclamol greater than SKF-83566 greater than SCH-23388 greater than sulpiride greater than spiperone greater than haloperidol. The dopamine-sensitive AC is inhibited by the same compounds with the following order of potency: piflutixol greater than cis-flupentixol greater than (+)-butaclamol greater than spiperone greater than or equal to SCH-23390 greater than cyproheptadine greater than SKF-83566 greater than SCH 23388 greater than mianserin greater than phentolamine greater than sulpiride greater than haloperidol. With the exception of mianserin, 3H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D1- and D2-dopamine receptors.  相似文献   

14.
Inhibition of protein synthesis leads to apoptosis in the undifferentiated neuroblastic layer of the retina of newborn rats. We have shown previously that an increase in the intracellular concentration of cyclic AMP prevented apoptosis induced in the retinal neuroblastic layer by inhibition of protein synthesis. In this study, we tested the effects of dopamine on retinal apoptosis and related these effects to the intracellular concentration of cyclic AMP. Both dopamine (100 microM) and the D1-like agonists SKF-38393, 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (6-Cl-PB), and (+/-)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene (100 microM) blocked apoptosis induced in the neuroblastic layer by the protein synthesis inhibitor anisomycin. The antiapoptotic effects of the D1-like agonists were not reversed by the D1-like antagonist SCH-23390 (5-100 microM). Both dopamine and D1-like agonists induced a five- to sevenfold increase in the intracellular concentration of cyclic AMP in the retina of newborn rats. The concentration of cyclic AMP induced by the D1-like agonists in the presence of 100 microM SCH-23390 was still at least two- to threefold as high as control values, showing that the activation of adenylyl cyclase by D1-like agonists was reversed only partially by the specific antagonist. The isoquinolinesulfonamide H-89 (20 microM), an inhibitor of cyclic AMP-dependent protein kinase, partially prevented the antiapoptotic effect of 6-Cl-PB. The data show that an early effect of dopamine in the developing retina is the control of programmed cell death. The antiapoptotic effect of dopamine is mediated, at least in part, through an atypical D1-like receptor coupled to stimulation of adenylyl cyclase, followed by activation of cyclic AMP-dependent protein kinase.  相似文献   

15.
SCH-23390 is a high-affinity antagonist selective for D1 dopamine receptors (Ki = 2.5 nM). It does not contain a functional group that can be conveniently coupled to commercially available resins for affinity chromatography or to prepare photolabels for photoaffinity labeling of receptors. To construct an affinity resin for purification of dopamine D1 receptors, an aldehyde analogue of SCH-23390, (+/-)-7-chloro-8-hydroxy-1-(4'-formylphenyl)-3-methyl-2,3,4,5-tetrahydro -1H- 3-benzazepine (ASCH), was synthesized. 8-Methoxy-1-(4'-bromophenyl)-SCH-23390 was lithiated, formylated, and O-demethylated to form the aldehyde. NMR and IR analyses were performed to characterize the product. Assays were performed with the radioligand [125I]SCH-23982 to define the biological activity of the aldehyde. ASCH displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 7.1 nM. ASCH has been coupled through the aldehyde group on the phenyl ring to diaminodipropylamine-agarose for affinity chromatography. After solubilization of caudate membranes in 1% digitonin, the affinity resin retained binding sites for [125I]SCH-23982 that were eluted with 10 mM SCH-23390. The aldehyde was also covalently coupled to biotin hydrazide for fluorescence labeling of dopamine D1 receptors. The biotin-conjugated aldehyde of SCH-23390 displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 9.3 nM.  相似文献   

16.
Zhu ZT  Fu Y  Hu GY  Jin GZ 《Life sciences》2000,67(11):1265-1274
(-)-Stepholidine (SPD), with D1 agonistic action, elicited an excitatory firing activity of nucleus accumbens (NAc) neurons by intravenous administration, but this effect was hardly observed by iontophoresis of SPD into the NAc. The present study intends to determine whether D1 receptors in the medial prefrontal cortex (mPFC) are involved in the action of SPD on the firing activity of NAc neurons in the chloral hydrate-anesthetized male rats. The results showed that the intra-mPFC microinjected SCH-23390 (D1 antagonist, 30 mM), but not the D2 antagonist spiperone (30 mM), significantly attenuated the enhanced firing activity induced by intravenous injection of SPD (2 mg/kg). Similarly, the excitatory firing of NAc neurons was also exhibited by the microinjection of either SPD or D1 agonist SKF-38393 into the mPFC. The SPD-induced excitatory effect was in a dose-dependent way from 277.8 +/- 51.3% (10 mM) to 1105.4 +/- 283.5% (30 mM) of NAc basal firing, which was completely reversed by SCH-23390 (i.v.). Furthermore, the direct D1 agonistic action of SPD on the mPFC neuron was observed with microiontophoresis. These results indicate that SPD possesses a direct agonistic action on the mPFC D1 receptors, by which it modulates the firing activity of NAc neurons.  相似文献   

17.
  • 1.1. Adenylate cyclase activity was assayed in the optic lobe of Octopus vulgaris.
  • 2.2. Both octopamine and dopamine stimulate the octopus adenylate cyclase, apparently by competing with the same receptor site.
  • 3.3. (±)-2-Amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene-HBr (6,7-ADTN) and a number of phenylethanolamine derivatives stimulate the octopus adenylate cyclase activity.
  • 4.4. The dopamine D-1 antagonists R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-HCl (SCH-23390) and (±)-7-bromo-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-HCl (SKF-83566) are unable to antagonize the effects of dopamine and octopamine, and similarly ineffective is the agonist (±)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol-HCl (SKF-38393).
  • 5.5. No detectable binding of labelled SCH-23390 occurs on membrane preparations from octopus optic lobe.
  相似文献   

18.
Abstract: The role of dopaminergic innervation on the postnatal developmental expression of D1 dopamine receptors was investigated. Bilateral destruction of dopa-mine-containing neurons was achieved by treating rats intracisternally with 6-hydroxydopamine (6-OHDA) on postnatal day 3, and rats were killed on day 21. To ensure effective reduction of D1 receptor activation by residual dopamine, a group of 6-OHDA-lesioned rats was given twice daily injections of the D1 receptor antagonist SCH-23390, from day 4 to 20. D1 dopamine receptor binding was assessed in the caudate—putamen, nucleus accumbens, and olfactory tubercle by quantitative autoradiographic analysis of [3H]SCH-23390 binding. In addition, the relative amount of D1A receptor mRNA was assessed by in situ hybridization of a 35S-labeled riboprobe. In the developing rats, neither the amount of [3H]SCH-23390 binding nor the amount of D1A receptor mRNA was altered by 6-OHDA lesioning followed by chronic treatment with SCH-23390. Thus, bilateral destruction of dopamine-containing neurons and treatment with SCH-23390 in neonatal rats did not interfere with the developmental expression of D1 receptors or alter the levels of mRNA that code for this receptor protein. Treatment of intact rats with SCH-23390 from postnatal day 4 to 20 also did not alter [3H]SCH-23390 binding or levels of D1 receptor mRNA. However, adult rats treated chronically with SCH-23390 exhibited increased [3H]SCH-23390 binding but did not show a significant change in D1 receptor mRNA levels.  相似文献   

19.
Dopamine D(2) receptors mediate amylin's acute satiety effect   总被引:1,自引:0,他引:1  
The anorectic effect of the pancreatic peptide amylin has been established in numerous studies. Here, we investigated the influence of a pretreatment with dopamine (DA) D(1)- and D(2)-receptor antagonists on the anorectic effect of intraperitoneally injected amylin in rats fed a medium-fat (18% fat) diet. In 24-h food-deprived rats, pretreatment with the DA D(2)-receptor antagonist raclopride [100 microg/kg (0.2 micromol/kg) ip] significantly attenuated amylin's (5 microg/kg ip) anorectic effect, whereas raclopride alone had no effect on food intake [i.e., food intakes 1 h after injection were (n = 12): NaCl/NaCl 7.3 +/- 0.5 g; NaCl/amylin 3.9 +/- 0.6; raclopride/NaCl 7.7 +/- 0.7; raclopride/amylin 5.6 +/- 0.7]. Pretreatment with another DA D(2) receptor antagonist, sulpiride [50 mg/kg (154 micromol/kg) ip], similarly reduced amylin's satiety effect, whereas pretreatment with the DA D(1)-receptor antagonist SCH-23390 [10 microg/kg (0.03 micromol/kg) ip] did not influence amylin's effect. SCH-23390, however, completely blocked the anorexia induced by D-amphetamine (0.3 mg/kg ip). These results suggest that, under the present feeding conditions, the dopaminergic system mediates part of amylin's inhibitory effect on feeding in rats when administered intraperitoneally. This seems to involve DA D(2) receptors but not D(1) receptors.  相似文献   

20.
Villanueva M  Wightman RM 《Biochemistry》2007,46(12):3881-3887
Dopaminergic receptors are found on bovine adrenal chromaffin cells and have been implicated in the facilitation of an inward calcium current [Artalejo et al., (1990) Nature 348, 239-242] that could enhance release. However, previous studies using incubations of long duration (minutes) with dopaminergic receptor antagonists have found instead an inhibition of catecholamine release. In this work we used brief (subsecond) chemical depolarizing stimuli to reexamine the role of dopaminergic receptors on exocytosis from bovine adrenal chromaffin cells. Responses to consecutive depolarizing stimuli were compared using amperometry to monitor vesicular release events and intracellular fura-2 to examine Ca2+ dynamics within individual cells. Restoration of intracellular Ca2+ levels to their initial values following exposure to 60 mM K+ was found to be prolonged unless the exposure was brief (0.5 s) and the cells were maintained at 37 degrees C. However, with these optimum conditions, a second stimulation evoked more exocytotic events than the first. This effect was blocked by SCH-23390, a D1 antagonist, in a dose dependent fashion, but not by raclopride, a D2 antagonist. The D1 agonist, SKF-38393, enhanced the number of exocytotic events as did prior exposure of the cell to epinephrine. Taken together, the data indicate that released catecholamines can enhance their own release by interaction with a D1-like receptor on bovine adrenal chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号