首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosystem I (PS I) is a transmembranal multisubunit complex that mediates light-induced electron transfer from plactocyanine to ferredoxin. The electron transfer proceeds from an excited chlorophyll a dimer (P700) through a chlorophyll a (A0), a phylloquinone (A1), and a [4Fe-4S] iron-sulfur cluster FX, all located on the core subunits PsaA and PsaB, to iron-sulfur clusters FA and FB, located on subunit PsaC. Earlier, it was attempted to determine the function of FX in the absence of FA/B mainly by chemical dissociation of subunit PsaC. However, not all PsaC subunits could be removed from the PS I preparations by this procedure without partially damaging FX. We therefore removed subunit PsaC by interruption of the psaC2 gene of PS I in the cyanobacterium Synechocystis sp. PCC 6803. Cells could not grow under photosynthetic conditions when subunit PsaC was deleted, yet the PsaC-deficient mutant cells grew under heterotrophic conditions and assembled the core subunits of PS I in which light-induced electron transfer from P700 to A1 occurred. The photoreduction of FX was largely inhibited, as seen from direct measurement of the extent of electron transfer from A1 to FX. From the crystal structure it can be seen that the removal of subunits PsaC, PsaD, and PsaE in the PsaC-deficient mutant resulted in the braking of salt bridges between these subunits and PsaB and PsaA and the formation of a net of two negative surface charges on PsaA/B. The potential induced on FX by these surface charges is proposed to inhibit electron transport from the quinone. In the complete PS I complex, replacement of a cysteine ligand of FX by serine in site-directed mutation C565S/D566E in subunit PsaB caused an approximately 10-fold slow down of electron transfer from the quinone to FX without much affecting the extent of this electron transfer compared with wild type. Based on these and other results, we propose that FX might have a major role in controlling electron transfer through PS I.  相似文献   

2.
Complex I purified from bovine heart mitochondria is a multisubunit membrane-bound assembly. In the past, seven of its subunits were shown to be products of the mitochondrial genome, and 35 nuclear encoded subunits were identified. The complex is L-shaped with one arm in the plane of the membrane and the other lying orthogonal to it in the mitochondrial matrix. With mildly chaotropic detergents, the intact complex has been resolved into various subcomplexes. Subcomplex Ilambda represents the extrinsic arm, subcomplex Ialpha consists of subcomplex Ilambda plus part of the membrane arm, and subcomplex Ibeta is another substantial part of the membrane arm. The intact complex and these three subcomplexes have been subjected to extensive reanalysis. Their subunits have been separated by three independent methods (one-dimensional SDS-PAGE, two-dimensional isoelectric focusing/SDS-PAGE, and reverse phase high pressure liquid chromatography (HPLC)) and analyzed by tryptic peptide mass fingerprinting and tandem mass spectrometry. The masses of many of the intact subunits have also been measured by electrospray ionization mass spectrometry and have provided valuable information about post-translational modifications. The presence of the known 35 nuclear encoded subunits in complex I has been confirmed, and four additional nuclear encoded subunits have been detected. Subunits B16.6, B14.7, and ESSS were discovered in the SDS-PAGE analysis of subcomplex Ilambda, in the two-dimensional gel analysis of the intact complex, and in the HPLC analysis of subcomplex Ibeta, respectively. Despite many attempts, no sequence information has been obtained yet on a fourth new subunit (mass 10,566+/-2 Da) also detected in the HPLC analysis of subcomplex Ibeta. It is unlikely that any more subunits of the bovine complex remain undiscovered. Therefore, the intact enzyme is a complex of 46 subunits, and, assuming there is one copy of each subunit in the complex, its mass is 980 kDa.  相似文献   

3.
Mammalian mitochondrial complex I is a multisubunit membrane-bound assembly with a molecular mass approaching 1 MDa. By comprehensive analyses of the bovine complex and its constituent subcomplexes, 45 different subunits have been characterized previously. The presence of a 46th subunit was suspected from the consistent detection of a molecular mass of 10,566 by electrospray ionization mass spectrometry of subunits fractionated by reverse-phase high pressure liquid chromatography. The component was found associated with both the intact complex and subcomplex Ibeta, which represents most of the membrane arm of the complex, and it could not be resolved chromatographically from subunit SGDH (the subunit of bovine complex I with the N-terminal sequence Ser-Gly-Asp-His). It has now been characterized by tandem mass spectrometry of intact protein ions and shown to be a C-terminal fragment of subunit SGDH arising from a specific peptide bond cleavage between Ile-55 and Pro-56 during the electrospray ionization process. Thus, the subunit composition of bovine complex I has been established. It is a complex of 45 different proteins plus non-covalently bound FMN and eight iron-sulfur clusters.  相似文献   

4.
R M Wynn  J Omaha  R Malkin 《Biochemistry》1989,28(13):5554-5560
Photosystem I (PSI) complexes have been isolated from two cyanobacterial strains, Synechococcus sp. PCC 7002 and 6301. These complexes contain six to seven low molecular mass subunits in addition to the two high molecular mass subunits previously shown to bind the primary reaction center components. Chemical cross-linking of ferredoxin to the complex identified a 17.5-kDa subunit as the ferredoxin-binding protein in the Synechococcus sp. PCC 6301-PSI complex. The amino acid sequence of this subunit, deduced from the DNA sequence of the gene, confirmed its identity as the psaD gene product. A 17-kDa subunit cross-links to the electron donor, cytochrome c-553, in a manner analogous to the cross-linking of plastocyanin to the higher plant PSI complex. Using antibodies raised against the spinach psaC gene product (a 9-kDa subunit which binds Fe-S centers A and B), we identified an analogous protein in the cyanobacterial PSI complex.  相似文献   

5.
In higher plants, genes for subunits of respiratory chain complex I (NADH:ubiquinone oxidoreductase) have so far been identified solely in organellar genomes. At least nine subunits are encoded by the mitochondrial DNA and 11 homologues by the plastid DNA. One of the 'key' components of complex I is the subunit binding the substrate NADH. The corresponding gene for the mitochondrial subunit has now been cloned and identified in the nuclear genome from potato ( Solanum tuberosum ). The mature protein consists of 457 amino acids and is preceded by a mitochondrial targeting sequence of 30 amino acids. The protein is evolutionarily related to the NADH-binding subunits of complex I from other eukaryotes and is well conserved in the structural domains predicted for binding the substrate NADH, the FMN and one iron-sulphur cluster. Expression examined in different potato tissues by Northern blot analysis shows the highest steady-state mRNA levels in flowers.
Precursor proteins translated in vitro from the cDNA are imported into isolated potato mitochondria in a ΔΨ-dependent manner. The processed translation product has an apparent molecular mass of 55 kDa, identical to the mature protein present in the purified plant mitochondrial complex I. However, the in-vitro translated protein is not imported into isolated chloroplasts. To further investigate whether the complex I-like enzyme in chloroplasts contains an analogous subunit for binding of NAD(P)H, different plastid protein fractions were tested with a polyclonal antiserum directed against the bovine 51 kDa NADH-binding subunit. In none of the different thylakoid or stroma protein fractions analysed were specific crossreactive polypeptides detected. These results are discussed particularly with respect to the structure of a potential complex I in chloroplasts and the nature of its acceptor site.  相似文献   

6.
The cytochrome d terminal oxidase complex is a component of the aerobic respiratory chain of Escherichia coli. This enzyme catalyzes the oxidation of ubiquinol-8 within the cytoplasmic membrane and the reduction of molecular oxygen to water along with the concomitant generation of a proton-motive force across the membrane. Previous studies have established that the oxidase is composed of one copy of each of two subunits (I and II), and contains four heme prosthetic groups. The hydropathy profiles of the amino acid sequences suggest that each subunit has multiple transmembrane-spanning helical segments. The goal of the current work is to obtain experimental information about which portions of the two polypeptide chains are facing the cytoplasm. This is part of an effort to determine the topological folding of the two subunits across the membrane. A number of random gene fusions were generated in vitro which encode hybrid proteins in which the amino-terminal portion is provided by one of the two subunits of the oxidase, and the carboxyl-terminal portion is beta-galactosidase. Studies from other systems have indicated that the only hybrid proteins which will manifest high beta-galactosidase specific activity and be membrane-bound will be those where the fusion junction is in a region of the cytochrome polypeptides facing the cytoplasm. Fusions were obtained in eight positions within subunit I and 11 positions within subunit II. These identified four cytoplasmic-facing regions within subunit II, consistent with its hydropathy profile showing eight transmembrane helices. The data with subunit I are less conclusive.  相似文献   

7.
Gamma-secretase is an intramembrane cleaving aspartyl protease complex intimately implicated in Alzheimer disease pathogenesis. The protease is composed of the catalytic subunit presenilin (PS1 or PS2), the substrate receptor nicastrin (NCT), and two additional subunits, APH-1 (APH-1a, as long and short splice forms (APH-1aL, APH-1aS), or APH-1b) and PEN-2. Apart from the Alzheimer disease-associated beta-amyloid precursor protein, gamma-secretase has been shown to cleave a large number of other type I membrane proteins. Despite the progress in elucidating gamma-secretase function, basic questions concerning the precise organization of its subunits, their molecular interactions, and their exact stoichiometry in the complex are largely unresolved. Here we isolated endogenous human gamma-secretase from human embryonic kidney 293 cells and investigated the subunit architecture of the gamma-secretase complex formed by PS1, NCT, APH-1aL, and PEN-2 by chemical cross-linking. Using this approach, we provide evidence for the close neighborhood of the PS1 N- and C-terminal fragments (NTF and CTF, respectively), the PS1 NTF and PEN-2, the PS1 CTF and APH-1aL, and NCT and APH-1aL. We thus identify a previously unrecognized PS1 CTF/APH-1aL interaction, verify subunit interactions deduced previously from indirect approaches, and provide a model of the gamma-secretase complex subunit architecture. Finally, we further show that, like the PS1 CTF, the PS2 CTF also interacts with APH-1aL, and we provide evidence that these interactions also occur with the other APH-1 variants, suggesting similar subunit architectures of all gamma-secretase complexes.  相似文献   

8.
A denaturing capillary electrophoresis method was developed to evaluate the subunit stoichiometry of the Clostridium botulinum type A neurotoxin complex. The results indicate that the neurotoxin complex contains single copies of the 150 kDa neurotoxin and the non-toxic non-hemagglutinating subunits as well as 5–6 HA17, 4–5 HA23, 3–4 HA48, and 8–9 HA34 subunits. The calculated molecular mass for a complex with this stoichiometry is between 880 and 1,000 kDa. The molecular mass of the intact complex was determined using size-exclusion HPLC (SE-HPLC) and SE-HPLC in conjunction with multi-angle laser light scattering detection. Based on a comparison to a mixture of standard proteins, SE-HPLC analysis yielded a molecular mass of 880 kDa while light scattering analysis indicated a weight average molecular mass of 925 ± 45 kDa. The close agreement between the molecular mass values determined by the three approaches supports the subunit stoichiometry proposed for the C. botulinum type A neurotoxin complex.  相似文献   

9.
Three different pigment-binding proteins of the light-harvesting complex (LHC I) of maize photosystem I (PS I) have been isolated. Absorption and fluorescence excitation spectral analyses showed that each pigment-protein can transfer absorbed energy from its carotenoid and/or chlorophyll b components to chlorophyll alpha. Their apoproteins with apparent sizes of 24 (LHC Ia), 21 (LHC Ib), and 17 (LHC Ic) kDa have been purified to homogeneity. Differences in their pigment and amino acid compositions and in their reactions with antibodies demonstrate that the two smaller pigment-proteins are not proteolytically derived from the largest one. LHC Ib's apoprotein is particularly enriched in cysteine residues. None of the three apoproteins cross-reacted with antibodies raised against the major light-harvesting chlorophyll a/b-protein of photosystem II (LHC IIb) or against the PS I core complex (CC I) subunits. Studies of the biogenesis of PS I during greening of etiolated plants showed that all of the CC I subunits accumulated to a detectable level prior to the appearance of the 17-kDa subunit of LHC I, the accumulation of which preceded those of the 24- and 21-kDa subunits of LHC I. In addition, subunit VI of CC I is shown to be differentially expressed in mesophyll and bundle sheath cells; a slightly larger form of it accumulates in mesophyll than in bundle sheath thylakoids during plastid development.  相似文献   

10.
Highly photoactive Photosystem I (PS I) and Photosystem II (PS II) core complexes have been isolated from the cyanobacterium Synechocystis Pasteur Culture Collection (PCC) 6803 and a phycocyanin-deficient mutant, enriched in PS II. Cell breakage using glass beads was followed by sucrose density gradient centrifugation and two high-performance liquid chromatography steps involving anion-exchange and hydroxyapatite. The PS I core complex has an apparent molecular mass of 300 +/- 20 kDa (including a detergent shell of about 50 kDa) and contains subunits of approximately 60, approximately 60, 18.5, 18.5, 16, 15, 10.5, 9.5, and 6.5 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblots; its antenna size is 75 +/- 5 chlorophyll/P-700. The PS II core complex has an apparent molecular mass of 310 +/- 20 kDa (including the detergent shell); subunits of 43, 37, 33, 29, and 10-11 kDa were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. The antenna size of the average PS II complex is 45 +/- 5 chlorophyll/primary quinone electron acceptor (QA). This preparation procedure also yields, as a byproduct, a highly purified cytochrome b6f complex. This complex contains four subunits of 38, 24, 19, and 15 kDa and b- and c-type cytochromes in a ratio of 2:1. Its apparent molecular mass of 180 +/- 20 kDa (including the detergent shell) is consistent with a monomeric complex.  相似文献   

11.
Photosystem I reaction center of the cyanobacterium Synechocystis sp. PCC 6803 contains seven different polypeptide subunits. The subunit with a molecular mass of about 8 kDa was isolated, and the sequence of its amino-terminal residues was determined. Oligonucleotide probes corresponding to this sequence were used to isolate the gene encoding this subunit. The gene, termed as psaE, codes for a polypeptide with a mass of 8075 Da. It is present as a single copy in the genome and is transcribed as a monocistronic messenger. The amino acid sequence of the 8-kDa subunit deduced from the gene sequence shows high homology with the deduced amino acid sequence of subunit IV of photosystem I from spinach. The DNA fragment sequenced in these studies also contains two other unidentified major open reading frames. A stable deletion mutation for the psaE gene was generated by transforming Synechocystis sp. PCC 6803 with a cloned DNA in which the psaE gene for 8-kDa subunit was replaced by a gene conferring resistance to kanamycin. The mutant strain shows minor differences in growth under photoautotrophic conditions and in the photosystem I activity in comparison to the wild type.  相似文献   

12.
Interleukin-2 (IL-2) and its receptor complex have become one of the most studied members of a growing family of protein hormones characterized by structural similarities in both ligands and their receptors. Structure-function studies of IL-2 have been complicated by the multimeric nature of its receptor. Two receptor subunits (55- and 75-kDa type I cell surface proteins) can participate to form the high affinity binding site. Although the IL-2 is apparently unique in some respects, similar subunit cooperativity has now been shown to be a common feature for other members of this receptor family. The availability of cell lines expressing the individual IL-2 receptor subunits has allowed detailed analysis of subunit binding characteristics. Results regarding the relationship of molecular recognition at each subunit to the mechanism of ligand binding at the high affinity site, however, have led to different interpretations. In this study we have employed previously prepared C-terminal IL-2 mutant proteins to examine receptor binding at all three classes using a variety of equilibrium and kinetic techniques. These results indicate that the high affinity IL-2 receptor complex includes the p55/p75 heterodimer prior to IL-2 binding and that both receptor subunits participate simultaneously in ligand capture.  相似文献   

13.
The low molecular mass polypeptide (LMP2, LMP7, and MECL-1) genes code for beta-type subunits of the proteasome, a multimeric complex that degrades proteins into peptides as part of the MHC class I-mediated Ag-presenting pathway. These gene products are up-regulated in response to infection by IFN-gamma and replace the corresponding constitutively expressed subunits (X, Y, and Z) during the immune response. In humans, the LMP2 and LMP7 genes both reside within the class II region of the MHC (6p21.3), while MECL-1 is located at 16q22.1. In the present study, we have identified all three IFN-gamma-regulated beta-type proteasome subunits in Fugu, which are present as a cluster within the Fugu MHC class I region. We show that in this species, LMP7, LMP2, and MECL-1 are linked. Also within this cluster is an LMP2-like subunit (which seems specific to all teleosts tested to date) and a closely linked LMP7 pseudogene, indicating that within Fugu and potentially other teleosts, there has been an additional regional duplication involving these genes.  相似文献   

14.
Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels   总被引:8,自引:0,他引:8  
Zheng J  Zagotta WN 《Neuron》2004,42(3):411-421
Native ion channels are precisely tuned to their physiological role in neuronal signaling. This tuning frequently involves the controlled assembly of heteromeric channels comprising multiple types of subunits. Cyclic nucleotide-gated (CNG) channels of olfactory neurons are tetramers and require three types of subunits, CNGA2, CNGA4, and CNGB1b, to exhibit properties necessary for olfactory transduction. Using fluorescently tagged subunits and fluorescence resonance energy transfer (FRET), we find the subunit composition of heteromeric olfactory channels in the surface membrane is fixed, with 2:1:1 CNGA2:CNGA4:CNGB1b. Furthermore, when expressed individually with CNGA2, CNGA4 and CNGB1b subunits were still present in only a single copy and, when expressed alone, did not self-assemble. These results suggest that the precise assembly of heteromeric olfactory channels results from a mechanism where CNGA4 and CNGB1b subunits have a high affinity for CNGA2 but not for self-assembly, precluding more than one CNGA4 or CNGB1b subunit in the channel complex.  相似文献   

15.
Constitution of the photosystem I complex isolated from the cyanobacterium Gloeobacter violaceus PCC 7421 was investigated by tricine-urea-SDS-PAGE, followed by peptide mass fingerprinting or N-terminal sequencing. Eight subunits (PsaA, PsaB, PsaC, PsaD, PsaE, PsaF, PsaL and PsaM) were identified as predicted from the genome sequence. A novel subunit (PsaZ) was discovered, but PsaI, PsaJ, PsaK and PsaX were absent. PsaB has a C-terminal extension with 155 amino acids in addition to the conserved region and this domain is similar to the peptidoglycan-binding domain. These results suggest that PS I complexes of G. violaceus have unique structural properties.  相似文献   

16.
The structural gene of the Paracoccus denitrificans NADH-ubiquinone oxidoreductase encoding a homologue of the 75-kDa subunit of bovine complex I (NQO3) has been located and sequenced. It is located approximately 1 kbp downstream of the gene coding for the NADH-binding subunit (NQO1) [Xu, X., Matsuno-Yagi, A., and Yagi, T. (1991) Biochemistry 30, 6422-6428] and is composed of 2019 base pairs and codes for 673 amino acid residues with a calculated molecular weight of 73,159. The M(r) 66,000 polypeptide of the isolated Paracoccus NADH dehydrogenase complex is assigned the NQO3 designation on the basis of N-terminal protein sequence analysis, amino acid analysis, and immuno-cross-reactivity. The encoded protein contains a putative tetranuclear iron-sulfur cluster (probably cluster N4) and possibly a binuclear iron-sulfur cluster. An unidentified reading frame (URF3) which is composed of 396 base pairs and possibly codes for 132 amino acid residues was found between the NQO1 and NQO3 genes. When partial DNA sequencing of the regions downstream of the NQO3 gene was performed, sequences homologous to the mitochondrial ND-1, ND-5, and ND-2 gene products of bovine complex I were found, suggesting that the gene cluster carrying the Paracoccus NADH dehydrogenase complex contains not only structural genes encoding water-soluble subunits but also structural genes encoding hydrophobic subunits.  相似文献   

17.
The low molecular weight NADH dehydrogenase which can be solubilized from the mitochondrial NADH-ubiquinone oxidoreductase complex with chaotropic agents consists of three subunits in equimolar ratio [Galante, Y. M., & Hatefi, Y. (1979) Arch. Biochem. Biophys. 192, 559]. The largest subunit (subunit I) can be completely separated from the other two (subunits II + III) by treatment with sodium trichloroacetate and ammonium sulfate fractionation. Both the subunit I and subunit II + III fractions contain iron and acid-labile sulfur. From visible and EPR spectroscopy and the iron and acid-labile sulfide content, we propose that the subunit II + III fraction contains a binuclear cluster. The cluster structure present in subunit I is as yet unclear. On separation of the subunits of NADH dehydrogenase, the FMN is lost.  相似文献   

18.
γ-Secretase is composed of the four membrane proteins presenilin, nicastrin, Pen2, and Aph1. These four proteins assemble in a coordinated and regulated manner into a high molecular weight complex. The subunits constitute a total of 19 transmembrane domains (TMD), with many carrying important amino acids involved in catalytic activity, interaction with other subunits, or in ER retention/retrieval of unassembled subunits. We here focus on TMD4 of presenilin 1 (PS1) and show that a number of polar amino acids are critical for γ-secretase assembly and function. An asparagine, a threonine, and an aspartate form a polar interface important for endoplasmic reticulum retention/retrieval. A single asparagine in TMD4 of PS1 is involved in a protein-protein interaction by binding to another asparagine in Pen2. Intriguingly, a charged aspartate in TMD4 is critical for γ-secretase activity, most likely by stabilizing the newly formed complex.  相似文献   

19.
20.
Photosystem I (PS I) is a multisubunit membrane protein complex consisting of 11 to 14 different subunits. In addition, several cofactors, such as chlorophylls, phylloquinones, carotenoids and iron-sulfur clusters are bound by this complex. We now have a detailed understanding of the structural basics, yet we know very little about the molecular details of the assembly process that finally yields functional PS I. Moreover, not much is known about the molecular dynamics of PS I in the thylakoid membrane or its regulated degradation. These areas have become the focus of recent work and first results have emerged. In this minireview we describe the latest findings in this fascinating and rapidly evolving field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号