首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Calmodulin is phosphorylated by casein kinase II on Thr-79, Ser-81, Ser-101 and Thr-117. To determine the consensus sequences for casein kinase II in intact calmodulin, we examined casein kinase II-mediated phosphorylation of engineered calmodulins with 1-4 deletions in the central helical region (positions 81-84). Total casein kinase II-catalyzed phosphate incorporation into all deleted calmodulins was similar to control calmodulin. Neither CaM delta 84 (Glu-84 deleted) nor CaM delta 81-84 (Ser-81 to Glu-84 deleted) has phosphate incorporated into Thr-79 or Ser-81, but both exhibit increased phosphorylation of residues Ser-101 and Thr-117. These data suggest that phosphoserine in the +2 position may be a specificity determinant for casein kinase II in intact proteins and/or secondary structures are important in substrate recognition by casein kinase II.  相似文献   

4.
5.
6.
7.
While the heavy chain of rabbit skeletal muscle myosin is not phosphorylatable by casein kinase II, it turned out to be phosphorylatable after removal of all of the light chains. The phosphorylation site for the kinase was determined to be Ser-1 and/or Ser-2 at the amino terminus.  相似文献   

8.
9.
The ubiquitin-conjugating enzyme, CDC34, has been implicated in the ubiquitination of a number of vertebrate substrates, including p27(Kip1), IkappaBalpha, Wee1, and MyoD. We show that mammalian CDC34 is a phosphoprotein that is phosphorylated in proliferating cells. By yeast two-hybrid screening, we identified the regulatory (beta) subunit of human casein kinase 2 (CK2) as a CDC34-interacting protein and show that human CDC34 interacts in vivo with CK2beta in transfected cells. CDC34 is specifically phosphorylated in vitro by recombinant CK2 and HeLa nuclear extract at five sites within the carboxyl-terminal 36 amino acids of CDC34. Importantly, this phosphorylation is inhibited by heparin, a substrate-specific inhibitor of CK2. We have also identified a kinase activity associated with CDC34 in proliferating cells, and we show that this kinase is sensitive to heparin and can utilize GTP, strongly suggesting it is CK2. Phosphorylation of CDC34 by the associated kinase maps predominantly to residues 203 and 222. Mutation of CDC34 at CK2-targeted residues, Ser-203, Ser-222, Ser-231, Thr-233, and Ser-236, abolishes the phosphorylation of CDC34 observed in vivo and markedly shifts nuclearly localized CDC34 to the cytoplasm. These results suggest a potential role for CK2-mediated phosphorylation in the regulation of CDC34 cell localization and function.  相似文献   

10.
The phosphorylation of DNA topoisomerase II in Drosophila Kc tissue culture cells was characterized by in vivo labeling studies and in vitro studies that examined the modification of exogenous enzyme in total homogenates of these embryonic cells. Several lines of evidence identified casein kinase II as the kinase primarily responsible for phosphorylating DNA topoisomerase II. First, the only amino acyl residue modified in the enzyme was serine. Second, partial proteolytic maps of topoisomerase II which had been labeled with [32P]phosphate by Drosophila cells in vivo, by cell homogenates in vitro, or by purified casein kinase II were indistinguishable from one another. Third, phosphorylation in cell homogenates was inhibited by micrograms/ml concentrations of heparin, micromolar concentrations of nonradioactive GTP, or anti-Drosophila casein kinase II antiserum. Fourth, cell homogenates were able to employ [gamma-32P]GTP as a phosphate donor nearly as well as [gamma-32P]ATP. Although topoisomerase II was phosphorylated in homogenates under conditions that specifically stimulate protein kinase C, calcium/calmodulin-dependent protein kinase, or cAMP-dependent protein kinase, modification was always sensitive to anti-casein kinase II antiserum or heparin. Thus, under a variety of conditions, topoisomerase II appears to be phosphorylated primarily by casein kinase II in the Drosophila embryonic Kc cell system.  相似文献   

11.
A soluble protein kinase that phosphorylates the last serine residue (Ser-833) in the cytoplasmic domain of the low density lipoprotein (LDL) receptor was purified about 1300-fold from the cytosol of bovine adrenal cortex. The LDL receptor kinase shared several properties with casein kinase II: use of either GTP or ATP; phosphorylation of a typical casein kinase II recognition sequence in the LDL receptor (a serine followed by a cluster of three negatively charged amino acids); and inhibition by heparin. The LDL receptor kinase differed from classic casein kinase II in the following respects: its apparent molecular weight on gel filtration was approximately 500,000 as opposed to the usual molecular weight of 130,000 for casein kinase II; its affinity for the LDL receptor (apparent Km approximately 5 nM) was much greater than its affinity for casein (approximately 10 microM); and its activity was inhibited by polylysine, an agent that stimulates casein kinase II. The physiologic role of this unusual kinase, if any, is unknown.  相似文献   

12.
T S Chao  M Tao 《Biochemistry》1991,30(43):10529-10535
The effect of phosphorylation on the binding of protein 4.1 to erythrocyte inside-out vesicles was investigated. Protein 4.1 was phosphorylated with casein kinase A, protein kinase C, and cAMP-dependent protein kinase. An analysis of the phosphopeptides generated by alpha-chymotryptic and tryptic digestion indicates these kinases phosphorylate similar as well as distinct domains within protein 4.1. All three enzymes catalyze the phosphorylation to varying degrees of the 46-, 16-, and 8-10-kDa fragments derived from limited chymotryptic cleavage. In addition, casein kinase A phosphorylates a 24-kDa domain, whereas protein kinase C phosphorylates a 30-kDa domain. Protein 4.1 phosphorylated by casein kinase A and protein kinase C, but not cAMP-dependent protein kinase, exhibits a reduced binding to KI-extracted inside-out vesicles. On the other hand, phosphorylation of inside-out vesicles by casein kinase A does not affect their ability to bind protein 4.1. The inside-out vesicles, however, inhibit the phosphorylation of protein 4.1 by casein kinase A and protein kinase C, but not by cAMP-dependent protein kinase. These results suggest that casein kinase A and protein kinase C may modulate the binding of protein 4.1 to the membrane by phosphorylation of specific domains of the cytoskeletal protein. Since the 30-kDa domain has been suggested as a membrane-binding site, that phosphorylation by protein kinase C reduces the binding of protein 4.1 to inside-out vesicles is perhaps not surprising. On the other hand, the role of the casein kinase A substrate 24-kDa domain in membrane binding has not been established and needs to be examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
15.
Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin-binding protein believed to play a role in regulation of neurite outgrowth and neuroplasticity. Neuromodulin is phosphorylated by protein kinase C, and this phosphorylation prevents calmodulin from binding to neuromodulin (Alexander, K. A., Cimler, B. M., Meier, K. E. & Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113). The only other protein kinase known to phosphorylate neuromodulin is casein kinase II (Pisano, M. R., Hegazy, M. G., Reimann, E. M. & Dokas, L. A. (1988) Biochem. Biophys. Res. Commun. 155, 1207-1212). Phosphoamino acid analyses revealed that casein kinase II modified serine and threonine residues in both native bovine and recombinant mouse neuromodulin. Two serines located in the C-terminal end of neuromodulin, Ser-192 and Ser-193, were identified as the major casein kinase II phosphorylation sites. Thr-88, Thr-89, or Thr-95 were identified as minor casein kinase II phosphorylation sites. Phosphorylation by casein kinase II did not affect the ability of neuromodulin to bind to calmodulin-Sepharose. However, calmodulin did inhibit the phosphorylation of neuromodulin by casein kinase II with a Ki of 1-2 microM. Calmodulin inhibition of casein kinase II phosphorylation was due to calmodulin binding to neuromodulin rather than to the protein kinase. These data suggest that the minimal secondary and tertiary structure exhibited by neuromodulin may be sufficient to juxtapose its calmodulin-binding domain, located at the N-terminal end, with the neuromodulin casein kinase II phosphorylation sites at the C-terminal end of the protein. We propose that calmodulin regulates casein kinase II phosphorylation of neuromodulin by binding to neuromodulin and sterically hindering the interaction of casein kinase II with its phosphorylation sites on neuromodulin.  相似文献   

16.
T S Yeh  S J Lo  P J Chen    Y H Lee 《Journal of virology》1996,70(9):6190-6198
Hepatitis delta virus (HDV) contains two virus-specific delta antigens (HDAgs), large and small forms, which are identical in sequence except that the large one contains 19 extra amino acids at the C terminus. HDAgs are nuclear phosphoproteins with distinct biological functions; the small form activates HDV RNA replication, whereas the large form suppresses this process but is required for viral particle assembly. In this study, we have characterized the phosphorylative property of HDAg in a human hepatoma cell line (HuH-7) and examined the role of phosphorylation in HDAg function. As demonstrated by in vivo labeling and kinase inhibitor experiments, the phosphorylation levels of both HDAgs were diminished by the inhibitor of casein kinase II (CKII). Nevertheless, phosphorylation of only the small form could be markedly reduced by the protein kinase C (PKC) inhibitor, suggesting different phosphorylation properties between the two HDAgs. When these two kinase inhibitors were added separately to the transient-expression system, HDV RNA replication was profoundly suppressed. In contrast, the inhibitors did not affect the assembly of empty HDAg particle from HDAgs and hepatitis B virus surface antigen. To further examine the role of phosphorylation in HDAg function, two conservative CKII recognition sites at Ser-2 and Ser-123 of both HDAgs and one potential PKC recognition site at Ser-210 of the large HDAg were altered to alanine by site-directed mutagenesis. Transfection experiments indicated that mutation at Ser-2, but not Ser-123, significantly impaired the activity of the small HDAg in assisting HDV RNA replication. This property is in accordance with our observation that Ser-2, not Ser-123, was the predominant CKII phosphorylation site in the small HDAg. Our studies also excluded the possibility that the phosphorylation of Ser-2, Ser-123, or Ser-210, had roles in the trans-suppression activity of the large HDAg, in the assembly of empty virus-like HDAg particle, and in the nuclear transport of HDAgs. In conclusion, our results indicate that both CKII and PKC positively modulate HDV RNA replication but not the assembly of empty HDAg particle. The role of CKII in HDV replication may at least in part be accounted for by the phosphorylation of Ser-2 in the small HDAg. The effect of PKC on HDV RNA replication is, however, not to mediate the phosphorylation of the conservative Ser-210 in the large HDAg but rather to act on as-yet-unidentified Ser or Thr residues in the small HDAg or cellular factors. These findings provide the first insight into the roles of phosphorylation of the two HDAgs in the HDV replication cycle.  相似文献   

17.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

18.
Phototransduction is a canonical G protein-mediated cascade of retinal photoreceptor cells that transforms photons into neural responses. Phosducin (Pd) is a Gbetagamma-binding protein that is highly expressed in photoreceptors. Pd is phosphorylated in dark-adapted retina and is dephosphorylated in response to light. Dephosphorylated Pd binds Gbetagamma with high affinity and inhibits the interaction of Gbetagamma with Galpha or other effectors, whereas phosphorylated Pd does not. These results have led to the hypothesis that Pd down-regulates the light response. Consequently, it is important to understand the mechanisms of regulation of Pd phosphorylation. We have previously shown that phosphorylation of Pd by cAMP-dependent protein kinase moderately inhibits its association with Gbetagamma. In this study, we report that Pd was rapidly phosphorylated by Ca(2+)/calmodulin-dependent kinase II, resulting in 100-fold greater inhibition of Gbetagamma binding than cAMP-dependent protein kinase phosphorylation. Furthermore, Pd phosphorylation by Ca(2+)/calmodulin-dependent kinase II at Ser-54 and Ser-73 led to binding of the phosphoserine-binding protein 14-3-3. Importantly, in vivo decreases in Ca(2+) concentration blocked the interaction of Pd with 14-3-3, indicating that Ca(2+) controls the phosphorylation state of Ser-54 and Ser-73 in vivo. These results are consistent with a role for Pd in Ca(2+)-dependent light adaptation processes in photoreceptor cells and also suggest other possible physiological functions.  相似文献   

19.
Ser-473 is solely phosphorylated in vivo in the tail region of neurofilament L (NF-L). With peptides including the native phosphorylation site, it was not possible to locate responsible kinases. We therefore adopted full-length dephosphorylated NF-L as the substrate, and employed MALDI/TOF (matrix-assisted laser desorption and ionization/time of flight) mass spectrometry and a site-specific phosphorylation-dependent antibody recognizing Ser-473 phosphorylation. The antibody showed that casein kinase I (CK I) as well as casein kinase II (CK II) phosphorylated Ser-473 in vitro, while neither GSK-3beta nor calcium/calmodulin-dependent protein kinase II did so. However, the mass spectra of the tail fragments of the phosphorylated NF-L indicated that CK II was the kinase mediating Ser-473 phosphorylation in vitro as opposed to CK I, because CK I phosphorylated another site as well as Ser-473 in vitro. The antibody also demonstrated that NF-L phosphorylated at Ser-473 was abundant in the neuronal perikarya of the rat cortex, indicating that phosphorylation of Ser-473 may take place there. This result may support the suggestion that CK II is the kinase responsible for Ser-473 phosphorylation. Despite many reports showing that CK I mediates phosphorylation of neurofilaments, CK II may phosphorylate NF-L in vivo.  相似文献   

20.
In an effort to characterize the signal transduction mechanisms that operate to regulate homeodomain protein function, we have analyzed the phosphorylation state of two homeodomain proteins, Hoxb-6 and Hoxc-8, in vitro and in vivo. The baculovirus expression system was employed to demonstrate that Hoxb-6 is phosphorylated in Sf9 cells while Hoxc-8 is not. Using two-dimensional tryptic phosphopeptide mapping and purified protein kinases, we demonstrate that Hoxb-6 is phosphorylated in vitro by casein kinase II and cAMP-dependent protein kinase. The casein kinase II phosphorylation site was mapped to serine-214. Two-dimensional tryptic phosphopeptide mapping of immunoprecipitated Hoxb-6 from mouse embryonic spinal cords demonstrates that the same peptide phosphorylated in vitro and in Sf9 cells by casein kinase II is also phosphorylated in vivo. The conservation of this site in several homeodomain proteins from various species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号