首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As initially demonstrated with murine cytomegalovirus (MCMV), plasmacytoid dendritic cells (pDCs) are the major source of IFN-alpha/beta in response to a variety of viruses in vivo. However, contradictory results have been obtained pertaining to the mechanisms promoting IFN-alpha/beta production by pDCs in response to MCMV. In this study we show that TLR7 and TLR9 exert redundant functions for IFN-alpha/beta, IL-12p40, and TNF-alpha production by pDCs in vivo during MCMV infection. In contrast, we confirm that systemic production of IL-12p70 strictly depends on TLR9. The combined loss of TLR7 and TLR9 recapitulates critical features of the phenotype of MyD88-deficient mice, including a dramatic decrease in systemic IFN-alpha/beta levels, an increase in viral load, and increased susceptibility to MCMV-induced mortality. This is the first demonstration of the implication of TLR7 in the recognition of a DNA virus.  相似文献   

2.
3.
We report in this study that B7h, the ligand for the ICOS costimulatory receptor, is rapidly shed from mouse B cells following either ICOS binding or BCR engagement. Shedding occurs through proteolytic cleavage that releases the extracellular ICOS-binding region of B7h. Prior exposure of B7h-expressing APCs to ICOS-expressing cells inhibits their subsequent ability to costimulate IFN-gamma and IL-4 production from CD4+ T cells. Shedding is regulated as TLR7/8 and TLR9 ligands inhibit B7h shedding. A shedding-resistant B7h mutant elicits greater costimulation of IFN-gamma production from CD4+ T cells than does wild-type B7h. These data define shedding of B7h as a novel mechanism for controlling costimulatory signaling by B7-CD28 family members that is regulated on B cells by TLR signaling.  相似文献   

4.
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium are classified as attaching and effacing pathogens based on their ability to adhere to intestinal epithelium via actin-filled membranous protrusions (pedestals). Infection of mice with C. rodentium causes breach of the colonic epithelial barrier, a vigorous Th1 inflammatory response, and colitis. Ultimately, an adaptive immune response leads to clearance of the bacteria. Whereas much is known about the adaptive response to C. rodentium, the role of the innate immune response remains unclear. In this study, we demonstrate for the first time that the TLR adaptor MyD88 is essential for survival and optimal immunity following infection. MyD88(-/-) mice suffer from bacteremia, gangrenous mucosal necrosis, severe colitis, and death following infection. Although an adaptive response occurs, MyD88-dependent signaling is necessary for efficient clearance of the pathogen. Based on reciprocal bone marrow transplants in conjunction with assessment of intestinal mucosal pathology, repair, and cytokine production, our findings suggest a model in which TLR signaling in hemopoietic and nonhemopoietic cells mediate three distinct processes: 1) induction of an epithelial repair response that maintains the protective barrier and limits access of bacteria to the lamina propria; 2) production of KC or other chemokines that attract neutrophils and thus facilitate killing of bacteria; and 3) efficient activation of an adaptive response that facilitates Ab-mediated clearance of the infection. Taken together, these experiments provide evidence for a protective role of innate immune signaling in infections caused by attaching and effacing pathogens.  相似文献   

5.
6.
Among the 11 human TLRs, a subfamily TLR7, TLR8, and TLR9 display similarities in structure and endosomal localization. Natural agonists consisting of nucleic acids, such as ssRNA or DNA with CpG motifs, activate the innate immune cells through these TLRs. Immune response modifiers (IRMs) of imidazoquinoline class compounds 3M-001, 3M-002, and 3M-003 have been shown to activate the innate immune system via TLR7, TLR8, and TLR7/8, respectively. In looking at the effect of the agonists of the TLR7, TLR8, and TLR9 on the activation of NF-kappaB of transfected HEK cells, we discovered that some oligodeoxynucleotides (ODNs) could modulate imidazoquinoline effects in a negative or positive manner. In this study we demonstrate that poly(T) ODNs can inhibit TLR7 and enhance TLR8 signaling events involving NF-kappaB activation in HEK cells and cytokine production (IFN-alpha, TNF, and IL-12) by human primary PBMC. In contrast, TLR3 agonist poly(I:C) does not affect imidazoquinoline-induced responses. The modulation of TLR7 and TLR8 responses is independent of CpG motifs or the nature of the ODN backbone structure. Furthermore, we show that to be an effective modulator, the ODNs need to be in the cell at the same time with either of the TLR7 or TLR8 agonist. We have also demonstrated that there is a physical interaction between IRMs and ODNs. The cross-talk between ODNs, IRMs, and TLR7 and TLR8 uncovered by this study may have practical implications in the field of microbial infections, vaccination, and tumor therapy.  相似文献   

7.
The key step in the activation of autoreactive B cells is the internalization of nucleic acid containing ligands and delivery of these ligands to the Toll-like Receptor (TLR) containing endolysosomal compartment. Ribonucleoproteins represent a large fraction of autoantigens in systemic autoimmune diseases. Here we demonstrate that many uridine-rich mammalian RNA sequences associated with common autoantigens effectively activate autoreactive B cells. Priming with type I IFN increased the magnitude of activation, and the range of which RNAs were stimulatory. A subset of RNAs that contain a high degree of self-complementarity also activated B cells through TLR3. For the RNA sequences that activated predominantly through TLR7, the activation is proportional to uridine-content, and more precisely defined by the frequency of specific uridine-containing motifs. These results identify parameters that define specific mammalian RNAs as ligands for TLRs.  相似文献   

8.
We aimed at elucidating the molecular basis of c-fos promoter activation in vascular endothelial cells (ECs) in response to shear stress, with emphases on Rho family GTPases (Rho, Cdc42, and Rac) and intracellular calcium. Dominant-negative and constitutively activated mutants of these GTPases were used to block the action of upstream signals and to activate the downstream pathways, respectively. The role of intracellular calcium was assessed with intracellular calcium chelators. Only Rho, but not Cdc42 or Rac, is involved in the shear stress induction of c-fos. This Rho-mediated shear-induction of c-fos is dependent on intracellular calcium, but not on the Rho effector p160ROCK or actin filaments. While the inhibition of p160ROCK and its ensuing disruption of actin filaments decreased the basal c-fos activity in static ECs (no flow), it did not affect the shear-inductive effect. The calcium chelator BAPTA-AM inhibits the shear-induction, as well as the static level, of c-fos activity.  相似文献   

9.
RNA-specific adenosine deaminase (ADAR)-mediated adenosine-to-inosine (A-to-I) editing is a critical arm of the antiviral response. However, mechanistic insights into how A-to-I RNA editing affects viral infection are lacking. We posited that inosine incorporation into RNA facilitates sensing of nonself RNA by innate immune sensors and accordingly investigated the impact of inosine-modified RNA on Toll-like receptor 7 and 8 (TLR7/8) sensing. Inosine incorporation into synthetic single-stranded RNA (ssRNA) potentiated tumor necrosis factor alpha (TNF-α) or alpha interferon (IFN-α) production in human peripheral blood mononuclear cells (PBMCs) in a sequence-dependent manner, indicative of TLR7/8 recruitment. The effect of inosine incorporation on TLR7/8 sensing was restricted to immunostimulatory ssRNAs and was not seen with inosine-containing short double-stranded RNAs or with a deoxy-inosine-modified ssRNA. Inosine-mediated increase of self-secondary structure of an ssRNA resulted in potentiated IFN-α production in human PBMCs through TLR7 recruitment, as established through the use of a TLR7 antagonist and Tlr7-deficient cells. There was a correlation between hyperediting of influenza A viral ssRNA and its ability to stimulate TNF-α, independent of 5′-triphosphate residues, and involving Adar-1. Furthermore, A-to-I editing of viral ssRNA directly enhanced mouse Tlr7 sensing, when present in proportions reproducing biologically relevant levels of RNA editing. Thus, we demonstrate for the first time that inosine incorporation into immunostimulatory ssRNA can potentiate TLR7/8 activation. Our results suggest a novel function of A-to-I RNA editing, which is to facilitate TLR7/8 sensing of phagocytosed viral RNA.  相似文献   

10.
Role of TLR1 and TLR6 in the host defense against disseminated candidiasis   总被引:3,自引:0,他引:3  
Toll-like receptor-1 (TLR1) and TLR6 are receptors of the TLR family that form heterodimers with TLR2. The role of TLR1 and TLR6 for the recognition of the fungal pathogen Candida albicans was investigated. TLR1 is not involved in the recognition of C. albicans, and TLR1 knock-out (TLR1-/-) mice showed a normal susceptibility to disseminated candidiasis. In contrast, recognition of C. albicans by TLR6 modulated the balance between Th1 and Th2 cytokines, and TLR6 knock-out mice displayed a defective production of IL-10 and an increased IFN-gamma release. Production of the monocyte-derived cytokines tumor necrosis factor, IL-1, and IL-6 was normal in TLR6-/- mice, and this was accompanied by a normal susceptibility to disseminated candidiasis. In conclusion, TLR6 is involved in the recognition of C. albicans and modulates the Th1/Th2 cytokine balance, but this results in a mild phenotype with a normal susceptibility of TLR6-/- mice to Candida infection.  相似文献   

11.
The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8-12 h following rhinovirus infection. Bronchial epithelial tissue from normal volunteers challenged with rhinovirus in vivo exhibited low levels of RIG-I and MDA5 that were increased at day 4 post infection. Inhibition of TLR3, RIG-I and MDA5 by siRNA reduced innate cytokine mRNA, and increased rhinovirus replication. Inhibition of TLR3 and TRIF using siRNA reduced rhinovirus induced RNA helicases. Furthermore, IFNAR1 deficient mice exhibited RIG-I and MDA5 induction early during RV1B infection in an interferon independent manner. Hence anti-viral defense within bronchial epithelium requires co-ordinated recognition of rhinovirus infection, initially via TLR3/TRIF and later via inducible RNA helicases.  相似文献   

12.
Mother-to-child transmission (MTCT) of HIV-1 has been significantly reduced with the use of antiretroviral therapies, resulting in an increased number of HIV-exposed uninfected infants. The consequences of HIV infection on the innate immune system of both mother-newborn are not well understood. In this study, we analyzed peripheral blood and umbilical cord blood (CB) collected from HIV-1-infected and uninfected pregnant women. We measured TNF-α, IL-10 and IFN-α secretion after the stimulation of the cells with agonists of both extracellular Toll-like receptors (TLRs) (TLR2, TLR4 and TLR5) and intracellular TLRs (TLR7, TLR7/8 and TLR9). Moreover, as an indicator of the innate immune response, we evaluated the responsiveness of myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) to TLRs that are associated with the antiviral response. Our results showed that peripheral blood mononuclear cells (PBMCs) from HIV-1-infected mothers and CB were defective in TNF-α production after activation by TLR2, TLR5, TLR3 and TLR7. However, the TNF-α response was preserved after TLR7/8 (CL097) stimulation, mainly in the neonatal cells. Furthermore, only CL097 activation was able to induce IL-10 and IFN-α secretion in both maternal and CB cells in the infected group. An increase in IFN-α secretion was observed in CL097-treated CB from HIV-infected mothers compared with control mothers. The effectiveness of CL097 stimulation was confirmed by observation of similar mRNA levels of interferon regulatory factor-7 (IRF-7), IFN-α and TNF-α in PBMCs of both groups. The function of both mDCs and pDCs was markedly compromised in the HIV-infected group, and although TLR7/TLR8 activation overcame the impairment in TNF-α secretion by mDCs, such stimulation was unable to reverse the dysfunctional type I IFN response by pDCs in the HIV-infected samples. Our findings highlight the dysfunction of innate immunity in HIV-infected mother-newborn pairs. The activation of the TLR7/8 pathway could function as an adjuvant to improve maternal-neonatal innate immunity.  相似文献   

13.
Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity   总被引:9,自引:2,他引:9  
Alpha/beta interferon immune defenses are essential for resistance to viruses and can be triggered through the actions of the cytoplasmic helicases retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). Signaling by each is initiated by the recognition of viral products such as RNA and occurs through downstream interaction with the IPS-1 adaptor protein. We directly compared the innate immune signaling requirements of representative viruses of the Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Reoviridae for RIG-I, MDA5, and interferon promoter-stimulating factor 1 (IPS-1). In cultured fibroblasts, IPS-1 was essential for innate immune signaling of downstream interferon regulatory factor 3 activation and interferon-stimulated gene expression, but the requirements for RIG-I and MDA5 were variable. Each was individually dispensable for signaling triggered by reovirus and dengue virus, whereas RIG-I was essential for signaling by influenza A virus, influenza B virus, and human respiratory syncytial virus. Functional genomics analyses identified cellular genes triggered during influenza A virus infection whose expression was strictly dependent on RIG-I and which are involved in processes of innate or adaptive immunity, apoptosis, cytokine signaling, and inflammation associated with the host response to contemporary and pandemic strains of influenza virus. These results define IPS-1-dependent signaling as an essential feature of host immunity to RNA virus infection. Our observations further demonstrate differential and redundant roles for RIG-I and MDA5 in pathogen recognition and innate immune signaling that may reflect unique and shared biologic properties of RNA viruses whose differential triggering and control of gene expression may impact pathogenesis and infection.  相似文献   

14.
The related adhesion focal tyrosine kinase (RAFTK), also known as Pyk2, undergoes autophosphorylation upon its stimulation. This leads to cascades of intracellular signaling that result in the regulation of various cellular activities. However, the molecular mechanism of RAFTK autophosphorylation is not yet known. Using various RAFTK constructs fused with two different tags, we found that the autophosphorylation of RAFTK was mediated by a trans-acting mechanism, not a cis-acting mechanism. In addition, overexpression of kinase-mutated RAFTK inhibited wild type RAFTK autophosphorylation in a dose-dependent manner by a trans-acting interaction. Trans-acting autophosphorylation was also observed between endogenous and exogenous RAFTK upon potassium depolarization of neuroendocrine PC12 cells. Using immunoprecipitation and affinity chromatography, we detected RAFTK self-association that was not affected by deletion of a single region or domain of RAFTK. Furthermore, RAFTK autophosphorylation occurred only at site Tyr402 in a Src kinase activity-independent manner. However, Src significantly enhanced RAFTK-mediated paxillin phosphorylation, suggesting a key role for Src in RAFTK activation and phosphorylation of downstream substrates. Our results indicate that the activation of RAFTK occurs in several steps. First, upon stimulus, RAFTK trans-autophosphorylates Tyr402. Second, phosphorylated Tyr402 recruits and activates Src kinase that in turn phosphorylates RAFTK and enhances its kinase activity. Lastly, the enhanced RAFTK activity induces the activation of downstream signaling molecules. Taken together, these studies provide insights into the molecular mechanism of RAFTK autophosphorylation and the specific role of Src in the regulation of RAFTK activation.  相似文献   

15.
Infection of the lungs of immunodeficient mice with the paramyxovirus simian virus 5 (SV5) was prolonged compared with the time course of infection in immunocompetent mice. Although there was a significant increase in both viral RNA and proteins, little infectious virus was produced. Adoptive transfer of immune lymphocytes (isolated from the spleens of mice previously infected with SV5) but not of nonimmune lymphocytes increased the speed of clearance of virus from the lungs of immunodeficient mice. In contrast, passive transfer of a pool of neutralizing monoclonal antibodies specific for the HN and F glycoproteins of SV5 did not have a significant effect on the speed of clearance of virus. Furthermore, no significant increase in the rate of virus clearance was observed upon adoptive transfer of purified immune B lymphocytes to SV5-infected immunodeficient mice despite production by the mice of high titers of neutralizing antibodies. Evidence is presented that CD8+ effector cells are primarily responsible for the clearance observed. The general significance of these results with respect to immune clearance of persistent virus infections is discussed.  相似文献   

16.
The toll-like receptors (TLRs) 7, 8, and 9 stimulate innate immune responses upon recognizing pathogen nucleic acids. Certain GU- or AU-rich RNA sequences were described to differentiate between human TLR7- and TLR8-mediated immune effects. Those single-stranded RNA molecules require endosomal delivery for stabilization against ribonucleases. We have discovered RNA sequences that preferentially activate TLR7, form higher ordered structures, and do not require specific cellular delivery. In addition, a dual activation of TLR8 and TLR9 without affecting TLR7 can be achieved by chimeric molecules consisting of GU-rich RNA and Cytosin (C) phosphordiester or phosphorthioat (p) guanine (CpG) motif DNA sequences. Such chimeras stimulate TLR9-mediated type I interferon (IFN) and TLR8-depending proinflammatory cytokine and chemokine production upon primary human cell activation. However, an RNA-dependent TLR7 IFN-α cytokine release is suppressed by the phosphorothioate DNA sequence contained in the chimeric molecule. To convert the immune response of a single-stranded RNA from TLR7/8 to TLR9, a simple chemical modification at the 5' end proves to be sufficient. Such 8-oxo-2'-deoxy-guanosine or 8-bromo-2'-deoxy-guanosine modifications of the first guanosine in GU-rich single-stranded RNAs convert the immune response to include TLR9 activation and demonstrate strong additive effects for type I IFN immune responses in human primary cells.  相似文献   

17.
模式识别受体(PRR)在宿主细胞识别与抵御微生物病原体中起到了重要作用。Toll样受体(TLR)是研究比较清楚的一类PRR,可以识别多种病原体成份,启动天然免疫反应。此外,近来发现了几类其他模式识别受体,如C型凝集素受体(CLR),核苷酸寡聚结合域(NOD)样受体(NLR)和视黄酸诱导基因I(RIG—I)样受体(RLR),表明机体的天然免疫反应受到多种机制的精密调控。本文着重综述TLR与其他PRR在识别病原体和介导天然免疫信号通路间的相互关系。  相似文献   

18.
Replicative DNA damage bypass, mediated by the ubiquitylation of the sliding clamp protein PCNA, facilitates the survival of a cell in the presence of genotoxic agents, but it can also promote genomic instability by damage-induced mutagenesis. We show here that PCNA ubiquitylation in budding yeast is activated independently of the replication-dependent S phase checkpoint but by similar conditions involving the accumulation of single-stranded DNA at stalled replication intermediates. The ssDNA-binding replication protein A (RPA), an essential complex involved in most DNA transactions, is required for damage-induced PCNA ubiquitylation. We found that RPA directly interacts with the ubiquitin ligase responsible for the modification of PCNA, Rad18, both in yeast and in mammalian cells. Association of the ligase with chromatin is detected where RPA is most abundant, and purified RPA can recruit Rad18 to ssDNA in vitro. Our results therefore implicate the RPA complex in the activation of DNA damage tolerance.  相似文献   

19.
Characterization of equine and other vertebrate TLR3, TLR7, and TLR8 genes   总被引:2,自引:0,他引:2  
Toll-like receptors 3, 7, and 8 (TLR3, TLR7, and TLR8) were studied in the genomes of the domestic horse and several other mammals. The messenger RNA sequences and exon/intron structures of these TLR genes were determined. An equine bacterial artificial chromosome clone containing the TLR3 gene was assigned by fluorescent in situ hybridization to the horse chromosomal location ECA27q16–q17 and this map location was confirmed using an equine radiation hybrid panel. Direct sequencing revealed 13 single-nucleotide polymorphisms in the coding regions of the equine TLR 3, 7, and 8 genes. Of these polymorphisms, 12 were not previously reported. The allelic frequency was estimated for each single-nucleotide polymorphism from genotyping data obtained for 154 animals from five horse breeds. Some of these frequencies varied significantly among different horse breeds. Domain architecture predictions for the three equine TLR protein sequences revealed several conserved regions within the variable leucine-rich repeats between the corresponding horse and cattle TLR proteins. A phylogenetic analysis did not indicate that any significant exchanges had occurred between paralogous TLR7 and TLR8 genes in 20 vertebrate species analyzed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Das J 《Biophysical journal》2010,99(7):2028-2037
Natural killer (NK) cells extend important immune resistance in vertebrates by lysing infected and tumor cells. A fine balance between opposing signals generated by a diverse set of stimulatory and inhibitory NK-cell receptors determines the fate of target cells interacting with the NK cells. We have developed a mathematical model involving membrane proximal initial signaling events that provides novel mechanistic insights into how activation of NK cells is modulated by the half-life of receptor-ligand interaction and ligand concentrations. We show that strong stimulatory ligands produce digital activation, whereas weaker stimulatory ligands can mediate inhibition by strengthening the signals generated by inhibitory ligands, as indicated in experiments in knockout mice. We find under certain conditions, counterintuitively, inhibitory receptors can help mediate activation instead of inhibition. Mechanistic insights gained from NK-cell signaling can facilitate understanding of complex signaling responses that occur due to cross talk between dueling signaling pathways in other cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号