首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Salmonella enterica subsp. enterica serovar Newport resistant to the extended-spectrum cephalosporins (ESCs) and other antimicrobials causes septicemic salmonellosis in humans and animals and is increasingly isolated from humans, animals, foods, and environmental sources. Mechanisms whereby serovar Newport bacteria become resistant to ESCs and other classes of antimicrobials while inhabiting the intestinal tract are not well understood. The present study shows that 25.3% of serovar Newport strains isolated from the turkey poult intestinal tract after the animals were dosed with Escherichia coli harboring a large conjugative plasmid encoding the CMY-2 beta-lactamase and other drug resistance determinants acquired the plasmid and its associated drug resistance genes. The conjugative plasmid containing the cmy-2 gene was transferred not only from the donor E. coli to Salmonella serovar Newport but also to another E. coli serotype present in the intestinal tract. Laboratory studies showed that the plasmid could be readily transferred between serovar Newport and E. coli intestinal isolates. Administration of a single dose of ceftiofur, used to prevent septicemic colibacillosis, to 1-day-old turkeys did not result in the isolation of ceftiofur-resistant E. coli or Salmonella serovar Newport. There was a remarkable association between serotype, drug resistance, and plasmid profile among the E. coli strains isolated from the poults. This study shows that Salmonella serovar Newport can become resistant to ESCs and other antibiotics by acquiring a conjugative drug resistance plasmid from E. coli in the intestines.  相似文献   

2.
Microcin 24 is an antimicrobial peptide secreted by uropathogenic Escherichia coli. Secretion of microcin 24 provides an antibacterial defense mechanism for E. coli. In a plasmid-based system using transformed Salmonella enterica, we found that resistance to microcin 24 could be seen in concert with a multiple-antibiotic resistance phenotype. This multidrug-resistant phenotype appeared when Salmonella was exposed to an E. coli strain expressing microcin 24. Therefore, it appears that multidrug-resistant Salmonella can arise as a result of an insult from other pathogenic bacteria.  相似文献   

3.
Salmonella enterica serovar Newport has undergone a rapid epidemic spread in dairy cattle. This provides an efficient mechanism for pathogen amplification and dissemination into the environment through manure spreading on agricultural land. The objective of this study was to determine the survival characteristics of Salmonella serovar Newport in manure and manure-amended soils where the pathogen may be amplified. A multidrug-resistant (MDR) Salmonella serovar Newport strain and a drug-susceptible (DS) strain, both bovine isolates, were inoculated into dairy manure that was incubated under constant temperature and moisture conditions alone or after being mixed with sterilized or nonsterilized soil. Salmonella serovar Newport concentrations increased by up to 400% in the first 1 to 3 days following inoculation, and a trend of steady decline followed. With manure treatment, a sharp decline in cell concentration occurred after day 35, possibly due to microbial antagonism. For all treatments, decreases in Salmonella serovar Newport concentrations over time fit a first-order kinetic model. Log reduction time was 14 to 32 days for 1 log10, 28 to 64 days for 2 log10, and 42 to 96 days for 3 log10 declines in the organisms' populations from initially inoculated concentrations. Most-probable-number monitoring data indicated that the organisms persisted for 184, 332, and 405 days in manure, manure-amended nonsterilized soil, and manure-amended sterilized soil, respectively. The MDR strain and the DS strain had similar survival patterns.  相似文献   

4.
Recently, multi-drug-resistant (MDR) Salmonella enterica subspecies enterica serovar Newport reemerged as a public and animal health problem. The antibiotic resistance of 198 isolates and the pulsed-field gel electrophoresis patterns (PFGE) of 139 isolates were determined. Serovar Newport isolates collected between 1988 and 2001 were included in the study. One hundred seventy-eight isolates were collected from the San Joaquin valley in California and came from dairy cattle clinical samples, human clinical samples, bulk tank milk samples, fecal samples from preweaned calves, and waterways. Twenty clinical isolates from humans from various regions of the United States were also included in the study. Resistance to 18 antibiotics was determined using a disk diffusion assay. PFGE patterns were determined using a single enzyme (XbaI). The PFGE and antibiogram patterns were described using cluster analysis. Although the antibiotic resistance patterns of historic (1988 to 1995) and contemporary (1999 to 2001) isolates were similar, the contemporary isolates differed from the historic isolates by being resistant to cephalosporins and florfenicol and in their general sensitivity to kanamycin and neomycin. With few exceptions, the contemporary isolates clustered together and were clearly separated from the historic isolates. One PFGE-antibiogram cluster combination was predominant for the recent isolates, which were taken from human samples from all parts of the United States, as well as in the isolates from California, indicating a rapid dissemination of this phenotypic strain. The data are consistent with the hypothesis that the reemergence of MDR serovar Newport is not simply an acquisition of further antibiotic resistance genes by the historic isolates but reflects a different genetic lineage.  相似文献   

5.
In this review we summarize recent genomic studies that shed light on the mechanism through which pathogenic Escherichia coli and Salmonella enterica have evolved. We show how acquisition of DNA at specific sites on the chromosome has contributed to increased genetic variation and virulence of these two genera of the Enterobacteriaceae.  相似文献   

6.
7.
利用高通量测序获取1株抗原式为3,10∶a,r,z6的沙门氏菌(Salmonella)GX150603的全基因组序列.根据鞭毛抗原序列、致病性和抗性基因预测GX150603的血清型,利用分子生物学软件分析基因组岛和前噬菌体,并与其他菌株进行全基因组系统发育分析.经鉴定GX150603为韦太夫雷登沙门氏菌(Salmone...  相似文献   

8.
Salmonella enterica subsp. enterica serovar Typhimurium is responsible for the majority of salmonellosis cases worldwide. This Salmonella serovar is also responsible for die-offs in songbird populations. In 2009, there was an S. Typhimurium epizootic reported in pine siskins in the eastern United States. At the time, there was also a human outbreak with this serovar that was associated with contaminated peanuts. As peanuts are also used in wild-bird food, it was hypothesized that the pine siskin epizootic was related to this human outbreak. A comparison of songbird and human S. Typhimurium pulsed-field gel electrophoresis (PFGE) patterns revealed that the epizootic was attributed not to the peanut-associated strain but, rather, to a songbird strain first characterized from an American goldfinch in 1998. This same S. Typhimurium strain (PFGE type A3) was also identified in the PulseNet USA database, accounting for 137 of 77,941 total S. Typhimurium PFGE entries. A second molecular typing method, multiple-locus variable-number tandem-repeat analysis (MLVA), confirmed that the same strain was responsible for the pine siskin epizootic in the eastern United States but was distinct from a genetically related strain isolated from pine siskins in Minnesota. The pine siskin A3 strain was first encountered in May 2008 in an American goldfinch and later in a northern cardinal at the start of the pine siskin epizootic. MLVA also confirmed the clonal nature of S. Typhimurium in songbirds and established that the pine siskin epizootic strain was unique to the finch family. For 2009, the distribution of PFGE type A3 in passerines and humans mirrored the highest population density of pine siskins for the East Coast.  相似文献   

9.
Extended-spectrum β-lactamase (ESBL)-producing Salmonella are one of the most important public health problems in developed countries. ESBL-producing Salmonella strains have been isolated from humans in Asian countries neighboring Japan, along with strains harboring the plasmid-mediated extended-spectrum cephalosporin (ESC)-resistance gene, ampC (pAmpC). However, only a few studies have investigated the prevalence of ESC-resistant Salmonella in chicken products in Japan, which are the main vehicle of Salmonella transmission. The aim of this study was to investigate the prevalence of ESBL-producing, pAmpC-harboring, or carbapenem-resistant Salmonella in chicken products in Japan. In total, 355 out of 779 (45.6%) chicken product samples collected from 1996–2010 contained Salmonella, resulting in 378 distinct isolates. Of these isolates, 373 were tested for resistance to ESCs, cephamycins, or carbapenems. Isolates that showed resistance to one or more of these antimicrobials were then examined by PCR and DNA sequence analysis for the presence of the blaCMY, blaCTX-M, blaTEM, and blaSHV resistance genes. Thirty-five resistant isolates were detected, including 26 isolates that contained pAmpC (blaCMY-2), and nine ESBL-producing isolates harboring blaCTX-M (n = 4, consisting of two blaCTX-M-2 and two blaCTX-M-15 genes), blaTEM (n = 4, consisting of one blaTEM-20 and three blaTEM-52 genes), and blaSHV (n = 1, blaSHV-12). All pAmpC-harboring and ESBL-producing Salmonella isolates were obtained from samples collected after 2005, and the percentage of resistant isolates increased significantly from 0% in 2004 to 27.9% in 2010 (P for trend = 0.006). This increase was caused in part by an increase in the number of Salmonella enterica subsp. enterica serovar Infantis strains harboring an approximately 280-kb plasmid containing blaCMY-2 in proximity to ISEcp1. The dissemination of ESC-resistant Salmonella containing plasmid-mediated blaCMY-2 in chicken products indicates the need for the development of continuous monitoring strategies in the interests of public health.  相似文献   

10.
11.
Loss of culturability of Salmonella enterica subsp. enterica serovar Typhimurium has been observed in mixed cultures with anaerobic fecal bacteria under conditions that allow local interaction between cells, such as cell contact. A reduction of a population of culturable S. Typhimurium on the order of ∼104 to 105 CFU/ml was observed in batch anaerobic mixed cultures with fecal samples from different human donors. Culturability was not affected either in supernatants collected at several times from fecal cultures, when separated from fecal bacteria by a membrane of 0.45-μm pore size, or when in contact with inactivated fecal bacterial cells. Loss of culturability kinetics was characterized by a sharp reduction of several logarithmic units followed by a pronounced tail. A mathematical model was developed to describe the rate of loss of culturability as a function of the frequency of encounters between populations and the probability of inactivation after encounter. The model term F(S · F)1/2 quantifies the effect of the concentration of both populations, fecal bacteria (F) and S. Typhimurium (S), on the loss of culturability of S. Typhimurium by cell contact with fecal bacteria. When the value of F(S · F)1/2 decreased below ca. 1015 (CFU/ml)2, the frequency of encounters sharply decreased, leading to the deceleration of the inactivation rate and to the tailing off of the S. Typhimurium population. The probability of inactivation after encounter, P, was constant, with an estimated value of ∼10−5 for all data sets. P might be characteristic of the mechanism of growth inhibition after a cell encounter.  相似文献   

12.
Escherichia coli resistant to extended-spectrum cephalosporins have been detected in the Norwegian broiler production, despite the fact that antimicrobial agents are rarely used. The genetic mechanism responsible for cephalosporin resistance is mainly attributed to the presence of the blaCMY-2 gene encoding a plasmid-mediated AmpC-beta-lactamase (pAmpC). The aim of this study was to characterize and compare blaCMY-2 containing Escherichia coli isolated from the intestinal flora of broilers and retail chicken meat (fillets) to identify possible successful clones and/or resistance plasmids widespread in the Norwegian broiler production. Methods used included PCR based phylotyping, conjugation experiments, plasmid replicon typing, pulsed-field gel electrophoresis, multiple locus variable-number tandem-repeats analysis and whole genome sequencing. The nucleotide sequence of an IncK plasmid carrying blaCMY-2 was determined. Intestinal isolates displayed a higher degree of genetic diversity than meat isolates. A cluster of genetically related isolates belonging to ST38, phylogroup D, carrying blaCMY-2 containing IncK plasmids was identified. Furthermore, genes encoding plasmid stability systems (relBE/stbDE and pndAC) were identified on the IncK plasmid. Single nucleotide polymorphism (SNP) analysis of a subset of isolates confirmed a close genetic relationship within the two most prevalent STs. The IncK plasmids within these two STs also shared a high degree of similarity. Cephalosporin-resistant E. coli with the same genetic characteristics have been identified in the broiler production in other European countries, and the IncK plasmid characterized in this study showed close homology to a plasmid isolated from retail chicken meat in the Netherlands. The results indicate that both clonal expansion and horizontal transfer of blaCMY-2 containing plasmids contribute to dissemination of cephalosporin resistant E. coli in the broiler production. The presence of plasmid stability systems may explain why the IncK plasmid containing blaCMY-2 is maintained and disseminated in the Norwegian broiler production in absence of selection pressure from the use of antimicrobial agents.  相似文献   

13.
Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli were stressed by prolonged incubation in water microcosms until it was no longer possible to observe colony formation when samples were plated on nonselective medium. Overnight incubation of samples in nutrient-rich broth medium supplemented with growth factors, however, allowed resuscitation of stressed and viable but nonculturable cells so that subsequent plating yielded observable colonies for significantly extended periods of time. The growth factors were (i) the trihydroxamate siderophore ferrioxamine E (for Salmonella only), (ii) the commercially available antioxidant Oxyrase, and (iii) the heat-stable autoinducer of growth secreted by enterobacterial species in response to norepinephrine. Analysis of water microcosms with the Bioscreen C apparatus confirmed that these supplements enhanced recovery of cells in stressed populations; enterobacterial autoinducer was the most effective, promoting resuscitation in populations that were so heavily stressed that ferrioxamine E or Oxyrase had no effect. Similar results were observed in Bioscreen analysis of bacterial populations stressed by heating. Patterns of resuscitation of S. enterica serovar Typhimurium rpoS mutants from water microcosms and heat stress were qualitatively similar, suggesting that the general stress response controlled by the σs subunit of RNA polymerase plays no role in autoinducer-dependent resuscitation. Enterobacterial autoinducer also resuscitated stressed populations of Citrobacter freundii and Enterobacter agglomerans.  相似文献   

14.
Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby strains isolated from different seafood were genotyped by PCR-ribotyping and ERIC-PCR assays. This study has ascertained the genetic relatedness among serovars prevalent in tropical seafood. PCR-ribotyping exhibited genetic variation in both Salmonella serovars, and ribotype profile (II) was most predominant, which was observed in 10/18 of Salmonella enterica subsp. enterica Typhimurium and 7/17 Salmonella enterica subsp. enterica Derby isolates. Cluster analysis of ERIC-PCR for Salmonella enterica subsp. enterica Typhimurium strains exhibited nine different banding patterns and four strains showed >95% genetic homology within the cluster pairs. ERIC-PCR produced more genetic variations in Salmonella enterica subsp. enterica Typhimurium; nevertheless, both methods were found to be comparable for Salmonella enterica subsp. enterica Derby isolates. Discrimination index of PCR-ribotyping for Salmonella enterica subsp. enterica Typhimurium isolates was obtained at 0.674 and index value 0.714 was observed for Salmonella enterica subsp. enterica Derby strains. Molecular fingerprinting investigation highlighted the hypothesis of diverse routes of Salmonella contamination in seafood as multiple clones of Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby were detected in same or different seafood throughout the study period.  相似文献   

15.
The use of green roofs is a growing practice worldwide, particularly in densely populated areas. In an attempt to find new methods for recycling crumb rubber, incorporation of crumb rubber into artificial medium for plant growth in green roofs and similar engineered environments has become an attractive option for the recycling of waste tires. Though this approach decreases waste in landfills, there are concerns about the leaching of zinc and other heavy metals, as well as nutrient and organic compounds, into the environment. The present study analyzed the impact of leachate from crumb rubber and zinc on the growth and viability of Salmonella enterica subsp. enterica serovar Typhimurium. Zinc was chosen for further studies since it has been previously implicated with other biological functions, including biofilm formation, motility, and possible cross-resistance to antimicrobial agents. The study showed that Salmonella can colonize crumb rubber and that crumb rubber extract may provide nutrients that are usable by this bacterium. Salmonella strains with reduced susceptibility (SRS) to zinc were obtained after subculturing in increasing concentrations of zinc. The SRS exhibited differences in gene expression of flux pump genes zntA and znuA compared to that of the parent when exposed to 20 mM added zinc. In biofilm formation studies, the SRS formed less biofilm but was more motile than the parental strain.  相似文献   

16.
We report the construction and application of a novel insertion element for transposase-mediated mutagenesis in gram-negative bacteria. Besides Kmr as a selectable marker, the insertion element InsTetG−1 carries the anhydrotetracycline (atc)-regulated outward-directed PA promoter so that atc-dependent conditional gene knockouts or knockdowns are generated. The complex formed between the purified hyperactive transposase and InsTetG−1 was electroporated into Escherichia coli or Salmonella enterica serovar Typhimurium, and mutant pools were collected. We used E. coli strains with either TetR or the reverse variant revTetRr2, while only TetR was employed in Salmonella. Screening of the InsTetG−1 insertion mutant pools revealed 15 atc-regulatable auxotrophic mutants for E. coli and 4 atc-regulatable auxotrophic mutants for Salmonella. We have also screened one Salmonella mutant pool in murine macrophage-like J774-A.1 cells using ampicillin enrichment. Two mutants with the InsTetG−1 insertion in the gene pyrE or argA survived this procedure, indicating a reduced intracellular growth rate in J774-A.1 cells. The nature of the mutants and the modes of their regulation are discussed.  相似文献   

17.
Cell-to-cell signalling in prokaryotes that leads to co-ordinated behaviour has been termed quorum sensing. This type of signalling can have profound impacts on microbial community structure and host-microbe interactions. The Gram-negative quorum-sensing systems were first discovered and extensively characterized in the marine Vibrios. Some components of the Vibrio systems are present in the classical genetic model organisms Escherichia coli and Salmonella enterica. Both organisms encode a signal receptor of the LuxR family, SdiA, but not a corresponding signal-generating enzyme. Instead, SdiA of Salmonella detects and responds to signals generated only by other microbial species. Conversely, E. coli and Salmonella encode the signal-generating component of a second system (a LuxS homologue that generates AI-2), but the sensory apparatus for AI-2 differs substantially from the Vibrio system. The only genes currently known to be regulated by AI-2 in Salmonella encode an active uptake and modification system for AI-2. Therefore, it is not yet clear whether Salmonella uses AI-2 as a signal molecule or whether AI-2 has some other function. In E. coli, the functions of both SdiA and AI-2 are unclear due to pleiotropy. Genetic strategies to identify novel signalling systems have been performed with E. coli and Providencia stuartii. Several putative signalling systems have been identified, one that uses indole as a signal and another that releases what appears to be a peptide. The latter system has homologues in E. coli and Salmonella, as well as other bacteria, plants and animals. In fact, the protease components from Providencia and Drosophila are functionally interchangeable.  相似文献   

18.
19.
Recently, multi-drug-resistant (MDR) Salmonella enterica subspecies enterica serovar Newport reemerged as a public and animal health problem. The antibiotic resistance of 198 isolates and the pulsed-field gel electrophoresis patterns (PFGE) of 139 isolates were determined. Serovar Newport isolates collected between 1988 and 2001 were included in the study. One hundred seventy-eight isolates were collected from the San Joaquin valley in California and came from dairy cattle clinical samples, human clinical samples, bulk tank milk samples, fecal samples from preweaned calves, and waterways. Twenty clinical isolates from humans from various regions of the United States were also included in the study. Resistance to 18 antibiotics was determined using a disk diffusion assay. PFGE patterns were determined using a single enzyme (XbaI). The PFGE and antibiogram patterns were described using cluster analysis. Although the antibiotic resistance patterns of historic (1988 to 1995) and contemporary (1999 to 2001) isolates were similar, the contemporary isolates differed from the historic isolates by being resistant to cephalosporins and florfenicol and in their general sensitivity to kanamycin and neomycin. With few exceptions, the contemporary isolates clustered together and were clearly separated from the historic isolates. One PFGE-antibiogram cluster combination was predominant for the recent isolates, which were taken from human samples from all parts of the United States, as well as in the isolates from California, indicating a rapid dissemination of this phenotypic strain. The data are consistent with the hypothesis that the reemergence of MDR serovar Newport is not simply an acquisition of further antibiotic resistance genes by the historic isolates but reflects a different genetic lineage.  相似文献   

20.
Salmonella enterica serovar Enteritidis has developed the potential to contaminate table eggs internally, by colonization of the chicken reproductive tract and internalization in the forming egg. The serotype Enteritidis has developed mechanisms to colonize the chicken oviduct more successfully than other serotypes. Until now, the strategies exploited by Salmonella Enteritidis to do so have remained largely unknown. For that reason, a microarray-based transposon library screen was used to identify genes that are essential for the persistence of Salmonella Enteritidis inside primary chicken oviduct gland cells in vitro and inside the reproductive tract in vivo. A total of 81 genes with a potential role in persistence in both the oviduct cells and the oviduct tissue were identified. Major groups of importance include the Salmonella pathogenicity islands 1 and 2, genes involved in stress responses, cell wall, and lipopolysaccharide structure, and the region-of-difference genomic islands 9, 21, and 40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号