首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keratin expression in hamster tracheal epithelium was investigated during organ culture in serum-free, hormone-supplemented medium using monospecific monoclonal antibodies. Generally, tracheal basal cells expressed keratins detected by antibodies RCK102 and RCK103, while columnar epithelial cells were stained positively by RGE53, RCK103, RCK105 and HCK19. Metaplastic squamous cell foci reacted with antibodies RKSE60, RCK103 and HCK19. Early metaplastic alterations were more clearly RKSE60-positive than the mature lesions. In the vitamin A-depleted tracheas basal cells were clearly RCK102-positive. Superficial cells in the central part of areas of squamous metaplasia induced by cigarette smoke condensate expressed the basal cell keratins, and were negative for the columnar cell keratin 18 detected by the RGE53 antibody. This finding suggests that in cigarette smoke condensate-induced squamous metaplasia basal cells play an important role. The mucus-producing cells at the edges of metaplastic squamous cell foci expressed the keratins specific to columnar cells. Cigarette smoke condensate exposure accelerated epithelial keratinization compared to the vitamin A-depleted epithelium. It was concluded that not only small mucous granule cells, but also basal cells are involved in the development and maintenance of induced squamous metaplasia in tracheal epithelium. Furthermore, in vitro vitamin A-depleted epithelium did not coexpress vimentin in addition to the different keratins.  相似文献   

2.
Summary The pseudostratified tracheal epithelium, composed of a heterogeneous phenotypically varying cell population, was studied with respect to the in vitro cell proliferative activity of differentiated epithelial cells. Ciliated tracheal epithelial cells so far have been considered to be terminally differentiated, nonproliferating cells. Tracheal organ cultures obtained from vitamin A-deprived Syrian Golden hamsters were cultured in a vitamin A-deficient, serum-free, hormone-supplemented medium. In vitamin A-deprived tracheal epithelium treated with physiologically active all-trans retinol and low cigarette-smoke condensate concentrations it is possible to stimulate the cell proliferation of both basal and columnar cells. Therefore, the probability of finding proliferating columnar cells was increased compared with the in vivo and the vitamin A-deprived situation in which cell proliferative activity is relatively low. In the presence of cigarette-smoke condensate in a noncytotoxic concentration, basal, small mucous granule, ciliated, and indifferent tracheal epithelial cells incorporated [methyl-3H]-thymidine into the DNA during the S phase. The finding that ciliated cells were labeled was supported by serial sections showing the same labeled ciliated cell in two section planes separated by 2 to 3 μm, without labeled epithelial cells next to the ciliated cell. Furthermore, a ciliated tracheal epithelial cell incorporating [methyl-3H]thymidine into DNA was also seen in tracheal cultures of vitamin A-deprived hamsters treated with all-trans retinol in a physiologic concentration. The present study was financially supported by the Scientific Advisory Committee on Smoking and Health (Dutch Cigarette Industry Foundation) and the Ministry of Welfare, Health and Cutural Affairs.  相似文献   

3.
The effects of cigarette smoke condensate (CSC) and all-trans retinol on the cell proliferative activity of vitamin A-deprived hamster tracheal epithelium have been studied in vitamin A-deficient, serum-free, hormone-supplemented medium in organ culture. In the absence of retinol, CSC induced a dose-dependent increase in labeling index (LI) during 12 days of culture. The basal cells were more sensitive to CSC exposure than non-basal cells during the first 6 to 8 culture days. However, in squamous metaplastic foci developing after culture day 6, both basal and non-basal cells in the mid-part of the epithelium were labeled. Physiological concentrations of all-trans retinol stimulated the non-basal LI and inhibited the basal cell LI. Compared with dimethylsulfoxide (DMSO), all retinol concentrations used in the present study inhibited the basal cell LI at each time point examined (4-12 days culture). Exposure of tracheal rings to retinol, either before or after exposure to CSC, or simultaneous exposure to retinol and CSC, clearly decreased the CSC-induced basal cell proliferative activity depending on the retinol concentration used. It is concluded from the present study that squamous metaplasia induced by vitamin A-deficiency or by CSC originates mainly from basal cells and that for the maintenance of these lesions, both basal and non-basal cells play a role. Furthermore, all-trans retinol inhibited CSC-induced basal cell proliferation.  相似文献   

4.
The effects of all-trans retinol and cigarette smoke condensate (CSC) on tissue morphology and cellular differentiation were investigated in vitamin A-deprived tracheal epithelium cultured in vitamin A-and serum-free hormone-supplemented medium. Physiological retinol concentrations prevented the development of hyperplasia and squamous metaplasia with or without keratinization, and induced differentiation to mucous cells. Squamous metaplastic foci with keratinization were observed during 12 days of culture with low retinol concentrations and with dimethylsulfoxide (DMSO) which was accompanied by an increased number of basal and indeterminate cells. CSC induced a dose-related hyperplasia and irregularly shaped foci of squamous metaplasia with atypical epithelial proliferation. In non-metaplastic epithelium, CSC exposure increased the number of ciliated cells. Hyperplasia and squamous metaplasia were inhibited if the tracheal rings were first treated with retinol followed by CSC exposure, or if the tracheas were simultaneously treated with retinol and CSC. CSC-exposure prior to retinol treatment induced similar histomorphological alterations as CSC alone.  相似文献   

5.
Summary Tracheas from vitamin A-deficient hamsters in organ culture in vitamin A-free medium developed squamous metaplasia. Addition of retinyl acetate to the medium prevented squamous metaplasia and a mucociliary epithelium was maintained. Indirect immunofluorescent staining with antikeratin antibodies AE1 and AE3 indicated positive reactions with epithelium of tracheas either cultured in vitamin A-free or retinyl acetate (RAc)-containing medium. The “stratum corneum”-like squames in metaplastic tracheas were strongly stained by AE3. Immunoprecipitation of cytoskeletal extracts from [35S]methionine labeled tracheas with a multivalent keratin antiserum indicated that the concentration of keratins synthesized in tracheas cultured in vitamin A-free medium was greater than that observed in tracheas cultured in the presence of RAc. In addition, new species of keratin were expressed in tracheas cultured in RAc-free medium. Alterations in the program of keratin synthesis were clearly detectable after 1 d in vitamin A-free medium, even though squamous metaplasia was not yet obvious. Squamous tracheas were shown by immunoblot analysis to contain keratins of 50, 48, 46.5, and 45 kilodalton (kd) detected with AE1; and 58, 56, and 52 kd detected with AE3. Immunoblot analysis with monospecific antimouse keratin sera also demonstrated the presence of 60, 55, and 50 kd keratins in the metaplastic tracheas. All these various species of keratins were either absent or present in much reduced quantity in mucociliary tracheas in RAc-containing medium. Interestingly, the induction of squamous metaplasia in tracheal epithelium did not result in the expression of the 59 and 67 kd keratins which are characteristically expressed in the differentiated layers of the epidermis. Therefore, this study shows that squamous metaplasia of tracheas due to vitamin A-free cultivation is accompanied by an increase in keratin synthesis as well as by the appearance of keratin species not normally present in mucociliary tracheal epithelium.  相似文献   

6.
Abstract. Regulation by vitamin A of cell proliferation and differentiation of epithelial tissues is well-established. Deficiency of vitamin A in experimental animals leads to the development of hyperplasia and squamous metaplasia. The objective of the present study was to examine, for young hamsters, the effects of variable levels of the vitamin in the liver and trachea, on cell proliferation and morphology of tracheal epithelium and on body weights. Newly born litters were maintained on vitamin A-supplemented and vitamin A-deficient diets, and various parameters were examined at different ages. Retinol and retinyl palmitate levels were determined by high performance liquid chromatography. For animals on the supplemented diet, concentrations of liver retinyl palmitate and retinol increased progressively with age, reaching highest levels of approximately 84 and 1 -9 μg/g liver, respectively, at 28 d. In contrast, in animals on the vitamin A-deficient diet, the retinyl palmitate and retinol levels decreased progressively, reaching the lowest levels of approximately 0–32 and 0–09 μg/g, respectively. No significant reduction in retinol was observed in the trachea of animals maintained on the deficient diet for at least 20 d; their tracheas were depleted of retinol at 28 d. No vitamin A-associated differences were, however, observed in the labelling indices, growth fraction or in the morphology of the tracheal epithelium. Both the control and vitamin A-deficient animals gained weight progressively until 36 d of age, although the weight of animals in the latter group remained below those in the former group. These results show that mild-to-severe deficiency of vitamin A had no effects on cell proliferation or tracheal morphology of the hamster. The hyperplasia and squamous metaplasia in the trachea occurs only at an extreme vitamin A-deficiency when the tissue levels of the vitamin are depleted.  相似文献   

7.
Hamster tracheal epithelial (HTE) cells maintained in primary culture show the induction of specific keratin species under vitamin A-deficient conditions. A comparison was made between the morphology and the expression of keratins in HTE cells in vivo and in primary culture with and without vitamin A. HTE cells cultured in serum-free, vitamin A-supplemented medium formed a simple cuboidal, ciliated monolayer and produced four simple epithelial keratins (7, 8, 18, and 19). In contrast, vitamin A-deficient HTE cells, which were squamous-like and stratified in culture, produced a more complex keratin pattern, with the induction of four additional keratin species (5, 6, 14, and 17). A keratin pair whose expression serves as a marker of stratified epithelia was induced, as well as a single keratin species unique to lesions of squamous metaplasia in vitamin A-deficient hamster tracheal organ cultures. Thus it appears that HTe cells retain the ability to respond to a deficiency in vitamin A through squamous differentiation and increased keratin production when removed from the intact organ and maintained in primary culture in a chemically defined medium. This system may be useful for the study of mechanisms underlying the squamous differentiation of respiratory epithelial cells in the development of bronchogenic tumors.  相似文献   

8.
Regulation by vitamin A of cell proliferation and differentiation of epithelial tissues is well-established. Deficiency of vitamin A in experimental animals leads to the development of hyperplasia and squamous metaplasia. The objective of the present study was to examine, for young hamsters, the effects of variable levels of the vitamin in the liver and trachea, on cell proliferation and morphology of tracheal epithelium and on body weights. Newly born litters were maintained on vitamin A-supplemented and vitamin A-deficient diets, and various parameters were examined at different ages. Retinol and retinyl palmitate levels were determined by high performance liquid chromatography. For animals on the supplemented diet, concentrations of liver retinyl palmitate and retinol increased progressively with age, reaching highest levels of approximately 84 and 1.9 micrograms g liver, respectively, at 28 d. In contrast, in animals on the vitamin A-deficient diet, the retinyl palmitate and retinol levels decreased progressively, reaching the lowest levels of approximately 0.32 and 0.09 micrograms/g, respectively. No significant reduction in retinol was observed in the trachea of animals maintained on the deficient diet for at least 20 d: their tracheas were depleted of retinol at 28 d. No vitamin A-associated differences were, however, observed in the labelling indices, growth fraction or in the morphology of the tracheal epithelium. Both the control and vitamin A-deficient animals gained weight progressively until 36 d of age, although the weight of animals in the latter group remained below those in the former group. These results show that mild-to-severe deficiency of vitamin A had no effects on cell proliferation or tracheal morphology of the hamster. The hyperplasia and squamous metaplasia in the trachea occurs only at an extreme vitamin A-deficiency when the tissue levels of the vitamin are depleted.  相似文献   

9.
Lecithin:retinol acyltransferase (LRAT) catalyzes the esterification of retinol (vitamin A) in the liver and in some extrahepatic tissues, including the lung. We produced an LRAT gene knock-out mouse strain and assessed whether LRAT-/- mice were more susceptible to vitamin A deficiency than wild type (WT) mice. After maintenance on a vitamin A-deficient diet for 6 weeks, the serum retinol level was 1.34 +/- 0.32 microM in WT mice versus 0.13 +/- 0.06 microM in LRAT-/- mice (p < 0.05). In liver, lung, eye, kidney, brain, tongue, adipose tissue, skeletal muscle, and pancreas, the retinol levels ranged from 0.05 pmol/mg (muscle and tongue) to 17.35 +/- 2.66 pmol/mg (liver) in WT mice. In contrast, retinol was not detectable (<0.007 pmol/mg) in most tissues from LRAT-/- mice after maintenance on a vitamin A-deficient diet for 6 weeks. Cyp26A1 mRNA was not detected in hepatic tissue samples from LRAT-/- mice but was detected in WT mice fed the vitamin A-deficient diet. These data indicate that LRAT-/- mice are much more susceptible to vitamin A deficiency and should be an excellent animal model of vitamin A deficiency. In addition, the retinol levels in serum rapidly increased in the LRAT-/- mice upon re-addition of vitamin A to the diet, indicating that serum retinol levels in LRAT-/- mice can be conveniently modulated by the quantitative manipulation of dietary retinol.  相似文献   

10.
Vitamin A (retinol) is required for maintenance of adult mammalian spermatogenesis. In adult rodents, vitamin A withdrawal is followed by a loss of differentiated germ cells within the seminiferous epithelium and disrupted spermatogenesis that can be restored by vitamin A replacement. However, whether vitamin A plays a role in the differentiation and meiotic initiation of germ cells during the first round of mouse spermatogenesis is unknown. In the present study, we found that vitamin A depletion markedly decreased testicular expression of the all-trans retinoic acid-responsive gene, Stra8, and caused meiotic failure in prepubertal male mice lacking lecithin:retinol acyltransferase (Lrat), encoding for the major enzyme in liver responsible for the formation of retinyl esters. Rather than undergoing normal differentiation, germ cells accumulated in the testes of Lrat(-/-) mice maintained on a vitamin A-deficient diet. These results, together with our previous observations that germ cells fail to enter meiosis and remain undifferentiated in embryonic vitamin A-deficient ovaries, support the hypothesis that vitamin A regulates the initiation of meiosis I of both oogenesis and spermatogenesis in mammals.  相似文献   

11.
The effects of vitamin A-deprivation on the tracheal epithelium were studied in 35-day old hamsters that had been raised since birth on a vitamin A-deficient diet. Colchicine and 3HTdR were given 6 hours before death and the proliferative activities of basal cells and mucous cells were quantified separately by 3HTdR labeling indices and mitotic rates. Vitamin A-deprivation decreased replication of basal cells and mucous cells in tracheal epithelium which showed minimal morphologic change. The mitotic rates and labeling indices were reduced 3 to 4-fold in basal cells and 14-fold in mucous cells (analyzed as percent of total number of each cell type) compared with controls. Thus, replication of mucous cells was more inhibited by lack of vitamin A, than replication of basal cells. The disparate hypoplasia of basal cells and mucous cells in epithelium showing minimal change, resulted in a relative increase in the proportion of basal cells and a relative decrease in the proportion of mucous cells, which could be erroneously interpreted as "basal cell hyperplasia". Proportions of preciliated and ciliated cells were also decreased compared to controls. At foci of stratification and epidermoid metaplasia, cell replication rates were increased over controls and more than 70% of all mitotic activity was associated with "non-basal" cells. Genesis of these lesions was coincident with cell death and cell loss. The histogenesis of stratification and epidermoid metaplasia was characterized. Morphological evidence indicated that these lesions were closely related histogenetically and were composed, for the most part, of altered mucous cells which expressed dual phenotypes i.e. keratinization and mucus synthesis.  相似文献   

12.
In order to learn more about the respective roles played by basal cells and mucous cells in the maintenance of tracheal mucociliary epithelium, cell kinetics and epithelial cell morphology were characterized over a 7-day period, during which dietary vitamin A was restored to previously deprived hamsters. Hamsters were reared from birth to 35 days of age on vitamin A-replete or deficient diets. Deprived hamsters were made replete by 5 mg vitamin A-acetate orally, plus a vitamin A-replete diet. Colchicine and 3HTdR were given 6 h before death. The numbers of basal cells, mucous cells, preciliated cells and ciliated cells, and mitotic rates (MR) and labeling indices (LI) of basal cells and mucous cells, were quantified in glycol methacrylate sections stained with PAS-lead hematoxylin. Vitamin A-deprivation decreased replication of basal cells and mucous cells in tracheal epithelium which showed minimal morphological change. The proportion of basal cells was increased and proportions of mucous, preciliated and ciliated cells were decreased. Following restoration of vitamin A to the diet, the basal cell MR remained below control level throughout the experimental period, but the mucous cell MR started to rise on day 2-replete, and on day 3-replete and thereafter the mucous cell MR was within the control range. Basal cell and mucous cell LI's showed similar trends. Preciliated cells were reduced or absent in vitamin A-deprived epithelium. Their number had risen by day 3-replete and thereafter they were generated within the control range. These cells matured into ciliated cells. By day 4-replete, the proportion of basal cells had decreased markedly and the proportions of mucous cells, and preciliated plus ciliated cells had increased, so that at this time cellular proportions were within or near control values. This trend continued so that by day 7-replete, a nearly normal mucociliary epithelium was restored. The results show that vitamin A-levels modulate replication rates of basal cells and mucous cells and indicate that mitotic division of mucous cells is a prerequisite for the genesis of preciliated cells and new mucous cells and for restoration of the mucociliary epithelium following deprivation of vitamin A in the diet.  相似文献   

13.
Previous studies have shown that rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) show signs of toxicity that are similar to the responses of animals to a vitamin A-deficient diet. These include hypophagia, loss of body weight, loss of hepatic vitamin A, and accumulation of renal retinoids. Male Sprague-Dawley rats treated with 10, 30, or 100 nmol/kg of TCDD accumulated renal vitamin A, with retinyl palmitate concentrations reaching 8 times those of control animals, similar to that of male rats fed a vitamin A-free diet for 26 days. Acyl CoA:retinol acyltransferase (ACARAT) activities in both TCDD-treated rats and rats fed a vitamin A-free diet for 26 days were similarly elevated, and were strongly and positively correlated with the renal retinyl palmitate concentrations. Retinol concentrations in the kidneys of rats treated with TCDD or fed a vitamin A-free diet were only slightly elevated when compared to control rats. We suggest that accumulation of retinyl esters in the kidneys of rats treated with TCDD or fed a vitamin A-free diet occurs as a result of increased rates of retinol esterification.  相似文献   

14.
The effects of vitamin A deprivation on the tracheal epithelium of young hamsters were investigated. Colchicine was administered 6 h prior to death to induce metaphase arrest, thus making it possible to quantify the mitotic rates of basal cells and secretory (mucous) cells in the epithelium. Blood samples were taken from all hamsters, and liver samples from some, in order to measure serum and tissue levels of vitamin A. Age-matched controls were compared with the following groups of hamsters maintained on a vitamin A deficient diet: pre weight plateau animals (those gaining weight), weight plateau-early weight loss animals (those maintaining approximately the same weight for 3 or 4 days, followed in some cases by a loss of weight for 3 or 4 days), and prolonged weight loss animals (those showing a loss of weight for 5 or more days). Four week old hamsters in a pre weight plateau had undetectable amounts of vitamin A in their livers and declining levels in their serum, whereas 4 1/2 week old hamsters still gaining weight had barely detectable levels of vitamin A in their serum. Nevertheless, the tracheal epithelium of these animals was not different from controls in appearance, proportions of different cell types, mitotic rates of secretory and basal cells, or in the number of cells per millimeter of basement membrane (cell density). Vitamin A was undetectable in the serum and livers of hamsters in the weight plateau-early weight loss stage. At this time the tracheal epithelium showed minimal morphological change, with small focal areas of epidermoid metaplasia in some animals. The tracheas of animals in early weight loss were smaller than tracheas in the control group, and there was a trend towards an increase in the number of epithelial cells per millimeter basement membrane. Cell types in the minimally changed epithelium appeared nearly normal, but there was an increase in the proportion of basal cells, and an absence (or near absence) of division in both basal and secretory cells. Tracheal rings from hamsters in the prolonged weight loss stage were lined by a cornifying metaplastic epidermoid epithelium. Our findings demonstrate that barely detectable levels of vitamin A in the serum are sufficient to maintain normal growth and differentiation of hamster tracheal epithelium (late pre weight plateau stage). When vitamin A serum levels fall below detectable limits the animals enter the weight plateau-early weight loss stage. This stage is accompanied by an inhibition of tracheal epithelial cell growth, although nearly normal cellular differentiation is maintained.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
16.
We evaluated whether nutritional vitamin A deficiency generates oxidative stress and inflammation in aorta. Wistar male rats (21 days old) were given free access to a control (8 mg retinol as retinyl palmitate/kg) or a vitamin A- deficient diet for three months. One group of deficient animals was fed with the control diet fifteen days before sacrifice. Thiobarbituric acid-reactive substances (TBARS) and nitrite concentration where both analyzed in serum and aorta. Aorta Copper-Zinc Superoxide dismutase (CuZnSOD), Glutathion peroxidase (GPx) and Catalase (CAT) activities were measured. In addition, binding activity of the nuclear factor- kB (NF-kB), inducible and endothelial Nitric Oxide synthase (iNOS and eNOS, respectively) and Ciclooxygenase-2 (COX-2) expressions were determinated in aorta. Rats fed the vitamin A- deficient diet were characterized by sub-clinical plasma retinol concentration and showed increased serum and aorta concentrations of TBARS compared to controls. Lower than control activities of CuZnSOD, GPx, and CAT were observed in aorta of the vitamin A- deficient group. The binding activity of NF- kB was higher in vitamin A- deficient animals than controls. In addition, NO production evaluated as nitrite concentration increased in aorta and serum, associated with a higher expression of iNOS, eNOS and COX-2 in aorta of vitamin A-deficient rats. The incorporation of vitamin A into the diet of vitamin A-deficient rats reverted the changes observed in TBARS level, CuZnSOD and GPx activities, nitrite concentration and also, iNOS, eNOS and COX-2 expression. Prooxidant environment and inflammation are induced by vitamin A deficiency in rat aorta.  相似文献   

17.
Corneas of normal and vitamin A-deficient rabbits were treated topically with [11, 12-3H] retinol or [11, 12-3H] all-trans retinoic acid. Methanol extracts of these corneas were analyzed by high pressure liquid chromatography. Radiolabeled compounds were extracted from the corneas which co-migrated chromatographically with known retinoid standards. In agreement with studies on other tissues and organs, retinol was metabolized to retinoic acid and more polar compounds by corneas of normal and vitamin A-deficient rabbits. All-trans retinoic acid was isomerized to 13-cis retinoic acid in normal rabbit corneas; however, this trans-cis isomerization did not occur in vitamin A-deficient, xerophthalmic corneas.  相似文献   

18.
Previous studies have shown that rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) show signs of toxicity that are similar to the responses of animals to a vitamin A-deficient diet. These include hypophagia, loss of body weight, loss of hepatic vitamin A, and accumulation of renal retinoids. Male Sprague-Dawley rats treated with 10, 30, or 100 nmol/kg of TCDD accumulated renal vitamin A, with retinyl palmitate concentrations reaching 8 times those of control animals, similar to that of male rats fed a vitamin A-free diet for 26 days. Acyl CoA:retinol acyltransferase (ACARAT) activities in both TCDD-treated rats and rats fed a vitamin A-free diet for 26 days were similarly elevated, and were strongly and positively correlated with the renal retinyl palmitate concentrations. Retinol concentrations in the kidneys of rats treated with TCDD or fed a vitamin A-free diet were only slightly elevated when compared to control rats. We suggest that accumulation of retinyl esters in the kidneys of rats treated with TCDD or fed a vitamin A-free diet occurs as a result of increased rates of retinol esterification.  相似文献   

19.
The effects of vitamin A-deficiency and inflammation were studied in the conducting airways of Syrian golden hamsters. An important goal of the study was to characterize epithelial changes that occur early in vitamin A-deficiency, that might precede yet predispose to infection, and precipitate inflammatory changes in the lungs. Age-matched vitamin A-replete control and vitamin A-deprived hamsters were killed at 33 days of age (preweight-plateau); at 41 days of age (weight plateau-early weight loss); and at 48–55 days of age (prolonged weight plateau followed by weight loss). A tablet containing bromodeoxyuridine (BrdU) was implanted subcutaneously into each hamster 7 h before it was killed. No changes were seen in the conducting airway epithelium of vitamin A-deprived hamsters in the preweight plateau. However, labelling of secretory cells for BrdU was reduced 6–7 fold in the epithelium lining the lobar bronchus (p< 0.0002) and the bronchioles (p< 0.0001), and the proportions of ciliated cells were decreased (p<0.0001) at both airway levels in vitamin A-deficient hamsters in the weight plateau-early weight loss stage. Changes in cellular morphology were minimal in the intrapulmonary airway epithelium at this time but a few small focal patches of epidermoid metaplasia were seen in the tracheal epithelium. Small foci of inflammation were closely associated with the airways in the weight plateau, and the inflammation became more widespread when the deficiency was prolonged. The results suggest that the defense of the lungs to infection was impaired initially in the vitamin A-deficient hamsters by a widespread reduction in the numbers of ciliated cells throughout the epithelium of the conducting airways (trachea, bronchi, bronchioles). At the foci of inflammation, labelling of epithelial secretory cells for BrdU was greatly increased at all airway levels. A highly stratified cornifying epidermoid metaplasia developed in the tracheal epithelium, and goblet cell metaplasia developed in the cranial portion of the lobar bronchus, in association with submucosal inflammation. Goblet cell metaplasia appeared to be the only abnormality that wasnot reversed when vitamin A was restored to the diet. This is contribution no. 2911 from the Pathobiology Laboratory  相似文献   

20.
Tissue distribution of keratin 7 as monitored by a monoclonal antibody   总被引:23,自引:0,他引:23  
Monoclonal antibody (RCK 105) directed against keratin 7 was obtained after immunization of BALB/c mice with cytoskeletal preparations from T24 cells and characterized by one- (1D) and two-dimensional (2D) immunoblotting. In cultured epithelial cells, known from gel electrophoretic studies to contain keratin 7, this antibody gives a typical keratin intermediate filament staining pattern, comparable to that obtained with polyclonal rabbit antisera to skin keratins or with other monoclonal antibodies, recognizing for example keratins 5 and 8 or keratin 18. Using RCK 105, the distribution of keratin 7 throughout human epithelial tissues was examined and correlated with expression patterns of other keratins. Keratin 7 was found to occur in the columnar and glandular epithelium of the lung, cervix, breast, in bile ducts, collecting ducts in the kidney and in mesothelium, but to be absent from gastrointestinal epithelium, hepatocytes, proximal and distal tubules of the kidney and myoepithelium. Nor could it be detected in the stratified epithelia of the skin, tongue, esophagus, or cervix but strongly stained all cell layers of the urinary bladder transitional epithelium. When applied to carcinomas derived from these different tissue types it became obvious that an antibody to keratin 7 may allow an immunohistochemical distinction between certain types of adenocarcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号