首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu WJ  Zeng FX  Jiang H  Zhang XS  Yu HQ 《Bioresource technology》2011,102(10):6260-6265
An integrated biosorption-pyrolysis technology was employed to recover Pb from aqueous solution. A series of biosorption, fast pyrolysis and leaching experiments were carried out. The optimum pH and adsorbent dose for Pb adsorption from aqueous solution are 6.0 and 3.0 g L−1, respectively. The temperature is a key factor influencing the yields of pyrolysis products, and the maximum yield of bio-oil is 45.7% at 773 K. The pyrolysis technology can effectively recover Pb from Pb polluted Typha angustifolia biomass (Pb-TAB) and its recovery efficiency is not notably influenced by temperature. According to the economic evaluation, the biosorption-pyrolysis technology has great techno-economic advantages over the conventional biosorption-leaching technology.  相似文献   

2.
A novel molecularly imprinted polymer that could be applied as enrichment sorbent was prepared using methimazole (MMZ) as the template molecule, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker. Though evaluated by static, kinetic and competitive adsorption tests, the polymer exhibited high adsorption capacity, fast kinetics and good selective ability. A method for determination of trace MMZ was developed using this polymer as enrichment sorbent coupled with high performance liquid chromatography focusing on complex biological matrices. Under the optimum experimental conditions, the MMZ standard is linear within the concentration range studied, that is, from 0.5 μg L−1 to 150 μg L−1 (r2 = 0.9941). Lower limits of detection (LOD, at S/N = 3) and quantification (LOQ, at S/N = 10) in pig samples were 0.63 μg kg−1 and 2.10 μg kg−1 for kidney, 0.51 μg kg−1 and 1.70 μg kg−1 for liver, 0.56 μg kg−1 and 1.86 μg kg−1 for muscle, respectively. Recoveries and relative standard deviation (RSD, n = 9) values for precision in the developed method were from 71.14% to 88.41% and from 2.53% to 6.18%.  相似文献   

3.
Bu Q  Lei H  Ren S  Wang L  Holladay J  Zhang Q  Tang J  Ruan R 《Bioresource technology》2011,102(13):7004-7007
Catalytic microwave pyrolysis of biomass using activated carbon was investigated to determine the effects of pyrolytic conditions on the yields of phenol and phenolics. The high concentrations of phenol (38.9%) and phenolics (66.9%) were obtained at the temperature of 589 K, catalyst-to-biomass ratio of 3:1 and retention time of 8 min. The increase of phenol and its derivatives compared to pyrolysis without catalysts has a close relationship with the decomposition of lignin under the performance of activated carbon. The concentration of esters was also increased using activated carbon as a catalyst. The high content of phenols obtained in this study can be used either directly as fuel after upgrading or as feedstock of bio-based phenols for chemical industry.  相似文献   

4.
Fe3O4 magnetic nanoparticles with different particle sizes were synthesized using two methods, i.e., a co-precipitation process and a polyol process, respectively. The atomic pair distribution analyses from the high-energy X-ray scattering data and TEM observations show that the two kinds of nanoparticles have different sizes and structural distortions. An average particle size of 6–8 nm with a narrow size distribution was observed for the nanoparticles prepared with the co-precipitation method. Magnetic measurements show that those particles are in ferromagnetic state with a saturation magnetization of 74.3 emu g−1. For the particles synthesized with the polyol process, a mean diameter of 18–35 nm was observed with a saturation magnetization of 78.2 emu g−1. Although both kinds of nanoparticles are well crystallized, an obviously higher structural distortion is evidenced for the co-precipitation processed nanoparticles. The synthesized Fe3O4 particles with different mean particle size were used for treating the wastewater contaminated with the metal ions, such as Ni(II), Cu(II), Cd(II) and Cr(VI). It is found that the adsorption capacity of Fe3O4 particles increased with decreasing the particle size or increasing the surface area. While the particle size was decreased to 8 nm, the Fe3O4 particles can absorb almost all of the above-mentioned metal ions in the contaminated water with the adsorption capacity of 34.93 mg/g, which is ∼7 times higher than that using the coarse particles. We attribute the extremely high adsorption capacity to the highly-distorted surface.  相似文献   

5.
Characterization of products from the pyrolysis of rapeseed oil cake   总被引:2,自引:0,他引:2  
Ucar S  Ozkan AR 《Bioresource technology》2008,99(18):8771-8776
The main aim of this study was to investigate the composition of products from the pyrolysis of rapeseed oil cake in a fixed bed reactor at 400, 450, 500, 700 and 900 degrees C. The gas products mainly consisted of CO(2), CO, CH(4) and H(2)S at 500 degrees C. Empirical formula of bio-oil from the pyrolysis of rapeseed oil cake was CH(1.59)O(0.16)N(0.116)S(0.003) for 500 degrees C. Bio-oils mainly contained oleic acid, 1H-indole, 2,3,5-trimethoxy toluene, toluene, (Z)-9-octadecanamide, psoralene, phenol and phenol derivatives at all pyrolysis temperatures. Both non-aromatic and aromatic hydrocarbon compounds were determined in water phase of liquid product by Headspace-GC analysis. The heating values of bio-chars were found to be similar (24MJkg(-1)) at all pyrolysis temperatures.  相似文献   

6.
7.
The present work reports the preparation of activated carbon fiber (ACF) from Kenaf natural fibers. Taguchi experimental design method was used to optimize the preparation of ACF using K2HPO4. Optimized conditions were: carbonization at 300 °C, impregnation with 30% w/v K2HPO4 solution and activation at 700 °C for 2 h with the rate of achieving the activation temperature equal to 2 °C min−1. The surface characteristics of the ACF prepared at optimized conditions were also studied using pore structure analysis, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Pore structure analysis shows that micropores constitute the most of the porosity of the prepared ACF. The ability of the ACF prepared at optimized conditions to adsorb phenol and p-nitrophenol from aqueous solution was also investigated. The equilibrium data of phenol and p-nitrophenol adsorption on the prepared ACF were well fitted to the Langmuir isotherm. The maximum adsorption capacities of phenol and p-nitrophenol on the prepared ACF are 140.84 and 136.99 mg g−1, respectively. The adsorption process follows the pseudo-first-order kinetic model.  相似文献   

8.
In this work the parameters of Low Temperature Conversion - LTC were applied in a centrifuged sludge from a sewage treatment plant located in Rio de Janeiro, Brazil. Before the conversion, the sludge was dried and analyzed by TGA to observe its behavior with increasing temperature. The chemical composition of the crude pyrolysis oil was analyzed by FTIR, 1H NMR and GC-MS. The results showed that the oil is a mixture of hydrocarbons, oxygenated and nitrogenated compounds. Using a catalytic treatment it was possible to fractionate the oil where the predominant constituents were hydrocarbons showing that the cracking was effective. An important result was the difference between the calorific value of dry sludge (10 MJ kg−1), the pyrolysis oil (36 MJ kg−1) and one of the fractions separated by catalytic cracking (40 MJ kg−1) when compared with commercial diesel (45 MJ kg−1).  相似文献   

9.
In this study, two Membrane Biological Reactors (MBR) with submerged flat membranes, one at lab-scale conditions and the other at pilot-plant conditions, were operated at environmental temperature to treat an industrial wastewater characterised by low phenol concentrations (8-16 mg L−1) and high salinity (∼150-160 mS cm−1). During the operation of both reactors, the phenol loading rate was progressively increased and less than 1 mg phenol L−1 was detected even at very low HRTs (0.5-0.7 days). Membrane fouling was minimized by the cross flow aeration rate inside the MBRs and by intermittent permeation. Microbial community analysis of both reactors revealed that members of the genera Halomonas and Marinobacter (gammaproteobacteria) were major components. Growth-linked phenol degradation by pure cultures of Marinobacter isolates demonstrated that this bacterium played a major role in the removal of phenol from the bioreactors.  相似文献   

10.
Biodegradability of fluorene and the versatility of fluorene metabolite (i.e. phenol) in fluorene biodegradation by a sulfate-reducing enrichment culture were investigated. Batch experiments (with 5 mg l−1 fluorene) were designed via the central composite design to examine the effects of sulfate (5-35 mM) and biomass (5-50 mg l−1) concentrations (variables) on fluorene degradation (response). The experimental results revealed that fluorene removal was more influenced by the biomass concentration than the sulfate concentration. The optimal sulfate and biomass concentrations for fluorene biodegradation (90% removal) were found to be 14.4 mM and 37.8 mg l−1, respectively. Under the optimal conditions, a set of biodegradation experiments were repeated to evaluate both the biodegradability of fluorene metabolite and the potential effect of phenol accumulation on fluorene degradation. The outcomes indicated a slow phenol degradation rate, i.e. 0.02 mg l−1 d−1. Moreover, a small reduction in the fluorene biodegradation efficiency was observed in the presence and accumulation of phenol. However, this sulfate reducing culture is a valuable resource for the simultaneous degradation of fluorene and phenol.  相似文献   

11.
Wang L  Wang X  Zou B  Ma X  Qu Y  Rong C  Li Y  Su Y  Wang Z 《Bioresource technology》2011,102(17):8220-8224
Carbon black is a form of amorphous carbon that is produced by incomplete combustion of petroleum- or some plant-derived materials and has a number of industrial uses. A process consisting of hydrolysis, carbonization and pyrolysis of rice husk was developed. Under optimal hydrolysis conditions (72 wt.% sulfuric acid, 50 °C, 10 min), a hydrolysis ratio of 52.72% was achieved. After carbonization of the hydrolysis solution by water bath, the solid carbon was further pyrolyzed. As the pyrolysis temperature was increased from 400 to 800 °C, the carbon content increased from 83.41% to 94.66%, the number of O-H, C-H, CO, and CC surface functional groups decreased, and based on Brunauer-Emmett-Teller (BET) results, the specific surface area and pore volume of carbon black increased from 389 to 1034 m2/g and from 0.258 to 0.487 cm3/g, respectively. X-ray diffraction pattern (XRD) and Raman spectroscopy analyses of samples pyrolyzed at 400-800 °C showed a localized graphitic structure. It is possible that the hydrolysis/carbonization/pyrolysis process developed in this study could also be applicable to the preparation of carbon black from other types of biomass.  相似文献   

12.
13.
Biochars produced by pyrolysis of hardwood at 450 °C (HW450) and corn straw at 600 °C (CS600) were characterized and investigated as adsorbents for the removal of Cu(II) and Zn(II) from aqueous solution. The adsorption data were well described by a Langmuir isotherm, with maximum Cu(II) and Zn(II) adsorption capacities of 12.52 and 11.0 mg/g for CS600, 6.79 and 4.54 mg/g for HW450, respectively. Thermodynamic analysis suggested that the adsorption was an endothermic process and did not occur spontaneously. Although Cu(II) adsorption was only marginally affected by Zn(II), Cu(II) competed with Zn(II) for binding sites at Cu(II) and Zn(II) concentrations ?1.0 mM. Results from this study indicated that plant-residue or agricultural waste derived biochar can act as effective surface sorbent, but their ability to treat mixed waste streams needs to be carefully evaluated on an individual basis.  相似文献   

14.
Low-cost activated carbon was prepared from Spartina alterniflora by phosphoric acid activation for the removal of Pb(II) from dilute aqueous solution. The effect of experimental parameters such as pH, initial concentration, contact time and temperature on the adsorption was studied. The obtained data were fitted with the Langmuir and Freundlich equations to describe the equilibrium isotherms. The kinetic data were fitted with the Lagergren-first-order, pseudo-second-order and Elovich models. It was found that pH played a major role in the adsorption process. The maximum adsorption capacity for Pb(II) on S. alterniflora activated carbon (SAAC) calculated from Langmuir isotherm was more than 99 mg g−1. The optimum pH range for the removal of Pb(II) was 4.8–5.6. The Freundlich isotherm model was found to best describe the experimental data. The kinetic rates were best fitted to the pseudo-second-order model. Thermodynamic study showed the adsorption was a spontaneous exothermic process.  相似文献   

15.
Cross-linked magnetic chitosan anthranilic acid glutaraldehyde Schiff's base (CAGS) was prepared for adsorption of both As(V) and Cr(VI) ions and their determination by ICP-OES. Prepared cross-linked magnetic CAGS was investigated by means of SEM, FTIR, wide angle X-ray diffraction (WAXRD) and TGA analysis. The adsorption properties of cross-linked magnetic CAGS resin toward both As(V) and Cr(VI) were evaluated. Various factors affecting the uptake behavior such as pH, temperature, contact time, initial concentration of metal ions, effect of other ions and desorption were studied. The equilibrium was achieved after about 110 min and 120 min for As(V) and Cr(VI), respectively at pH = 2. The adsorption kinetics followed the mechanism of the pseudo-second order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 58.48 and 62.42 mg/g for both Cr(VI) and As(V), respectively. Cross-linked magnetic CAGS displayed higher adsorption capacity for Cr(VI). The adsorption capacity of the metal ions increased with increasing temperature under optimum conditions in case of Cr(VI), but decreased in case of As(V). The metal ion-loaded cross-linked magnetic CAGS were regenerated with an efficiency of greater than 88% using 0.2 M sodium hydroxide (NaOH).  相似文献   

16.
The scope of this study is to evaluate the performance of internal loop airlift bioreactor (ILALR) in treating synthetic wastewater containing phenol and m-cresol, in single and multi component systems. The microbe utilized in the process was an indigenous mixed strain of Pseudomonas sp. isolated from a wastewater treatment plant. The reactor was operated at both lower and higher hydraulic retention times (HRTs) i.e., 4.1 and 8.3 h, respectively, by providing an inlet feed flow rate of 5 and 10 mL/min. Shock loading experiments were also performed up to a maximum concentration of 800 mg/L for phenol at 8.3 h HRT and 500 mg/L for m-cresol at 4.1 h HRT. The study showed complete degradation of both phenol and m-cresol, when they were degraded individually at a HRT of 8.3 h. Experiments with both phenol and m-cresol present as mixtures were performed based on the 22 full factorial design of experiments.  相似文献   

17.
Magnetic chitosan composite particles with 40 μm average size and 24 emu/g saturation magnetization obtained by an in situ procedure were evaluated as a new low-cost adsorbent for radioactive wastewater decontamination. Sorbent characterization by SEM, EDX, FTIR and magnetization measurements proved that the target ions were bound and their surface distribution was uniform. The 18 emu/g magnetization of the metal loaded particles was high enough to ensure their easy magnetic field separation and recovery. The parameters influencing the sorption process were optimized with respect to sorbent mass, target ion concentration and contact time. The material under study had superior adsorption capacity both for uranyl (666.67 mg/g) and thorium (312.50 mg/g) ions when compared to other low-cost adsorbents reported in literature. The adsorption process is spontaneous and endothermic. The material may be regenerated and re-used.  相似文献   

18.
A poly (acrylamide-allylglycidyl ether) [p(AAm-AGE)] cryogel was prepared by radical polymerization of acrylamide (AAm) and allylglycidyl ether (AGE). Cibacron Blue F3GA (CB) was covalently attached to the p(AAm-AGE) cryogel via the reaction between the chloride groups of the reactive dyes and the epoxide groups of the AGE. The CB-attached p(AAm-AGE) cryogel was chelated with Fe3+ ions. This immobilized metal ion affinity chromatography (IMAC) cryogel carrying 25.8 ± 2.0 μmol Fe3+ ions was used in adsorption studies to interrogate the effects of pH, protein initial concentration, flow rate, temperature and ionic strength on enzyme activity. Maximum adsorption capacities were found to be 75.7 ± 1.2 mg/g for p(AAm-AGE)-CB-Fe3+ cryogels and 60.6 ± 1.0 mg/g for p(AAm-AGE)-CB cryogels, respectively. The adsorbed amounts of catalase per unit mass of cryogel reached a plateau value at about 1.5 mg/mL at pH 6.0. The Km values were found to be 0.73 ± 0.02 g/L for the free catalase and 0.18 ± 0.02 g/L for the immobilized catalase. The Vmax value of free catalase (2.0 × 103 U/mg enzyme) was found to be lower than that of the immobilized catalase (2.5 × 103 U/mg enzyme). It was also observed that the enzyme could be repeatedly adsorbed and desorbed onto the p(AAm-AGE)-CB-Fe3+ cryogel.  相似文献   

19.
The increase of the price of fossil means, as well as their programmed disappearing, contributed to increase among appliances based on biomass and energy crops. The thermal behavior of Arundo donax by thermogravimetric analysis was studied under inert atmosphere at heating rates ranging from 5 to 20 °C min−1 from room temperature to 750 °C. Gaseous emissions as CO2, CO and volatile organic compounds (VOC) were measured and global kinetic parameters were determined during pyrolysis with the study of the influence of the heating rate. The thermal process describes two main phases. The first phase named active zone, characterizes the degradation of hemicellulose and cellulose polymers. It started at low temperature (200 °C) comparatively to wood samples and was finished at 350 °C. The pyrolysis of the lignin polymer occurred during the second phase from 350 to 750 °C, named passive zone. Carbon oxides are emitted during the active zone whereas VOC are mainly formed during the passive zone. Mass losses, mass loss rates and emission factors were strongly affected by the variation of the heating rate in the active zone. It was found that the global pyrolysis of A. donax can be satisfactorily described using global independent reactions model for hemicellulose and cellulose in the active zone. The activation energy for hemicellulose was not affected by a variation of the heating rate with a value close to 110 kJ mol−1 and presented a reaction order close to 0.5. An increase of the heating rate decreased the activation energy of the cellulose. However, a first reaction order was observed for cellulose decomposition. The experimental results and kinetic parameters may provide useful data for the design of pyrolytic processing system using A. donax as feedstock.  相似文献   

20.
Removal of a basic dye (Methylene Blue) from aqueous solution was investigated using a cross-linked succinyl-chitosan (SCCS) as sorbent. The chemical structures of chitosan and its derivatives were testified by FT-IR. X-ray diffraction, DTG analysis and swelling measurements were conducted to clarify the characteristics of the chemically modified chitosan. The effect of process parameters, such as pH of the initial solution, and concentrations of dyes on the extent of Methylene Blue (MB) adsorption was investigated. The Langmuir isotherm model was used to fit the equilibrium experimental data, giving a maximum sorption capacity of 289.02 mg/g at 298 K. Kinetic studies showed that the kinetic data were well described by the pseudo-second-order kinetic model. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°) and entropy change (ΔS°) were determined to be −25.32 kJ mol−1, −6.76 kJ mol−1 and −62.36 J mol−1 K−1, respectively, which leads to a conclusion that the adsorption process is spontaneous and exothermic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号