首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Al(HSO4)3 heterogeneous acid catalyst was prepared by the sulfonation of anhydrous AlCl3. This catalyst was employed to catalyze transesterification reaction to synthesis methyl ester when a mixed waste vegetable oil was used as feedstock. The physical and chemical properties of aluminum hydrogen sulphate catalyst were characterized by scanning electron microscopy (SEM) measurements, energy dispersive X-ray (EDAX) analysis and titration method. The maximum conversion of triglyceride was achieved as 81 wt.% with 50 min reaction time at 220 °C, 16:1 molar ratio of methanol to oil and 0.5 wt.% of catalyst. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Brönsted acid sites), hydrophobicity that prevented the hydration of -OH group, hydrophilic functional groups (-SO3H) that gave improved accessibility of methanol to the triglyceride. The fuel properties of methyl ester were analyzed. The fuel properties were found to be observed within the limits of ASTM D6751.  相似文献   

2.
Biodiesel and lactic acid from rapeseed oil was produced using sodium silicate as catalyst. The transesterification in the presence of the catalyst proceeded with a maximum yield of 99.6% under optimized conditions [3% (w/w) sodium silicate, methanol/oil molar ratio 9/1, reaction time 60 min, reaction temperature 60 °C, and stirring rate 250 rpm]. After six consecutive transesterification reactions, the catalyst was collected and used for catalysis of the conversion of glycerol to lactic acid. A maximum yield of 80.5% was achieved when the reaction was carried out at a temperature of 300 °C for 90 min. Thus, sodium silicate is an effective catalyst for transesterification and lactic acid production from the biodiesel by-product, glycerol.  相似文献   

3.
Wan Z  Hameed BH 《Bioresource technology》2011,102(3):2659-2664
In this study, methyl ester (ME) was produced by transesterification of palm oil (CPO) (cooking grade) using activated carbon supported calcium oxide as a solid base catalyst (CaO/AC). Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effect of reaction time, molar ratio of methanol to oil, reaction temperature and catalyst amount on the transesterification process. The optimum condition for CPO transesterification to methyl ester was obtained at 5.5 wt.% catalyst amount, 190 °C temperature, 15:1 methanol to oil molar ratio and 1 h 21 min reaction time. At the optimum condition, the ME content was 80.98%, which is well within the predicted value of the model. Catalyst regeneration studies indicate that the catalyst performance is sustained after two cycles.  相似文献   

4.
Shi W  He B  Li J 《Bioresource technology》2011,102(9):5389-5393
A sulfonated polyethersulfone (SPES)/polyethersulfone (PES) blend catalytic membrane was prepared and used as a heterogeneous catalyst in the esterification of the acidified oil (acid value 153 mg KOH/g) with methanol for producing biodiesel. The results showed that the free fatty acids conversion reached 97.6% using SPES/PES catalytic membrane under the optimal esterification conditions. Meanwhile, the SPES/PES membrane with 20.3% degree of sulfonation showed a good catalytic stability. A pseudo-homogeneous kinetic model was established. The results indicated that the reaction rate constant increased with increasing methanol/acidified oil molar ratio, the loading of catalytic membrane and reaction temperature. The reaction order was 2 and the activation energy decreased from 74.65 to 21.07 kJ/mol with increasing catalytic membrane loading from 0 to 0.135 meq/g(oil). It implies that the esterification is not diffusively controlled but kinetically controlled. The predicted results were in good agreement with the experimental data.  相似文献   

5.
Qiu F  Li Y  Yang D  Li X  Sun P 《Bioresource technology》2011,102(5):4150-4156
A solid base nanocatalyst was prepared by ZrO2 loaded with C4H4O6HK and investigated for transesterification of soybean oil with methanol to biodiesel. The obtained nanocatalyst was characterized by means of XRD, FTIR, TEM, TGA, N2 adsorption-desorption measurements and the Hammett indicator method. TEM photograph showed that the nanocatalyst had granular and porous structures with particle sizes of 10-40 nm. The nanocatalyst had longer lifetime and maintained sustained activity after being used for five cycles. The separate effects of the molar ratio of methanol to oil, reaction temperature, nanocatalyst amount and reaction time were investigated. The experimental results showed that a 16:1 M ratio of methanol to oil, 6.0% catalyst, 60 °C reaction temperature and 2.0 h reaction time gave the best results and the biodiesel yield of 98.03% was achieved. Production of biodiesel has positive impact on the utilization of agricultural and forestry products.  相似文献   

6.
Effects of biodrying process on municipal solid waste properties   总被引:1,自引:0,他引:1  
In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14 d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779 ± 2,074 kJ kg−1 wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290 g kg−1 VS), reduced of about 28% the total producible biogas.  相似文献   

7.
Chen G  Fang B 《Bioresource technology》2011,102(3):2635-2640
The aim of this work is to study the catalyst prepared by glucose-starch mixture. Assessment experiments showed that solid acid behaved the highest esterification activity when glucose and corn powder were mixed at ratio of 1:1, carbonized at 400 °C for 75 min and sulfonated with concentrated H2SO4 (98%) at 150 °C for 5 h. The catalyst was characterized by acid activity measurement, XPS, TEM and FT-IR. The results indicated that solid acid composed of CS0.073O0.541 has both Lewis acid sites and Broˇnsted acid sites caused by SO3H and COOH. The conversions of oleic acid esterification and triolein transesterification are 96% and 60%, respectively. Catalyst for biodiesel production from waste cottonseed oil containing high free fatty acid (FFA 55.2 wt.%) afforded the methyl ester yield of about 90% after 12 h. The catalyst deactivated gradually after recycles usage, but it could be regenerated by H2SO4 treatment.  相似文献   

8.
Yan J  Yan Y  Liu S  Hu J  Wang G 《Bioresource technology》2011,102(7):4755-4758
A dual modification procedure composed of cross-linking and protein coating with K2SO4 was employed to modify Geotrichum sp. lipase for catalyzing biodiesel production from waste cooking oil. Compared to single modification of protein coating with K2SO4, the dual modification of cross-linking and lipase coating improved catalytic properties in terms of thermostable stability, organic solvent tolerance, pH stability and operational stability in biodiesel production process, although biodiesel yield and initial reaction rate for CLPCMCs were not improved. After five successive batch reactions, CLPCMCs could still maintain 80% of relative biodiesel yield. CLPCMCs retained 64% of relative biodiesel yield after incubation in a pH range of 4-6 for 4 h, and 85% of relative biodiesel yield after incubation in a range of 45-50 °C for 4 h. CLPCMCs still maintained 83% of relative biodiesel yield after both treated in polar organic solvent and non-polar organic solvent for 4 h.  相似文献   

9.
In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60 °C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating.  相似文献   

10.
Fatty acid methyl ester was produced from used vegetable cooking oil using Mg1−x Zn1+xO2 solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4 h 15 min reaction at 188 °C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle.  相似文献   

11.
Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production.  相似文献   

12.
Lipase-coupling esterification of starch with octenyl succinic anhydride   总被引:1,自引:0,他引:1  
Enzymatic modification of starch was conducted by lipase-coupling esterification with octenyl succinic anhydride (OSA). Parameters affecting the esterification were systematically studied. Products were characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction, differential scanning calorimetry (DSC) and viscosity analysis (VA). Optimum condition for lipase-coupling OSA starch preparation was as follows: starch pretreatment at 65 °C for 15 min, starch concentration 35%, amount of lipase and OSA, 0.6% and 3%, reaction pH, temperature and time, 8.0, 40 °C and 30 min respectively, which resulted in 0.0195 of the degree of substitution and 84.05 ± 2.07% of the reaction efficiency. FT-IR spectroscopy confirmed the formation of OSA starch. SEM and X-ray diffraction showed apparent surface change, but no crystalline change. DSC and VA results indicated the synthesized OSA starch gelatinized rapidly with high viscosity. Attractively, reaction time drastically reduced to 30 min, showing vast potential for scale production of OSA starch.  相似文献   

13.
Malt hydrolyzing enzymes and yeast glycolytic and fermentation enzymes in the waste from beer fermentation broth (WBFB) were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). A new ‘one-pot consecutive batch strategy’ was developed for efficient bio-ethanol production by simultaneous saccharification and fermentation (SSF) using WBFB without additional enzymes, microbial cells, or carbohydrates. Bio-ethanol production was conducted in batches using WBFB supernatant in the first phase at 25–67 °C and 50 rpm, followed by the addition of 3% WBFB solid residue to the existing culture broth in the second phase at 67 °C. The ethanol production increased from 50 to 102.5 g/L when bare supernatant was used in the first phase, and then to 219 g ethanol/L in the second phase. The amount of ethanol obtained using this strategy was almost equal to that obtained using the original WBFB containing 25% solid residue at 33 °C, and more than double that obtained when bare supernatant was used. Microscopic and gel electrophoresis studies revealed yeast cell wall degradation and secretion of cellular material into the surrounding medium. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) supported the existence of enzymes in WBFB involved in bioethanol production at elevated temperatures. The results of this study will provide insight for the development of new strategies for biofuel production.  相似文献   

14.
Biodiesel produced by transesterification is a promising green fuel in the future. A new heterogeneous catalyst, Zn/Al complex oxide, was prepared for biodiesel production. The results showed that the catalyst derived from a hydrotalcite-like precursor with a zinc/aluminum atom ratio of 3.74:1 and calcined at 450 °C gave the highest conversion of 84.25%. Analysis of XRD, XPS, FI-IF, TG-DTA, BET and alkalinity tests demonstrated that it is the unique structure of hydrotalcite-like compound precursor that gave the catalyst a high alkalinity greater than 11.1. The optimal reaction condition for Zn/Al complex oxide was under methanol sub-critical condition: 200 °C, 2.5 MPa, 1.4% (wt) catalyst dosage, and 24:1 methanol to oil ratio. Under these conditions, the conversion reached 84.25% after 90 min, which was better than Mg/Al complex oxides. The excellent tolerance to water and free fatty acid was exhibited when the oil feed had fewer than 6% FFA or 10% water content with a conversion greater than 80%.  相似文献   

15.
An inexpensive self-made immobilized lipase from Penicillium expansum was shown to be an efficient biocatalyst for biodiesel production from waste oil with high acid value in organic solvent. It was revealed that water from the esterification of free fatty acids and methanol prohibited a high methyl ester yield. Adsorbents could effectively control the concentration of water in the reaction system, resulting in an improved methyl ester yield. Silica gel was proved to be the optimal adsorbent, affording a ME yield of 92.8% after 7 h. Moreover, the enzyme preparation displayed a higher stability in waste oil than in corn oil, with 68.4% of the original enzymatic activity retained after being reused for 10 batches.  相似文献   

16.
An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne−1 VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne−1. This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed.  相似文献   

17.
Ovigerous females of Cancer setosus are present year-round throughout most of its wide range along the Peruvian/Chilean Pacific coast (2°S-46°S). However, their number of egg-masses produced per year remains speculative and as such has neither been considered in latitudinal comparisons of reproduction, nor for its fisheries management. In order to reveal the effect of temperature on egg-mass production and egg-development, female C. setosus were held in through-flow aquaria under natural seasonal temperature conditions (16-23 °C) in Antofagasta (23°S), Northern Chile (05/2005-03/2006; 10 months), and at three constant temperatures (12, 16, 19 °C) in Puerto Montt (41°S), Central Southern Chile (09/2006-02/2007; 5 months). Female crabs uniformly produced up to 3 viable egg-masses within 4 1/2 months in Antofagasta and in Puerto Montt (at 19 °C). The second egg-mass was observed 62.5 days (± 7.6; N = 7) after the oviposition of the first clutch and a third egg-mass followed 73.5 days (± 12.5; N = 11) later in Antofagasta (at 16-23 °C). Comparably, a second oviposition took place 64.4 days (± 9.8, N = 5) after the first clutch and a third, 67.0 days (± 2.8, N = 2), thereafter, at 19 °C in Puerto Montt. At the two lower temperatures (16 and 12 °C) in Puerto Montt a second egg-mass was extruded after 82.8 days (± 28.9; N = 4) and 137 days (N = 1), respectively. The duration of egg-development from oviposition until larval hatching decreased from 65 days at 12.5 °C to 22.7 days at the observed upper temperature threshold of 22 °C. Based on the derived relationship between temperature and the duration of egg-development (y = 239.3175e− 0.107x; N = 21, r2 = 0.83) and data on monthly percentages of ovigerous females from field studies, the annual number of egg-masses of C. setosus was calculated. This analysis revealed an annual output of about one egg-mass close to the species northern and southern distributional limits in Casma (9°S) and Ancud (43°S), respectively, while at Coquimbo (29°S) about two and in Concepción (36°S) more than 3 egg-masses are produced per year.  相似文献   

18.
This study demonstrated a one-step process for direct liquefaction and conversion of wet algal biomass containing about 90% of water to biodiesel under supercritical methanol conditions. This one-step process enables simultaneous extraction and transesterification of wet algal biomass. The process conditions are milder than those required for pyrolysis and prevent the formation of by-products. In the proposed process, fatty acid methyl esters (FAMEs) can be produced from polar phospholipids, free fatty acids, and triglycerides. A response surface methodology (RSM) was used to analyze the influence of the three process variables, namely, the wet algae to methanol (wt./vol.) ratio, the reaction temperature, and the reaction time, on the FAMEs conversion. Algal biodiesel samples were analyzed by ATR-FTIR and GC-MS. Based on the experimental analysis and RSM study, optimal conditions for this process are reported as: wet algae to methanol (wt./vol.) ratio of around 1:9, reaction temperature and time of about 255 °C, and 25 min respectively. This single-step process can potentially be an energy efficient and economical route for algal biodiesel production.  相似文献   

19.
The gus gene is one of the most frequently used reporter genes in transgenic plants. However, this gene can only be used if the selected plant species does not show endogenous GUS activity. Rapeseed (Brassica napus) microspores and microspore-derived embryos (MDEs) were found to exhibit high activity of endogenous β-glucuronidase which interferes with the expression of bacterial β-glucuronidase that was transferred into these tissues by biolistic transformation. In order to eliminate this background activity from rapeseed MDEs, different pHs of the assay buffer (5.8, 7 and 8) with or without methanol in the reaction buffer and incubation of these tissues at different temperatures (24 °C, 38 °C and 55 °C) were investigated. To avoid this problem in microspores, two incubation temperatures (38 °C and 55 °C) at different periods after GUS assay (4, 24 and 48 h) and in the presence of 1 mM potassium ferricyanide and 1 mM potassium ferrocyanide were tested. The endogenous GUS activity was significantly decreased in transformed and untransformed MDEs, when the phosphate buffer was adjusted to pH 8 and 28% methanol in the reaction solution was used. In rapeseed microspores, use of 1 mM potassium ferricyanide and 1 mM potassium ferrocyanide in the reaction buffer enhanced the expression rate of gus transgene rather than endogenous GUS activity where the high levels of gus transgene expression was observed 4 h after histochemical GUS assay. Incubation of rapeseed microspores and MDEs at 55 °C completely eliminated the endogenous GUS activity. In this study, we also examined changes in endogenous GUS activity in rapeseed MDEs at several stages including the globular, heart, torpedo and cotyledonary stages. The level of endogenous GUS activity was increased 4.33 folds in heart embryos, 6.54 folds in torpedo embryos and 8.5 folds in cotyledonary embryos. Furthermore, the level of GUS activity increased 1.72 folds in MDEs of B. napus in 12-h treatment with 2 μM gibberellic acid.  相似文献   

20.
Acyltransferase activity of amidase from Bacillus sp. APB-6 was enhanced (24 U) by multiple feedings of N-methylacetamide (70 mM) into the production medium. Hyperinduced whole resting cells of Bacillus sp. APB-6 corresponding to 4 g/L (dry cell weight), when treated with 10 mM DTT (dithiothreitol) resulted in 93% molar conversion of acetamide (300 mM) to acetohydroxamic acid in presence of hydroxylamine-HCl (800 mM) after 30 min at 45 °C in a 1 L reaction mixture. After lyophilization, a 62 g powder containing 34% (wt wt−1) acetohydroxamic acid was recovered. This is the first report where DTT has been used to enhance acyltransfer reaction and such high molar conversion (%) of amide to hydroxamates was recorded at 1 L scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号