首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An essential exercise for strength training of the lower limbs is the squat exercise. During this exercise, changes in lumbar lordosis are commonly used to indicate when the descent of the squat should cease, yet the behavior of the lumbar-scarum segments remains unclear. The purpose of this study was to quantify the lumbar-sacrum movements during the back squat, because the movement of the sacrum is influenced by the width of stance, this variable was also investigated. Thirty trained subjects, 18 men with 1 repetition maximum (1RM) squat of 123% (13.9%) of bodyweight and 12 women with 1RM squat of 93% (15.6%), performed a set of narrow and wide stance squats, each carrying an additional 50% of body weight as load. The timing and movement of the lumbar angle (T12/L1), sacrum angle (L5/S1), and lumbar flexion angle (lumbar lordosis) were measured in 3 dimensions for the ascent and decent phases. Men and women achieved similar lumbar angles for both width of stance and phase. Sacrum angles, lumbar flexion angles, and timing differed significantly (p < 0.05) between gender and width of stance. The lumbar flexion range during the descent phase for women in narrow and wide stance was 12.9° and 12.6°, respectively; for men, this range was significantly (p < 0.05) larger at 26.3° and 25.4°, respectively. Men and women developed different movement patterns for the squatting movement, and therefore, this needs to be considered in strength development and screening procedures. The lumbar spine became kyphotic as soon as a load was placed on the shoulders, and any teaching cues to maintain a curved lumbar spine when squatting must be questioned.  相似文献   

2.
The purpose of this investigation was to determine if there was a difference in kinetic variables and muscle activity when comparing a squat to a box squat. A box squat removes the stretch-shortening cycle component from the squat, and thus, the possible influence of the box squat on concentric phase performance is of interest. Eight resistance trained men (Height: 179.61 ± 13.43 cm; Body Mass: 107.65 ± 29.79 kg; Age: 24.77 ± 3.22 years; 1 repetition maximum [1RM]: 200.11 ± 58.91 kg) performed 1 repetition of squats and box squats using 60, 70, and 80% of their 1RM in a randomized fashion. Subjects completed the movement while standing on a force plate and with 2 linear position transducers attached to the bar. Force and velocity were used to calculate power. Peak force and peak power were determined from the force-time and power-time curves during the concentric phase of the lift. Muscle activity (electromyography) was recorded from the vastus lateralis, vastus medialis, biceps femoris, and longissimus. Results indicate that peak force and peak power are similar between the squat and box squat. However, during the 70% of 1RM trials, the squat resulted in a significantly lower peak force in comparison to the box squat (squat = 3,269 ± 573 N, box squat = 3,364 ± 575 N). In addition, during the 80% of 1RM trials, the squat resulted in significantly lower peak power in comparison to the box squat (squat = 2,050 ± 486 W, box squat = 2,197 ± 544 W). Muscle activity was generally higher during the squat in comparison to the box squat. In conclusion, minimal differences were observed in kinetic variables and muscle activity between the squat and box squat. Removing the stretch-shortening cycle during the squat (using a box) appears to have limited negative consequences on performance.  相似文献   

3.
The osteogenic potential of exercise is reported to be partially a function of the magnitude of training loads. This study evaluated the ground reaction force (GRF) and rate of force development (RFD) of the eccentric and concentric phases of the back squat at 3 different loads. Twelve subjects performed the back squat on a force platform with loading conditions of 80, 100, and 120% of their 1 repetition maximum (RM). Back squats performed at 120% of the 1RM produced the highest GRF in both the eccentric and concentric conditions. No significant differences were found between RFD for any of the loading conditions. Performing the back squat at loads of 120% of the estimated 1RM, accomplished with reduced range of motion, results in higher GRF than the back squat performed at 80 or 100% of the 1RM. Thus, supermaximal back squat loads in excess of the 1RM, with decreased range of motion, may be a useful part of a resistance training program designed to maximize osteogenic potential.  相似文献   

4.
The purpose of this study was to determine the acute effects of a spectrum of eccentric loads on force, velocity, and power during the concentric portion of maximal-effort jump squats utilizing a repeated measures design. Thirteen resistance-trained men (age = 22.8 +/- 2.9 years, weight = 87.1 +/- 11.8 kg, 163.5 +/- 28.6 kg squat 1 repetition maximum [1RM]; mean +/- SD), who routinely incorporated back squats into their training, participated as subjects in this investigation. Jump squat performance was assessed using 4 experimental conditions. The first of these conditions consisted of an isoinertial load equal to 30% of back squat 1RM. The remaining conditions consisted of jump squats with a concentric load of 30% 1RM, subsequent to the application of experimental augmented eccentric loading (AEL) conditions of 20, 50, and 80% of back squat 1RM, respectively. All subjects performed 2 sets of 1RM of maximum-effort jump squats with all experimental conditions in a counter-balanced sequence. Forty-eight hours after completing the first testing session, subjects repeated the experimental testing protocol to establish stability reliability. Peak performance values for the reliable variables of force, velocity, and power, as well as force and power values obtained at 20-ms intervals during the initial 400 ms of the concentric jump squat range of motion, showed no statistical difference (p > 0.05) across the experimental AEL loads. These results suggest that load-spectrum AEL prior to a 30% 1RM jump squat fails to acutely enhance force, velocity, and power.  相似文献   

5.
The Smith machine (SM) (vertical motion of bar on fixed path; fixed-form exercise) and free weights (FWs) (free-form path) are commonly used strength training modes. Exercisers may need to alternate between types of equipment, depending on testing, training, rehabilitation, and/or the exercisers' goals. The purposes of this study were to compare muscle force production for SM and FWs using a 1 repetition maximum (1RM) for the parallel back squat and supine bench press exercises and to predict the 1RM for one mode from 1RM on the other mode. Men (n = 16) and women (n = 16) alternately completed 1RM testing for squat and bench press using SM and FWs. Analyses of variance (type of equipment x sex) and linear regression models were calculated. A significant difference was found between bench press and squat 1RMs for each mode of equipment for all participants. The squat 1RM was greater for the SM than the FWs; conversely, the bench 1RM was greater for FWs than the SM. When sex was considered, bench 1RM for FWs was greater than SM for men and women. The squat 1RM was greater for SM than FWs for women only. The 1RM on one mode of equipment was the best predictor of 1RM for the other mode. For both sexes, the equation SM bench 1RM (in kilograms) = -6.76 + 0.95 (FW bench 1RM) can be used. For women only, SM squat 1RM (in kilograms) = 28.3 + 0.73 (FW squat 1RM). These findings provide equations for converting between SM and FW equipment for training.  相似文献   

6.
In previous work, cortical activity decreased with fatigue following novel movements or small muscle group actions. These muscle actions, however, do not appear related to the cortical activity seen with biologically relevant and highly trained movement patterns (i.e., ingrained patterns). The cortical recovery response to ingrained patterns-and how it differs with altered load, speed, or volume - is unknown. The purpose of this balanced, within-group study was to investigate differences in cortical activity 24 hours after physically distinct variations of a highly trained squat exercise (n = 7, minimum 4 years resistance training experience). Four resistance protocols were chosen: rate of force development (PWR, 6 × 3 squat jumps at 30% of 1 repetition maximum [1RM]); magnitude of force development (FOR, 6 × 3 squat at 95% of 1RM); volume of force development (VOL, 6 × 10 squat at 80% of their 1RM); and control (CTRL, 6 sets unracking an empty bar). Twenty-four hours later, subjects performed a peak isometric squat while electroencephalographic and biochemical markers of exertion and fatigue were obtained. Global field power detected the quantity of activity superficial to motor regions. Waveforms of activity throughout the isometric squats were obtained and grand averages calculated to produce quantitative depictions of cortical activity. Significance was P ≤ 0.05. Peak isometric squat force was not statistically different 24 hours postexercise (Force [N]: PWR: 2828.79 ± 461.17; FOR: 2887.64 ± 453.09; VOL: 2910.17 ± 625.81; CTRL 2768.53 ± 374.85). Subjects produced similar and characteristic cortical activity patterns during isometric squats despite varying indices of fatigue. Differences were observed based upon the use or nonuse of aerobic endurance exercise in their training program. Patterns of activity in data seem to have emerged based on differences in training preference. Global Field Power (uV) during the isometric squat for PWR was 26.98 ± 14.64; FOR 24.06 ± 19.05; VOL 23.05 ± 13.37; and CTRL 15.78 ± 8.11. Previous research suggests that cortical activity decreases with physical activity; however, despite substantial endocrine, perceptual, and biomechanical differences between protocols, cortical activity was not decreased below control during the performance of a maximal isometric squat 24 hours after various exercise protocols.  相似文献   

7.
Unilateral and bilateral lower-body heavy resistance exercises (HREs) are used for strength training. Little research has examined whether muscle activation and testosterone (TES) responses differ between these exercises. Our purpose was to compare the effects of unilateral and bilateral lower-body HRE on muscle activity using surface electromyography (sEMG) and TES concentrations. Ten resistance-trained, college-aged male athletes (football, track and field) completed 5 testing sessions in which bilateral (back squat [BS]) and unilateral (pitcher squat [PS]) exercises were performed using a counterbalanced design. Sessions 1 and 2 determined estimated maximum strength (10 repetition maximum [10RM]) in the BS and PS. During testing session 3, muscle activation (sEMG) was measured in the right vastus lateralis, biceps femoris, gluteus maximus, and erector spinae (ES) during both BS and PS (stance leg) exercises. In sessions 4 and 5, total TES concentrations (nanomoles per liter) were measured via blood draws at baseline (preexercise), 0, 5, 10, 15, and 30 minutes postexercise after 4 sets of 10 repetitions at the 10RM. Separate repeated-measures analyses of variance examined differences in sEMG and TES between BS and PS (p < 0.05). The sEMG amplitudes were similar (p = 0.80) for BS (0.22 ± 0.06 mV) and PS (0.20 ± 0.07 mV). The TES responses were also similar (p = 0.15) between BS (21.8 ± 6.9 nmol·L(-1)) and PS (26.2 ± 10.1 nmol·L(-1)). The similar lower limb and back sEMG and TES responses may indicate that the neuromuscular and hormonal demands were comparable for both the BS and PS exercises despite the absolute work being less in the PS. The PS exercise may be an effective method for including unilateral exercise into lower-body resistance training when designing training programs for ground-based activities.  相似文献   

8.
Acute effects of heavy-load squats on consecutive squat jump performance   总被引:1,自引:0,他引:1  
Postactivation potentiation (PAP) and complex training have generated interest within the strength and conditioning community in recent years, but much of the research to date has produced confounding results. The purpose of this study was to observe the acute effects of a heavy-load back squat [85% 1 repetition maximum (1RM)] condition on consecutive squat jump performance. Twelve in-season Division I male track-and-field athletes participated in two randomized testing conditions: a five-repetition back squat at 85% 1RM (BS) and a five-repetition squat jump (SJ). The BS condition consisted of seven consecutive squat jumps (BS-PRE), followed by five repetitions of the BS at 85% 1RM, followed by another set of seven consecutive squat jumps (BS-POST). The SJ condition was exactly the same as the BS condition except that five consecutive SJs replaced the five BSs, with 3 minutes' rest between each set. BS-PRE, BS-POST, SJ-PRE, and SJ-POST were analyzed and compared for mean and peak jump height, as well as mean and peak ground reaction force (GRF). The BS condition's mean and peak jump height and peak GRF increased 5.8% +/- 4.8%, 4.7% +/- 4.8%, and 4.6% +/- 7.4%, respectively, whereas the SJ condition's mean and peak jump height and peak GRF decreased 2.7% +/- 5.0%, 4.0% +/- 4.9%, and 1.3% +/- 7.5%, respectively. The results indicate that performing a heavy-load back squat before a set of consecutive SJs may enhance acute performance in average and peak jump height, as well as peak GRF.  相似文献   

9.
Because previous research has shown a relationship between maximal squat strength and sprint performance, this study aimed to determine if changes in maximal squat strength were reflected in sprint performance. Nineteen professional rugby league players (height = 1.84 ± 0.06 m, body mass [BM] = 96.2 ± 11.11 kg, 1 repetition maximum [1RM] = 170.6 ± 21.4 kg, 1RM/BM = 1.78 ± 0.27) conducted 1RM squat and sprint tests (5, 10, and 20 m) before and immediately after 8 weeks of preseason strength (4-week Mesocycle) and power (4-week Mesocycle) training. Both absolute and relative squat strength values showed significant increases after the training period (pre: 170.6 ± 21.4 kg, post: 200.8 ± 19.0 kg, p < 0.001; 1RM/BM pre: 1.78 ± 0.27 kg·kg(-1), post: 2.05 ± 0.21 kg·kg(-1), p < 0.001; respectively), which was reflected in the significantly faster sprint performances over 5 m (pre: 1.05 ± 0.06 seconds, post: 0.97 ± 0.05 seconds, p < 0.001), 10 m (pre: 1.78 ± 0.07 seconds, post: 1.65 ± 0.08 seconds, p < 0.001), and 20 m (pre: 3.03 ± 0.09 seconds, post: 2.85 ± 0.11 seconds, p < 0.001) posttraining. Whether the improvements in sprint performance came as a direct consequence of increased strength or whether both are a function of the strength and power mesocycles incorporated into the players' preseason training is unclear. It is likely that the increased force production, noted via the increased squat performance, contributed to the improved sprint performances. To increase short sprint performance, athletes should, therefore, consider increasing maximal strength via the back squat.  相似文献   

10.
This study aimed to examine the relationships between muscle power output using the stretch-shortening cycle (SSC) and maximum strength, as measured by the 1 RM (1 repetition maximum) test and the isokinetic dynamometer under elbow flexion. Sixteen trained, young adult males pulled a constant load of 40% MVC (maximum voluntary elbow flexion contraction) by ballistic elbow flexion under the following two preliminary conditions: 1) the static relaxed muscle state (SR condition) and 2) using the SSC (SSC condition). Muscle power was determined from the product of the pulling velocity and load mass by a power measurement instrument with a rotary encoder. The 1 RM bench press (1RM BP) and isokinetic maximum strength under elbow flexion with the Cybex-325 were measured as indicators of dynamic maximum strength. 1) The early power output exerted under the SSC condition showed a significant and high correlation with the 1 RM BP (r = 0.83), but only moderate correlation with the isokinetic muscle strength (r = 0.50-0.67). 2) The contribution of the 1 RM BP to the early muscle contraction velocity exerted under the SSC condition was large. These results suggested that muscle power exerted using the SSC shows a stronger relationship with maximum muscle strength measured by a 1 RM test rather than isokinetic maximum strength.  相似文献   

11.
Research has demonstrated that high-load low-velocity (HLLV) exercises (≥85% 1 repetition maximum [1RM]) increase performance in subsequent low-load high-velocity (LLHV) exercises, when separated by a rest period ≥4 minutes. To date, few studies have investigated LLHV exercises on subsequent HLLV exercises. The purpose of this study was to compare the effects of 2, 4, or 6 depth jumps (DJs) on subsequent 1RM back squat performance. Fourteen subjects (age 22 ± 4 years, height 177 ± 10 cm, body mass 80.3 ± 14.4 kg) completed five 1RM back squat testing sessions, either control, retest, or 1 of 3 interventions (2, 4, or 6 DJs from a height of 33 cm, 4 minutes before the first 1RM attempt), in a counterbalanced order. Intraclass correlation coefficients demonstrated a high test-retest reliability for the 1RMs (r = 0.989, p < 0.001). Repeated-measures analysis of variance with Bonferroni post hoc analysis revealed significantly greater 1RM performance (140.71 ± 35.68 kg: p = 0.004, 140.50 ± 33.77 kg: p < 0.001, 141.43 ± 34.39 kg: p = 0.002, respectively) for each intervention (2, 4, or 6 repetitions, respectively) compared to the control condition (132.43 ± 34.56 kg). No significant differences were found between interventions (p > 0.05). The findings of this investigation demonstrate that the inclusion of 2, 4, or 6 DJs, 4 minutes before a maximal squat, enhances subsequent strength performance.  相似文献   

12.
To examine the effects of different rest intervals on the repeatability of 1 repetition maximum (1RM) efforts in the free-weight back squat exercise, 17 weight-trained men served as subjects (mean age 22.0 years). One repetition maximum was tested on each of the first 2 days of testing to establish a stable baseline (1RM = 184.9 kg). Each of the next 3 sessions involved performing 2 1RM back squats, with the rest interval between attempted lifts being either 1, 3, or 5 minutes, assigned in a counterbalanced fashion. For the 1-minute rest interval, 13 of 17 subjects successfully completed the second lift; for the 3-minute rest interval, 16 of 17 were successful; and for the 5-minute rest interval, 15 of 17 were successful. Cochran Q analysis determined no significant difference (p > 0.05) in the ability to repeat a successful maximal-effort back squat when different rest intervals were used. These findings are consistent with the literature for the bench-press exercise and indicate that 1-minute rest intervals are sufficient for recovery between attempted lifts during 1RM testing or training for the free-weight back squat when involving lifters of this caliber.  相似文献   

13.
Resistance exercise intensity is commonly prescribed as a percent of 1 repetition maximum (1RM). However, the relationship between percent 1RM and the number of repetitions allowed remains poorly studied, especially using free weight exercises. The purpose of this study was to determine the maximal number of repetitions that trained (T) and untrained (UT) men can perform during free weight exercises at various percentages of 1RM. Eight T and 8 UT men were tested for 1RM strength. Then, subjects performed 1 set to failure at 60, 80, and 90% of 1RM in the back squat, bench press, and arm curl in a randomized, balanced design. There was a significant (p < 0.05) intensity x exercise interaction. More repetitions were performed during the back squat than the bench press or arm curl at 60% 1RM for T and UT. At 80 and 90% 1RM, there were significant differences between the back squat and other exercises; however, differences were much less pronounced. No differences in number of repetitions performed at a given exercise intensity were noted between T and UT (except during bench press at 90% 1RM). In conclusion, the number of repetitions performed at a given percent of 1RM is influenced by the amount of muscle mass used during the exercise, as more repetitions can be performed during the back squat than either the bench press or arm curl. Training status of the individual has a minimal impact on the number of repetitions performed at relative exercise intensity.  相似文献   

14.
The purpose of this study was to compare the biomechanics of the traditional squat with 2 popular exercise variations commonly referred to as the powerlifting squat and box squat. Twelve male powerlifters performed the exercises with 30, 50, and 70% of their measured 1 repetition maximum (1RM), with instruction to lift the loads as fast as possible. Inverse dynamics and spatial tracking of the external resistance were used to quantify biomechanical variables. A range of significant kinematic and kinetic differences (p < 0.05) emerged between the exercises. The traditional squat was performed with a narrow stance, whereas the powerlifting squat and box squat were performed with similar wide stances (48.3 ± 3.8, 89.6 ± 4.9, 92.1 ± 5.1 cm, respectively). During the eccentric phase of the traditional squat, the knee traveled past the toes resulting in anterior displacement of the system center of mass (COM). In contrast, during the powerlifting squat and box squat, a more vertical shin position was maintained, resulting in posterior displacements of the system COM. These differences in linear displacements had a significant effect (p < 0.05) on a number of peak joint moments, with the greatest effects measured at the spine and ankle. For both joints, the largest peak moment was produced during the traditional squat, followed by the powerlifting squat, then box squat. Significant differences (p < 0.05) were also noted at the hip joint where the largest moment in all 3 planes were produced during the powerlifting squat. Coaches and athletes should be aware of the biomechanical differences between the squatting variations and select according to the kinematic and kinetic profile that best match the training goals.  相似文献   

15.
Research has identified that the optimal power load for static squat jumps (with no countermovement) is lower than the loads usually recommended for power training. Lower loads may permit the performance of additional repetitions before the onset of fatigue compared with heavier loads; therefore, the aim of this study was to determine the point of fatigue during squat jumps at various loads (0, 20, 40, 60% 1-repetition maximum [1RM]). Seventeen professional rugby league players performed sets of 6 squat jumps (with no countermovement), using 4 loading conditions (0, 20, 40, and 60% of 1RM back squat). Repeated measures analysis of variance revealed no significant differences (p > 0.05) in force, velocity, power, and displacement between repetitions, for the 0, 20, and 40% loading conditions. The 60% condition showed no significant difference (p > 0.05) in peak force between repetitions; however, velocity (1.12 + 0.10 and 1.18 + 0.11 m·s(-1)), power (3,385 + 343 and 3,617 + 396 W) and displacement (11.13 + 2.31 and 11.85 + 2.16 cm) were significantly (p < 0.02) lower during repetition 6 compared with repetition 2. These findings indicate that when performing squat jumps (with no countermovement) with a load <40% 1RM back squat, up to >6 repetitions can be completed without inducing fatigue and a minimum of 4-6 repetitions should be performed to achieve peak power output. When performing squat jumps (with no countermovement) with a load equal to the 60% 1RM only, 5 repetitions should be performed to minimize fatigue and ensure maintenance of velocity and power.  相似文献   

16.
Relationship between functional movement screen and athletic performance   总被引:1,自引:0,他引:1  
Parchmann, CJ and McBride, JM. Relationship between functional movement screen and athletic performance. J Strength Cond Res 25(12): 3378-3384, 2011-Tests such as the functional movement screen (FMS) and maximal strength (repetition maximum strength [1RM]) have been theorized to assist in predicting athletic performance capabilities. Some data exist concerning 1RM and athletic performance, but very limited data exist concerning the potential ability of FMS to assess athletic performance. The purpose of this investigation was to determine if FMS scores or 1RM is related to athletic performance, specifically in Division I golfers in terms of sprint times, vertical jump (VJ) height, agility T-test times, and club head velocity. Twenty-five National Collegiate Athletic Association Division I golfers (15 men, age = 20.0 ± 1.2 years, height = 176.8 ± 5.6 cm, body mass = 76.5 ± 13.4 kg, squat 1RM = 97.1 ± 21.0 kg) (10 women, age = 20.5 ± 0.8 years, height = 167.0 ± 5.6 cm, body mass = 70.7 ± 21.5 kg, squat 1RM = 50.3 ± 16.6) performed an FMS, 1RM testing, and field tests common in assessing athletic performance. Athletic performance tests included 10- and 20-m sprint time, VJ height, agility T-test time, and club head velocity. Strength testing included a 1RM back squat. Data for 1RM testing were normalized to body mass for comparisons. Correlations were determined between FMS, 1RMs, and athletic performance tests using Pearson product correlation coefficients (p ≤ 0.05). No significant correlations existed between FMS and 10-m sprint time (r = -0.136), 20-m sprint time (r = -0.107), VJ height (r = 0.249), agility T-test time (r = -0.146), and club head velocity (r = -0.064). The 1RM in the squat was significantly correlated to 10-m sprint time (r = -0.812), 20-m sprint time (r = -0.872), VJ height (r = 0.869), agility T-test time (r = -0.758), and club head velocity (r = 0.805). The lack of relationship suggests that FMS is not an adequate field test and does not relate to any aspect of athletic performance. Based on the data from this investigation, 1RM squat strength appears to be a good indicator of athletic performance.  相似文献   

17.
The purpose of this study was to assess lower-body muscular strength and work capacity after off-season resistance training and the efficacy of predicting maximal squat strength (1 repetition maximum [1RM]) from repetitions to fatigue. National Collegiate Athletic Association Division-II football players (n = 58) were divided into low-strength (LS, 1RM < 365 lb, n = 32) and high-strength (HS, 1RM ≥ 365 lb, n = 26) groups before training based on median 1RM squat performance. Maximal repetitions to failure (RTFs) were performed with a relative load of 70% of 1RM before training and 60, 70, 80, and 90% of 1RM after 12 weeks of a linear periodization resistance training program. As a team, 1RM squat (32 ± 27 lb), 70% RTF (4.5 ± 4.5 reps), and work capacity at 70% 1RM load (1,482 ± 1,181 lb reps) increased significantly after training. Likewise, training resulted in significant increases in 1RM, RTF at 70% 1RM, and work capacity (load × reps) in both LS (8 ± 33 lb, 3.9 ± 4.7 reps, 1,736 ± 1,521 lb reps, respectively) and HS (27 ± 21 lb, 4.9 ± 4.4 reps, 2,387 ± 1,767 lb reps, respectively), with no significant difference between groups. There was no relationship between the change in work capacity and the change in muscular strength for either the LS (r = 0.02) or HS (r = 0.06) group. Predicted 1RMs were best when RTFs were performed using 80% 1RM (5-17 RTFs), with an error of ±5% in 95% of the subjects. In conclusion, the changes in muscular strength associated with an off-season training program appear to have a positive influence on squat work capacity at 70% of 1RM and allow favorable prediction of 1RM using submaximal loads.  相似文献   

18.
Physical performance and injury risk have been related to functional asymmetries of the lower extremity. The effect of fatigue on asymmetries is not well understood. The goal of this investigation was to examine asymmetries during fatiguing repetitions and sets of the free-weight barbell back squat exercise. Seventeen healthy recreationally trained men and women (age = 22.3 ± 2.5 years; body mass = 73.4 ± 13.8 kg; squat 8 repetition maximum [8RM] = 113 ± 35% body mass [mean ± SD]) performed 5 sets of 8 repetitions with 90% 8RM while recording bilateral vertical ground reaction force (GRFv). The GRFv asymmetry during the first 2 (R1 and R2) and the last 2 (R7 and R8) repetitions of each set was calculated by subtracting the % load on the right foot from that of the left foot. Most subjects placed more load on their left foot (also their preferred non-kicking foot). Average absolute asymmetry level across all sets was 4.3 ± 2.5 and 3.6 ± 2.3% for R1 and R2 and R7 and R8, respectively. There were no effects of fatigue on GRFv asymmetries in whole-group analysis (n = 17). However, when initially highly symmetric subjects (±1.7% Left-Right) were removed, average absolute GRFv asymmetry dropped from the beginning to the end of a set (n = 12, p = 0.044) as did peak instantaneous GRFv asymmetry when exploring general shifts toward the left or right leg (n = 12, p = 0.042). The GRFv asymmetries were highly repeatable for 8 subjects that repeated the protocol (Cronbach's α ≥ 0.733, p ≤ 0.056). These results suggest that functional asymmetries, though low, are present in healthy people during the squat exercise and remain consistent. Asymmetries do not increase with fatigue, potentially even decreasing, suggesting that healthy subjects load limbs similarly as fatigue increases, exposing each to similar training stimuli.  相似文献   

19.
This study investigated the effects of ballistic resistance training and strength training on muscle fiber composition, peak force (PF), maximal strength, and peak power (PP). Fourteen males (age = 21.3 +/- 2.9, body mass = 77.8 +/- 10.1 kg) with 3 months of resistance training experience completed the study. Subjects were tested pre and post for their squat one-repetition maximum (1RM) and PP in the jump squat (JS). Peak force and rate of force development (RFD) were tested during an isometric midthigh pull. Muscle biopsies were obtained from the vastus lateralis for analysis of muscle fiber type expression. Subjects were matched for strength and then randomly selected into either training (T) or control (C) groups. Group T performed 8 weeks of JS training using a periodized program with loading between 26 and 48% of 1RM, 3 days per week. Group T showed significant improvement in PP from 4088.9 +/- 520.6 to 5737.6 +/- 651.8 W. Rate of force development improved significantly in group T from 12687.5 +/- 4644.0 to 25343.8 +/- 12614.4 N x s(-1). PV improved significantly from 1.59 +/- 0.41 to 2.11 +/- 0.75 m x s(-1). No changes occurred in PF, 1RM, or muscle fiber type expression for group T. No changes occurred in any variables in group C. The results of this study indicate that using ballistic resistance exercise is an effective method for increasing PP and RFD independently of changes in maximum strength (1RM, PF), and those increases are a result of factors other than changes in muscle fiber type expression.  相似文献   

20.
Limited research exists examining the effect of moderately loaded conditioning activities that are employed as part of a strength-power potentiating complex (SPPC). Additionally, no studies to date have explored the effects of using a concentric-only quarter back squat protocol as part of an SPPC. Therefore, the purpose of this study was to examine the effects of a moderately loaded (50-65% of 1RM) concentric-only quarter back squat protocol on the occurrence of potentiation effects at various time points. Twenty men who could quarter back squat a minimum of 2.4 times their body mass (3.7 ± 0.7 kg·per body mass) participated in this investigation. All subjects participated in 3 conditions: control (CT), a 50% of 1RM trial (50POT), and a 65% of 1RM trial (65POT). One minute before each condition, a maximal countermovement vertical jump (CMJ) was performed. One minute later, the subject performed 1 of 3 conditions: CT condition, 50POT, or 65POT, followed by vertical jumps at 0.5, 3, 5, 10, and 15 minutes after conditioning activity. A force plate was used to quantify displacement, peak power output, peak force, and the rate of force development for each CMJ. There were no significant differences (p > 0.05) in any of the performance measures quantified during the CMJ trials when comparing the CT, 50POT, and 65POT treatment conditions. However, 48% of the subjects demonstrated some degree of potentiation at the 30 seconds after completing the 65POT trial, but this percent increase was not statistically significant. From a practical perspective, if the goal of the SPPC is to create a maximization of the potentiation effect, moderately loaded activities may not be the best alternative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号