首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitric oxide dietary supplements are popular within the sport community. Our recent work involving the oral intake of 2-nitrooxy ethyl 2-amino 3-methylbutanoate demonstrated an approximately 6.7% increase in circulating nitrate/nitrite. However, no measures of exercise performance were obtained. The present study used a topical form of this molecule to determine the impact on exercise performance and blood nitrate/nitrite. Fourteen resistance trained men (24 ± 1 years old) reported to the laboratory on 2 occasions to undergo exercise testing, which consisted of arm curl isometric force and muscular endurance (3 sets to fatigue using 80, 65, and 50% of 1 repetition maximum [1RM]: total of 9 sets). The gel (2-nitrooxy ethyl 2-amino 3-methylbutanoate; mixed in tea tree oil) or placebo (tea tree oil) was applied topically by the subjects for 7 days before each test day, with 7-10 days separating the randomly ordered conditions. Blood samples, arm circumference, and perceived "muscle pump" were taken before and immediately after exercise on both test days. The heart rate and perceived exertion were measured after each set. No statistically significant differences were noted between conditions for performance variables (p > 0.05). However, when using a load of 50% of 1RM, 6.2% more repetitions were performed when using the gel as compared with when using the placebo; 19.9% more repetitions were performed by 8 subjects noted to be "responders" to gel treatment. Blood lactate and muscle pump significantly increased with exercise (p < 0.0001) but were not different between conditions (p > 0.05). Minimal change was noted in nitrate/nitrite, and the heart rate and perceived exertion were nearly identical between conditions (p > 0.05). These findings indicate that 2-nitrooxy ethyl 2-amino 3-methylbutanoate gel has a modest (6.2%), nonstatistically significant effect on exercise performance, in particular when using a load of 50% 1RM-with greater benefit noted in selected individuals. Studies inclusive of a larger sample size are needed to extend these initial findings.  相似文献   

2.
Denitrifying bacteria in soil generate nitric oxide (NO) from nitrite as a part of the nitrogen cycle, but little is known about NO production by commensal bacteria. We used a chemiluminescence assay to explore if human faeces and different representative gut bacteria are able to generate NO. Bacteria were incubated anaerobically in gas-tight bags, with or without nitrate or nitrite in the growth medium. In addition, luminal NO levels were measured in vivo in the intestines in germ-free and conventional rats, and in rats mono-associated with lactobacilli. We show that human faeces can generate NO after nitrate or nitrite supplementation. Lactobacilli and bifidobacteria generated much NO from nitrite, but only a few of the tested strains produced NO from nitrate and at much lower levels. In contrast, Escherichia coli, Bacteroides thetaiotaomicron, and Clostridium difficile did not produce significant amounts of NO either with nitrate or nitrite. NO generation in the gut lumen was also observed in vivo in conventional rats but not in germ-free rats or in rats mono-associated with lactobacilli. We conclude that NO can be generated by the anaerobic gut flora in the presence of nitrate or nitrite. Future studies will reveal its biological significance in regulation of gastrointestinal integrity.  相似文献   

3.
Inorganic nitrite (NO(2)(-)) is emerging as a regulator of physiological functions and tissue responses to ischemia, whereas the more stable nitrate anion (NO(3)(-)) is generally considered to be biologically inert. Bacteria express nitrate reductases that produce nitrite, but mammals lack these specific enzymes. Here we report on nitrate reductase activity in rodent and human tissues that results in formation of nitrite and nitric oxide (NO) and is attenuated by the xanthine oxidoreductase inhibitor allopurinol. Nitrate administration to normoxic rats resulted in elevated levels of circulating nitrite that were again attenuated by allopurinol. Similar effects of nitrate were seen in endothelial NO synthase-deficient and germ-free mice, thereby excluding vascular NO synthase activation and bacteria as the source of nitrite. Nitrate pretreatment attenuated the increase in systemic blood pressure caused by NO synthase inhibition and enhanced blood flow during post-ischemic reperfusion. Our findings suggest a role for mammalian nitrate reduction in regulation of nitrite and NO homeostasis.  相似文献   

4.
Nitric oxide (NO) is an important mediator in ischemia-reperfusion injury during human orthotopic liver transplantation (OLT). The perioperative kinetics of nitrite/nitrate plasma levels in 25 patients undergoing uncomplicated OLT were studied. A uniform pattern with significant increases of nitrite/nitrate levels immediately after reperfusion was seen in all patients, followed by a decrease to pretransplant levels within 24h. Peak levels 30 min after reperfusion were correlated to the indocyanine green plasma disappearance rate (PDR(ICG)), suggesting an association of early released NO with graft perfusion in OLT.  相似文献   

5.
The aim of the present work was to investigate the alterations in nitric oxide synthase (NOS) expression and nitrate and nitrite (NOx) content of different arteries from simulated microgravity rats. Male Wistar rats were randomly assigned to either a control group or simulated microgravity group. For simulating microgravity, animals were subjected to hindlimb unweighting (HU) for 20 days. Different arterial tissues were removed for determination of NOS expression and NOx. Western blotting was used to measure endothelial NOS (eNOS) and inducible NOS (iNOS) protein content. Total concentrations of NOx, stable metabolites of nitric oxide, were determined by the chemiluminescence method. Compared with controls, isolated vessels from simulated microgravity rats showed a significant increase in both eNOS and iNOS expression in carotid arteries and thoracic aorta and a significant decrease in eNOS and iNOS expression of mesenteric arteries. The eNOS and iNOS content of cerebral arteries, as well as that of femoral arteries, showed no differences between the two groups. Concerning NOx, vessels from HU rats showed an increase in cerebral arteries, a decrease in mesenteric arteries, and no change in carotid artery, femoral artery and thoracic aorta. These data indicated that there were differential alterations in NOS expression and NOx of different arteries after hindlimb unweighting. We suggest that these changes might represent both localized adaptations to differential body fluid redistribution and other factors independent of hemodynamic shifts during simulated microgravity.  相似文献   

6.
Previous studies have shown that murine macrophages immunostimulated with interferon gamma and Escherichia coli lipopolysaccharide synthesize NO2-, NO3-, and citrulline from L-arginine by oxidation of one of the two chemically equivalent guanido nitrogens. The enzymatic activity for this very unusual reaction was found in the 100,000g supernatant isolated from activated RAW 264.7 cells and was totally absent in unstimulated cells. This activity requires NADPH and L-arginine and is enhanced by Mg2+. When the subcellular fraction containing the enzyme activity was incubated with L-arginine, NADPH, and Mg2+, the formation of nitric oxide was observed. Nitric oxide formation was dependent on the presence of L-arginine and NADPH and was inhibited by the NO2-/NO3- synthesis inhibitor NG-monomethyl-L-arginine. Furthermore, when incubated with L-[guanido-15N2]arginine, the nitric oxide was 15N-labeled. The results show that nitric oxide is an intermediate in the L-arginine to NO2-, NO3-, and citrulline pathway. L-Arginine is required for the activation of macrophages to the bactericidal/tumoricidal state and suggests that nitric oxide is serving as an intracellular signal for this activation process in a manner similar to that very recently observed in endothelial cells, where nitric oxide leads to vascular smooth muscle relaxation [Palmer, R. M. J., Ashton, D. S., & Moncada, S. (1988) Nature (London) 333, 664-666].  相似文献   

7.
Abstract Anaerobic production and consumption of NO was measured in a calcic cambisol (KBE; pH 7.3) and a forest luvisol (PBE; pH 4.4) which were incubated at 80% water-holding capacity and continuously flushed with N2. Both NO production and NO consumption were negligibly low when nitrate and nitrite concentrations in the soil were exhausted. Addition of glucose alone had no effect, but addition of nitrate ± glucose greatly stimulated both NO production and NO consumption. NO consumption followed an apparent first-order reaction at low NO mixing ratios (1–3 ppmv), but a higher NO mixing ratios it followed Michaelis-Menten kinetics. In PBE the apparent K m was 980 ppbv NO (1.92 nM in soil water). During reduction of nitrate, nitrite intermediately accumulated and simultaneously, production rates of NO and N2O were at the maximum. Production rates of NO plus N2O amounted to 20% and 34% of the nitrate reduction rate in KBE and PBE, respectively. NO production was hyperbolically related to the nitrite concentration, indicating an apparent Km of 1.6 μg nitrite-N g−1 d.w. soil (equivalent to 172 μM nitrite in soil solution) for the reduction of nitrite to NO in KBE. Under nitrate and nitrite-limiting conditions, 62–76% and 93–97% of the consumed NO-N were recovered as N2O-N in KBE and PBE, respectively. Gassing of nitrate plus nitrite-depretsu KBE with increasing mixing ratios of NO2 resulted in increasing rates of NO2 uptake and presumably in the formation of low concentrations of nitrite and nitrate. This NO2 uptake resulted in increasing rates of both NO production and NO consumption indicating that nitrite or nitrate was limiting for both reactions.  相似文献   

8.
We have quantitatively measured nitric oxide production in the leaves of Arabidopsis thaliana and Vicia faba by adapting ferrous dithiocarbamate spin tapping methods previously used in animal systems. Hydrophobic diethyldithiocarbamate complexes were used to measure NO interacting with membranes, and hydrophilic N-methyl-d-glucamine dithiocarbamate was used to measure NO released into the external solution. Both complexes were able to trap levels of NO, readily detectable by EPR spectroscopy. Basal rates of NO production (in the order of 1 nmol g(-) (1) h(-1)) agreed with previous studies. However, use of methodologies that corrected for the removal of free NO by endogenously produced superoxide resulted in a significant increase in trapped NO (up to 18 nmol g(-) (1) h(-1)). Basal NO production in leaves is therefore much higher than previously thought, but this is masked by significant superoxide production. The effects of nitrite (increased rate) and nitrate (decreased rate) are consistent with a role for nitrate reductase as the source of this basal NO production. However, rates under physiologically achievable nitrite concentrations never approach that reported following pathogen induction of plant nitric-oxide synthase. In Hibiscus rosa sinensis, the addition of exogenous nitrite generated sufficient NO such that EPR could be used to detect its production using endogenous spin traps (forming paramagnetic dinitrosyl iron complexes). Indeed the levels of this nitrosylated iron pool are sufficiently high that they may represent a method of maintaining bioavailable iron levels under conditions of iron starvation, thus explaining the previously observed role of NO in preventing chlorosis under these conditions.  相似文献   

9.
In human organism, the gaseous radical molecule nitric oxide (NO) is produced in various cells from L-arginine by the catalytic action of NO synthases (NOS). The metabolic fate of NO includes oxidation to nitrate by oxyhaemoglobin in red blood cells and autoxidation in haemoglobin-free media to nitrite. Nitrate and nitrite circulate in blood and are excreted in urine. The concentration of these NO metabolites in the circulation and in the urine can be used to measure NO synthesis in vivo under standardized low-nitrate diet. Circulating nitrite reflects constitutive endothelial NOS activity, whereas excretory nitrate indicates systemic NO production. Today, nitrite and nitrate can be measured in plasma, serum and urine of humans by various analytical methods based on different analytical principles, such as colorimetry, spectrophotometry, fluorescence, chemiluminescence, gas and liquid chromatography, electrophoresis and mass spectrometry. The aim of the present article is to give an overview of the most significant currently used quantitative methods of analysis of nitrite and nitrate in human biological fluids, namely plasma and urine. With minor exception, measurement of nitrite and nitrate by these methods requires method-dependent chemical conversion of these anions. Therefore, the underlying mechanisms and principles of these methods are also discussed. Despite the chemical simplicity of nitrite and nitrate, accurate and interference-free quantification of nitrite and nitrate in biological fluids as indicators of NO synthesis may be difficult. Thus, problems associated with dietary and laboratory ubiquity of these anions and other preanalytical and analytical factors are addressed. Eventually, the important issue of quality control, the use of commercially available assay kits, and the value of the mass spectrometry methodology in this area are outlined.  相似文献   

10.
In human organism, the gaseous radical molecule nitric oxide (NO) is produced in various cells from l-arginine by the catalytic action of NO synthases (NOS). The metabolic fate of NO includes oxidation to nitrate by oxyhaemoglobin in red blood cells and autoxidation in haemoglobin-free media to nitrite. Nitrate and nitrite circulate in blood and are excreted in urine. The concentration of these NO metabolites in the circulation and in the urine can be used to measure NO synthesis in vivo under standardized low-nitrate diet. Circulating nitrite reflects consitutive endothelial NOS activity, whereas excretory nitrate indicates systemic NO production. Today, nitrite and nitrate can be measured in plasma, serum and urine of humans by various analytical methods based on different analytical principles, such as colorimetry, spectrophotometry, fluorescence, chemiluminescence, gas and liquid chromatography, electrophoresis and mass spectrometry. The aim of the present article is to give an overview of the most significant currently used quantitative methods of analysis of nitrite and nitrate in human biological fluids, namely plasma and urine. With minor exception, measurement of nitrite and nitrate by these methods requires method-dependent chemical conversion of these anions. Therefore, the underlying mechanisms and principles of these methods are also discussed. Despite the chemical simplicity of nitrite and nitrate, accurate and interference-free quantification of nitrite and nitrate in biological fluids as indicators of NO synthesis may be difficult. Thus, problems associated with dietary and laboratory ubiquity of these anions and other preanalytical and analytical factors are addressed. Eventually, the important issue of quality control, the use of commercially available assay kits, and the value of the mass spectrometry methodology in this area are outlined.  相似文献   

11.
Infiltration of wheat (Triticum aestivum L.) seedling leaves with excess of nitrate, nitrite, or the NO donor sodium nitroprusside leads to increase both in content of hydroperoxide and activity of peroxidase and decrease in superoxide dismutase (SOD) activity in the leaf apoplast. Polymorphism of extracellular peroxidases and the presence of Cu/Zn-SOD have been shown in apoplast. Using an ESR assay, a considerable increase in the level of NO following infiltration of leaf tissues with nitrite has been demonstrated. These data suggest development of both oxidative and nitrosative stresses in leaves exposed to high levels of nitrate or nitrite. A possible interplay of NO and reactive oxygen species in plant cells is discussed.  相似文献   

12.
The cytosol fraction of rat adrenocortical tissue contains comparatively high levels of two prostaglandin metabolizing enzymes. The first, prostaglandin-9-ketoreductase, utilizes NADPH more effectively than NADH as cofactor, is inhibited by NADP, and exhibits an apparent Km of 304 μM for PGE1. 15-hydroxyprostaglandin dehydrogenase, tentatively identified as the type II NADP-dependent isozyme, is inhibited by NADPH but not NADH, and exhibits an apparent Km of 157 μM when PGE1 is used as substrate. Changes in specific activities of the two enzymes following ACTH, hypophysectomy, or dexamethasone treatment are inconclusive in defining a chronic regulatory role for adrenocorticotropin.  相似文献   

13.
14.
An excessive production of nitric oxide (NO) by NO synthase (NOS) is considered to contribute to circulatory disturbance, tissue damage, and refractory hypotention, which are often observed in septic disorders. It is anticipated that a selective inducible NOS (iNOS) inhibitor with excellent pharmacokinetics may be potentially effective as a novel and potent therapeutic intervention in sepsis. We examined whether or not a selective iNOS inhibitor shows iNOS selectivity at the tissue level, when administered systemically. The effects of four NOS inhibitors on plasma nitrite/nitrate (NOx) and tissue NOS levels were compared in major organs (lungs, liver, heart, kidneys, and brain) 6 hr after the injection of E. coli lipopolysaccharide (LPS) into male Wistar-King rats. The rats treated with the three iNOS inhibitors (N-(3-(aminomethyl)benzyl)acetamidine (1400W), (1 S, 5 S, 6 R, 7 R )-2-aza-7-chloro-3-imino-5-methylbicyclo [4.1.0] heptane hydrochloride (ONO-1714), and aminoguanidine) administered 1 hr after LPS injection, showed dose-dependent decreases in plasma NOx levels and NOS activity in the lungs. The non-selective NOS inhibitor (N(G)-methyl-L-arginine (L-NMMA)) had an effect only at the maximum dose. The differences in in vitro iNOS selectivity among these drugs did not correlate with iNOS selectivity at the tissue level. The relationship between plasma NOx levels and NOS activity in the lungs showed a linear relationship with or without the NOS inhibitors. In conclusion, the iNOS selectivity of these drugs does not seem to differ at the tissue level. Plasma NOx levels may be a useful indicator of lung NOS activity.  相似文献   

15.
A prior bout of exercise is well known to confer protection from subsequent eccentric bouts (i.e. repeated bout effect; RBE), which may be fostered through neural adaptations, specifically a shift in the frequency content of the surface electromyogram (EMG). It is currently not clear whether chronically resistance trained men are capable of a RBE driven by neural adaptations. Eleven resistance trained men (23.5 ± 3.4 yrs) performed 100 eccentric actions of the barbell bench press exercise, followed by an equivalent bout 14 days later. Indirect markers of muscle damage (i.e. force production, soreness) along with surface EMG were measured before and through 48 h of recovery. Median frequency and maximal isometric force demonstrated time main effects (p > 0.05), but no RBE. A prior bout of eccentric exercise does not confer a RBE for indirect markers of muscle injury or elicit changes in the frequency content of the EMG signal in resistance trained men.  相似文献   

16.
Nitric oxide (NO) plays a fundamental role in maintaining normal vasomotor tone. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the activity of NO in the vascular compartment. Intravascular hemolysis releases hemoglobin from the red blood cell into plasma (cell-free plasma hemoglobin), which is then able to scavenge endothelium-derived NO 600-fold faster than erythrocytic hemoglobin, thereby disrupting NO homeostasis. This may lead to vasoconstriction, decreased blood flow, platelet activation, increased endothelin-1 expression (ET-1), and end-organ injury, thus suggesting a novel mechanism of disease for hereditary and acquired hemolytic conditions such as sickle cell disease and cardiopulmonary bypass. Furthermore, therapy with NO gas inhalation or infusion of sodium nitrite during hemolysis may attenuate this disruption in vasomotor balance by oxidizing plasma cell-free hemoglobin, thereby preventing the consumption of endogenous NO and the associated pathophysiological changes. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. While this process has previously been ascribed to S-nitrosated hemoglobin, recent data from our laboratories suggest that deoxygenated hemoglobin reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. This newly described role of hemoglobin as a nitrite reductase is discussed in the context of blood flow regulation, oxygen sensing, and nitrite-based therapeutics.  相似文献   

17.
Copper-containing nitrite reductases (Cu-NIRs) reduce nitrite to NO. Reported here are DFT (density functional theory) results on models of the Cu-NIR active site bound to nitrite and nitric oxide. The Cu-NIR active site appears to have been designed to exclude N-nitrite binding even though N-O bond cleavage would be equally facile in the N- and O-isomers. The active site also appears to force a side-on coordination of the end-product, nitric oxide. The latter feature has to rely on the sterics of the active site to destabilize, thermodynamically speaking, the Cu-NO adduct; under these conditions, the absence of N-nitrite coordination is proposed to be merely a side-effect. For the Cu(II)-NO adduct, sterical crowding appears to also favour the Cu-NO electromer over Cu(I)-NO+, helping to avoid the potentially damaging chemistry associated with an NO+ moiety. These conclusions are in reasonable agreement with previous conclusions drawn from experiment [Science 304 (2004) 867].  相似文献   

18.
The purpose of this study was to investigate the effect of acute resistance exercise (RE) on lipolysis within adipose tissue and subsequent substrate oxidation to better understand how RE may contribute to improvements in body composition. Lipolysis and blood flow were measured in abdominal subcutaneous adipose tissue via microdialysis before, during, and for 5 h following whole body RE as well as on a nonexercise control day (C) in eight young (24 +/- 0.7 yr), active (>3 RE session/wk for at least 2 yr) male participants. Fat oxidation was measured immediately before and after RE via indirect calorimetry for 45 min. Dialysate glycerol concentration (an index of lipolysis) was higher during (RE: 200.4 +/- 38.6 vs. C: 112.4 +/- 13.1 micromol/l, 78% difference; P = 0.02) and immediately following RE (RE: 184 +/- 41 vs. C: 105 + 14.6 micromol/l, 75% difference; P = 0.03) compared with the same time period on the C day. Energy expenditure was elevated in the 45 min after RE compared with the same time period on the C day (RE: 104.4 +/- 6.0 vs. C: 94.5 +/- 4.0 kcal/h, 10.5% difference; P = 0.03). Respiratory exchange ratio was lower (RE: 0.71 +/- 0.004 vs. C: 0.85 +/- .03, 16.5% difference; P = 0.004) and fat oxidation was higher (RE: 10.2 +/- 0.8 vs. C: 5.0 +/- 1.0 g/h, 105% difference; P = 0.004) following RE compared with the same time period on the C day. Therefore, the mechanism behind RE contributing to improved body composition is in part due to enhanced abdominal subcutaneous adipose tissue lipolysis and improved whole body fat oxidation and energy expenditure in response to RE.  相似文献   

19.
20.
To study the effects of cardiovascular fitness on hemodynamic responses to exercise during beta-adrenergic blockade (BAB), submaximal [60% of maximum O2 uptake (VO2max)] and maximal treadmill exercise data were collected in 11 trained (T, VO2max 63.3 ml X kg-1 X min-1, 26.8 yr) and 11 untrained (UT, VO2max 44.5 ml X kg-1 X min-1, 25.0 yr) male subjects. Subjects completed two maximal control tests followed by a randomized, double-blind series of maximal tests after 1-wk treatments with placebo (PLAC), propranolol (PROP, 160 mg/day, beta 1- and beta 2-blockade), and atenolol (ATEN, 100 mg/day, beta 1-blockade). Treatments were separated by 1-wk washout periods. At 60% of control VO2max T and UT subjects experienced no reductions in O2 uptake (VO2) with either drug. Submaximal heart rate (HR, beats/min) was 134.8 PLAC, 107.0 PROP, 107.9 ATEN (P less than 0.05 both drugs vs. PLAC) in T subjects and 141.1 PLAC, 106.1 PROP, and 105.0 ATEN (P less than 0.05 both drugs vs. PLAC) in UT subjects. Cardiac output (1/min) for T was 17.3 PLAC, 16.9 PROP, 16.5 ATEN (P less than 0.05 ATEN vs. PLAC in T only) and for UT it was 12.2 (PLAC), 11.7 (PROP), 11.5 (ATEN) (P less than 0.05 both drugs vs. PLAC in UT). Stroke volume increased from 129.8 ml (PLAC) to 158.6 (PROP) and 156.2 (ATEN) in T (P less than 0.05 both drugs vs. PLAC) and from 86.8 (PLAC) to 110.0 (PROP) and 109.8 (ATEN) (P less than 0.05 both drugs vs. PLAC) in UT. The increases in stroke volume (SV) were similar in both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号