首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid abiotic transformation of nitrate in an acid forest soil   总被引:10,自引:4,他引:10  
Nitrate immobilization into organic matter isthought to require catalysis by the enzymes ofsoil microorganisms. However, recent studiessuggest that nitrate added to soil isimmobilized rapidly and this process mayinclude abiotic pathways. We amended living andsterilized soil with 15N-labeled nitrateand nitrite to investigate biotic and abioticimmobilization. We report rapid transformationof nitrate in incubations of the O layer offorest soils that have been sterilized toprevent microbial activity and to denaturemicrobial enzymes. Approximately 30, 40, and60% of the 15N-labeled nitrate added tolive, irradiated, or autoclaved organic horizonsoil disappeared from the extractableinorganic-N pool in less than 15 minutes. About5% or less of the nitrate was recovered asinsoluble organic N in live and sterilizedsoil, and the remainder was determined to besoluble organic N. Added 15N-nitrite,however, was either lost to gaseous N orincorporated into an insoluble organic N formin both live and sterile organic soils. Hence,the fate and pathway of apparent abioticnitrate immobilization differs from thebetter-known mechanisms of nitrite reactionswith soil organic matter. Nitrate and nitriteadded to live A-horizon soil was largelyrecovered in the form added, suggesting thatrapid conversion of nitrate to solubleorganic-N may be limited to C-rich organichorizons. The processes by which this temperateforest soil transforms added nitrate to solubleorganic-N cannot be explained by establishedmechanisms, but appears to be due to abioticprocesses in the organic horizon.  相似文献   

2.
3.
The influence of soil nitrate availability, crop growth rate and phenology on the activity of symbiotic nitrogen fixation (SNF) during the growth cycle of pea (Pisum sativum cv. Baccara) was investigated in the field under adequate water availability, applying various levels of fertiliser N at the time of sowing. Nitrate availability in the ploughed layer of the soil was shown to inhibit both SNF initiation and activity. Contribution of SNF to total nitrogen uptake (%Ndfa) over the growth cycle could be predicted as a linear function of mineral N content of the ploughed layer at sowing. Nitrate inhibition of SNF was absolute when mineral N at sowing was over 380 kg N ha–1. Symbiotic nitrogen fixation was not initiated unless nitrate availability in the soil dropped below 56 kg N ha–1. However, SNF could no longer be initiated after the beginning of seed filling (BSF). Other linear relationships were established between instantaneous %Ndfa and instantaneous nitrate availability in the ploughed layer of the soil until BSF. Instantaneous %Ndfa decreased linearly with soil nitrate availability and was nil above 48 and 34 kg N ha–1 for the vegetative and reproductive stages, respectively, levels after which no SNF occurred. Moreover, SNF rate was shown to be closely related to the crop growth rate until BSF. The ratio of SNF rate over crop growth rate decreased linearly with thermal time. Maximum SNF rate was about 40 mg N m–2 degree-day–1, equivalent to 7 kg N ha–1, regardless of the N treatment. From BSF to the end of the growth cycle, the high N requirements of the crop were supported by both SNF and nitrate root absorption but, of the two sources, nitrate root absorption seemed to be less affected by the presence of reproductive organs. However, since soil nitrate availability was low at the end of the growth cycle, SNF was the main source of nitrogen acquisition. The onset of SNF decrease at the end of the growth cycle seemed to be first due to nodule age and then associated to the slowing of the crop growth rate.  相似文献   

4.
Di  H.J.  Cameron  K.C.  Moore  S.  Smith  N.P. 《Plant and Soil》1999,210(2):189-198
The objective of this study was to compare the N leaching loss and pasture N uptake from autumn-applied dairy shed effluent and ammonium fertilizer (NH4Cl) labeled with 15N, using intact soil lysimeters (80 cm diameter, 120 cm depth). The soil used was a sandy loam, and the pasture was a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). The DSE and NH4Cl were applied twice annually in autumn (May) and late spring (November), each at 200 kg N ha-1. The N applied in May 1996 was labeled with 15N. The lysimeters were either spray or flood irrigated during the summer. The autumn-applied DSE resulted in lower N leaching losses compared with NH4Cl. However, the N applied in the autumn had a higher potential for leaching than N applied in late spring. Between 4.5–8.1% of the 15N-labeled mineral N in the DSE and 15.1–18.8% of the 15N-labeled NH4Cl applied in the autumn were leached within a year of application. Of the annual N leaching losses in the DSE treatments (16.0–26.9 kg N ha-1), a fifth (20.3–22.9%) was from the mineral N fraction of the DSE applied in the autumn, with the remaining larger proportion from the organic fraction of the DSE, soil N and N applied in spring. In the NH4Cl treatments, more than half (53.8–64.8%) of the annual N leaching loss (55.9–57.6 kg N ha-1) was derived from the autumn-applied NH4Cl. DSE was as effective as NH4Cl in stimulating pasture production. Since only 4.4–4.5% of the annual herbage N uptake in the DSE treatment and 12.3–13.3% in the NH4Cl treatment were derived from the autumn-applied mineral N, large proportions of the annual herbage N uptake must have been derived from the N applied in spring, the organic N fraction in the DSE, soil N and N fixed by clover. The recoveries of 15N in the herbage were similar between the DSE and the NH4Cl treatments, but those in the leachate were over 50% less from the DSE than from the NH4Cl treatment. The lower leaching loss of 15N in the DSE treatment was attributed to the stimulated microbial activities and increased immobilization following the application of DSE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Nitrogen (N) transfer from one species to another is important for the N cycling in low-input grassland. In the present work, estimates obtained by an indirect 15N dilution technique were compared with estimates obtained by a direct 15N leaf feeding technique over two complete growing seasons in red clover-ryegrass and white clover-ryegrass mixtures under field conditions. The direct technique confirmed that N transfer between clovers and ryegrass is a bi-directional process. The transfer of N from both clovers to ryegrass occurred within 25 days upon the first labelling event. A very high N transfer occurred from white clover to the associated ryegrass, 4.5 and 7.5 g m−2 in the 1st and 2nd production year, respectively. The corresponding values for transfer from red clover to the associated ryegrass were 1.7 and 3.6 g m−2. Quantified relatively to the total above-ground N content of white clover- ryegrass and red clover-ryegrass mixtures, the N transfer exceeded 50% and 10%, respectively, in three out of seven harvests. The N transfer from 15N labelled grass to associated clovers constituted a relatively constant proportion of approx. 8% of the above-ground N content of the mixtures. Estimates based on the soil 15N dilution technique generally underestimated the net N transfer by more than 50% compared to the direct 15N labelling technique. Furthermore, the indirect 15N dilution technique estimated only marginal differences between red and white clover in the quantities of N transferred, whereas the direct 15N labelling technique showed the N transfer from white clover to the associated ryegrass to be significantly higher than that involving red clover. It is concluded that N transfer is a much more dynamic and quantitatively important process in grassland than previously recognised. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The apparent transfer of N from clover to associated grass was evaluated over a four year period both on the basis of harvested herbage and by taking account of changes in N in stubble and root (to 10 cm depth) in swards with perennial ryegrass and three different white clover cultivars differing in leaf size. The large leaved Aran transferred 15% of its nitrogen while Huia transferred 24% and the small leaved Kent Wild White transferred 34%. When changes in stubble and root N were taken into account the percentage of N transferred was calculated to be 5% less than in harvested herbage only, as the small leaved types had proportionately more N in the roots and stolons, but the large leaved type was probably more competitive towards the grass.Loss of N from clover roots from July to October was compared to that from grass roots in a grass/white clover sward continuously stocked with steers using a method which incorporated tissue turnover and 15N dilution techniques. Less than 1 mg N m-2 d-1 was lost from the grass roots. In contrast 8 mg m-2 d-1 were estimated to be lost from clover roots while 12 mg N m-2 d-1 were assimilated.It is concluded that clover cultivar and competitive ability on grass have to be taken into account together with the relationship between N turnover in roots and N available for grass growth when modelling N transfer in grass/clover associations.  相似文献   

7.
During the past 10 years estimates of N2 fixation associated with sugar cane, forage grasses, cereals and actinorhizal plants grown in soil with and without addition of inoculum have been obtained using the 15N isotope dilution technique. These experiments are reviewed in this paper with the aim of determining the proportional and absolute contribution of N2 fixation to the N nutrition of non-legumes, and its role as a source of N in agriculture. The review also identifies deficiencies in both the totality of data which are currently available and the experimental approaches used to quantify N2 fixation associated with non-legumes.Field data indicate that associative N2 fixation can potentially contribute agronomically-significant amounts of N (>30–40 kg N ha-1 y-1) to the N nutrition of plants of importance in tropical agriculture, including sugar cane (Saccharum sp.) and forage grasses (Panicum maximum, Brachiaria sp. and Leptochloa fusca) when grown in uninoculated, N-deficient soils. Marked variations in proportions of plant N derived from the atmosphere have been measured between species or cultivars within species.Limited pot-culture data indicate that rice can benefit naturally from associative N2 fixation, and that inoculation responses due to N2 fixation can occur. Wheat can also respond to inoculation but responses do not appear to be due to associative N2 fixation. 15N dilution studies confirm that substantial amounts of N2 can be fixed by actinorhizal plants.  相似文献   

8.
Popescu  A. 《Plant and Soil》1998,204(1):117-125
Common beans usually achieve grain yields less than the genotypic potential of the cultivar under Romanian field conditions. To understand better the contribution of nitrogen fixation to the yield formation, I made a long-term evaluation (1977–1994) of inoculation effects of 19 Rhizobium leguminosarum bv. phaseoli strains on common bean cultivated in several locations. Grain yields were significantly influenced by all selected strains, years and locations in all experimental cycles, and only partially by the interactions between strains and years or strains and locations. The average yield increases induced by these strains during the four cycles ranged from 6 to 20%. Four bacterial strains proved to be more stable in their field performances, taking into account the yield increases greater than 10% over controls observed in all individual trials. Mean yields and variation limits recorded during the long-term evaluation of strain efficacy in locations with different soil pH values showed similar patterns of yield increases from soils with acidic to neutral pH values. Linear regression between mean grain yields and average temperatures demonstrated the limiting effect of temperature on yield. The interaction between bacterial strain and nitrogen fertiliser rate demonstrated the ability of dinitrogen fixation to satisfy the crop requirements for this element. An evaluation of the amounts of nitrogen fixed in three common bean cultivars inoculated with two bacterial strains showed different N2-fixing capacities among plant genotypes.  相似文献   

9.
P. J. Goodman 《Plant and Soil》1988,112(2):247-254
The stable isotope15N is particularly valuable in the field for measuring N fixation by isotope dilution. At the same time other soil-plant processes can be studied, including15N recovery, and nitrogen transfer between clover and grass. Three contrasting sites and soils were used in the present work: a lowland soil, an upland soil, and an upland peat. Nitrogen fixation varied from 12 gm–2 on lowland soil to 2.7 gm–2 on upland peat. Most N transfer occurred on upland soil (4.2 gm–2) which, added to nitrogen fixed, made a total of 8.7 gm2 input during summer 1985.15N recovery for the whole experiment was small, around 25%.Measurement of dead and dying leaves, stubble and roots, suggests that plant organ death is the first stage in N transfer from white clover to ryegrass, through the decomposer cycle. Decomposition was fastest on lowland soils, slowest on peat. On lowland soil this decomposer nitrogen is apparently subverted before transfer, probably by soil microbes.Variations in natural abundance of15N in plants were found in the two species on the different soils. These might be used to measure nitrogen fixation without adding isotope, but the need for many replicates and repeat samples would limit throughput.  相似文献   

10.
This study investigated the differences between two fast-growing tropical tree species on soil N flux and availability. The work was conducted in the island of Hawaii and included three sites located along the Hamakua coast on the northeastern side of the island. Within each site pure stands of Eucalyptus saligna (Sm.)␣and the N2-fixing Albizia falcataria (L.) Fosberg [=Paraserianthes falcataria (L.) Nielsen] were arranged in four randomized complete blocks. For most of the variables considered in this study, the species effects were usually strong and the site effects were significant in some cases. After 13 years, soils under the Albizia stand contained larger pools of total soil C and N, and larger pools of inorganic N. Soil N availability indexed by ion exchange resin bags revealed a strong pattern of species and site effect on N availability; soils under Albizia showed a 2.6–9 fold increase in N availability (P < 0.01). Potential net rates of N transformation (10- and 30-day aerobic incubations) were more than twice as high for soils under the Albizia than under the Eucalytus stands. Nitrogen mineralization during anaerobic incubations were about 10% greater on Albizia soils. Gross microbial mineralization and immobilization were determined by estimating the gross rates of N transformation by the 15N-isotope pool dilution techniques. Across species and sites, a strong linear positive relationship was obtained for gross immobilization and gross mineralization indicating faster gross immobilization as gross mineralization increases. Soil microbial biomass on Albizia soils contained larger proportion of it as bacterial biomass, while larger proportion of fungi biomass comprised the microbial biomass under Eucalyptus soils. This study clearly showed that the presence of Albizia increased total N pools and N supply to the ecosystem. The overall effect on soil fertility will need to be characterized by the effect of the N2-fixer on other nutrients, especially the effect on phosphorus. Received: 28 February 1997 / Accepted: 22 September 1997  相似文献   

11.
Sandy clay loam soil was contaminated with 5000 mg kg−1 diesel, and amended with nitrogen (15.98 atom% 15N) at 0, 250, 500, and 1000 mg kg−1 to determine gross rates of nitrogen transformations during diesel biodegradation at varying soil water potentials. The observed water potential values were −0.20, −0.47, −0.85, and −1.50 MPa in the 0, 250, 500, and 1000 mg kg−1 nitrogen treatments respectively. Highest microbial respiration occurred in the lowest nitrogen treatment suggesting an inhibitory osmotic effect from higher rates of nitrogen application. Microbial respiration rates of 185, 169, 131, and 116 mg O2 kg−1 soil day−1 were observed in the 250, 500, control and 1000 mg kg−1 nitrogen treatments, respectively. Gross nitrification was inversely related to water potential with rates of 0.2, 0.04, and 0.004 mg N kg−1 soil day−1 in the 250, 500, and 1000 mg kg−1 nitrogen treatments, respectively. Reduction in water potential did not inhibit gross nitrogen immobilization or mineralization, with respective immobilization rates of 2.2, 1.8, and 1.8 mg N kg−1 soil day−1, and mineralization rates of 0.5, 0.3, and 0.3 mg N kg−1 soil day−1 in the 1000, 500, and 250 mg kg−1 nitrogen treatments, respectively. Based on nitrogen transformation rates, the duration of fertilizer contribution to the inorganic nitrogen pool was estimated at 0.9, 1.9, and 3.2 years in the 250, 500, and 1000 mg kg−1 nitrogen treatments, respectively. The estimation was conservative as ammonium fixation, gross nitrogen immobilization, and nitrification were considered losses of fertilizer with only gross mineralization of organic nitrogen contributing to the most active portion of the nitrogen pool.  相似文献   

12.
The 15N methods are potentially accurate for measuring N2 fixation in plants. The only problem with those methods is, how to ensure that the 15N/14N ratio in the plant accurately reflects the integrated 15N/14N ratio (R) in soil which is variable in time and with soil depth. However, the consequences of using an inappropriate reference plant vary with the level of N2 fixation and the conditions under which the study was made. For example, the errors introduced into the values of N2 fixation are higher at low levels of fixation, and decrease with increasing rates of fixation. At very high N2 fixation rates, the errors are often insignificant. Also, the magnitude of error is proportional to the rate of decline of the 15N/14N ratio with time. Since N2 fixation in most plants would be expected to below 60%, the question of how to select a good reference plant is still pertinent. In this paper, we have discussed some of the criteria to adopt in selecting reference plants, e.g. how to ensure that the reference plant is not fixing N2, is absorbing most of its N from the same zone as the fixing plant, and in the same pattern with time, etc. In addition, we have discussed 15N labelling materials and methods that are likely to minimize any errors even when the fixing and reference plants don't match well in certain important criteria. The use of slow release 15N fertilizer or 15N labelled plant materials results in slow changes in the 15N/14N ratio of soil, and is strongly recommended. Where 15N inorganic fertilizers are used, the application of the fertilizer in small splits at various intervals is recommended over a one-time application. The problem with the reference crop, which has sometimes discouraged potential users of the 15N methods, is surmountable, as discussed in this paper.  相似文献   

13.
Sanginga  N.  Okogun  J.  Vanlauwe  B.  Dashiell  K. 《Plant and Soil》2002,247(2):223-231
Agronomic results indicate that maize grain yields generally are higher when the crop is planted following soybean than in continuous maize cultivation in the moist savanna agroecological zones of West Africa. Many factors have been hypothesized to explain this phenomenon, including enhanced N availability and the so-called `rotational effect'. There is, however, hardly any quantitative information on the residual N benefits of promiscuous soybeans to subsequent cereal crops grown in rotation with soybean. Three IITA promiscuous soybean breeding lines and two Brazilian soybean lines were grown in 1994 and 1995 at Mokwa in the southern Guinea savanna, Nigeria, to quantify the nitrogen contribution by soybeans to a succeeding crop of maize grown in rotation with soybean for two consecutive years, 1996 and 1997 using two methods of introducing 15N into soil (fresh 15N labelling and its residual 15N) and three maize cultivars (including one cultivar with high N use efficiency) used as reference plants. The nodulating soybeans fixed between 44 and 103 kg N ha–1 of their total N and had an estimated net N balance input from fixation following grain harvest ranging from –8 to 43 kg N ha–1. Results in 1996 and in 1997 showed that maize growing after soybean had significantly higher grain yield (1.2 – 2.3-fold increase compared to maize control) except for maize cultivar Oba super 2 (8644-27) (a N-efficient hybrid). The 15N isotope dilution method was able to estimate N contribution by promiscuous soybeans to maize only in the first succeeding maize crop grown in 1996 but not in the second maize crop in 1997. The first crop of maize grown after soybean accumulated an average between 10 and 22 kg N ha–1 from soybean residue, representing 17–33% of the soybean total N ha–1. The percentage 15N derived from residue recovery in maize grown after maize was influenced by the maize cultivars. Maize crop grown after the N-efficient hybrid cultivar Oba Super 2 (844-27) had similar 15N values similar to maize grown after soybeans, confirming the ability of this cultivar to use N efficiently in low N soil due to an efficient N translocation ability. The maize crop in 1997 grown after maize had lower 15N enrichment than that grown in soybean plots, suggesting that soybean residues contributed a little to soil available N and to crop N uptake by the second maize crop. The differential mineralization and immobilization turnover of maize and soybean residues in these soils may be important and N contribution estimates in longer term rotation involving legumes and cereals may be difficult to quantify using the 15N labelling approaches. Therefore alternative methods are required to measure N release from organic residues in these cropping systems.  相似文献   

14.
A 12-week greenhouse experiment was conducted to determine the effect of the polyphenol, lignin and N contents of six legumes on their N mineralization rate in soil and to compare estimates of legume-N release by the difference and 15N-recovery methods. Mature tops of alfalfa (Medicago sativa L.), round leaf cassia (Cassia rotundifolia Pers., var. Wynn), leucaena (Leucaena leucocephala Lam., deWit), Fitzroy stylo (Stylosanthes scabra Vog., var Fitzroy), snail medic (Medicago scutellata L.), and vigna (Vigna trilobata L., var verde) were incorporated in soil at the rate of 100 mg legume N kg-1 soil. The medic and vigna were labeled with 15N. Sorghum-sudan hybrid (Sorghum bicolor, L. Moench) was used as the test crop. A non-amended treatment was used as a control. Net N mineralization after 12 weeks ranged from 11% of added N with cassia to 47% of added N for alfalfa. With the two legumes that contained less than 20 g kg-1 of N, stylo and cassia, there was net N immobilization for the first 6 weeks of the experiment. The legume (lignin + polyphenol):N ratio was significantly correlated with N mineralization at all sampling dates at the 0.05 level and at the 0.01 level at 6 weeks (r2=0.866). Legume N, lignin, or polyphenol concentrations or the lignin:N ratio were not significantly correlated with N mineralization at any time. The polyphenol:N ratio was only significantly correlated with N mineralization after 9 weeks (r2=0.692). The (lignin + polyphenol):N ratio appears to be a good predictor of N mineralization rates of incorporated legumes, but the method for analyzing plant polyphenol needs to be standardized. Estimates of legume-N mineralization by the difference and 15N recovery methods were significantly different at all sampling dates for both 15N-labeled legumes. After 12 weeks, estimates of legume-N mineralization averaged 20% more with the difference method than with the 15N recovery method. This finding suggests that estimates of legume N available to subsequent crops should not be based solely on results from 15N recovery experiments.  相似文献   

15.
Field experiments were carried out in 1987 on winter wheat crops grown on three types of soil. 15N-labelled urea, 15NH4NO3 or NH4 15NO3 (80 kg N ha-1) was applied at tillering. The soils (chalky soil, hydromorphic loamy soil, sandy clay soil) were chosen to obtain a range of nitrogen dynamics, particularly nitrification. Soil microbial N immobilization and crop N uptake were measured at five dates. Shortly after fertilizer application (0–26 days), the amount of N immobilized in soil were markedly higher with labelled urea or ammonium than that with nitrate in all soils. During the same period, crop 15N uptake occurred preferentially at the expense of nitrate. Nitrification differed little between soils, the rates were 2.0 to 4.7 kg N ha-1 day-1 at 9°C daily mean temperature. The differences in immobilization and uptake had almost disappeared at flowering and harvest. 15N recovery in soil and crop varied between 50 and 100%. Gaseous losses probably occurred by volatilization in the chalky soil and denitrification in the hydromorphic loamy soil. These losses affected the NH4 + and NO3 - pools differently and determined the partitioning of fertilizer-N between immobilization and absorption.  相似文献   

16.
The residual N contribution from faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.) to microbial biomass and subsequent wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) was studied in a greenhouse experiment. The grain legumes were 15N labelled in situ with a stem feeding method before incorporated into the soil, which enables the determination of N rhizodeposition. Wheat and rape were subsequently grown on the soil containing the grain legume residues (incl. 15N-labelled rhizodeposits) and were harvested either twice at flowering and at maturity or once at maturity, respectively. The average total N uptake of the subsequent crops was influenced by the legume used as precrop and was determined by the residue N input and the N2-fixation capacity of the legume species. The succeeding crops recovered 8.6–12.1% of the residue N at maturity. Similar patterns were found for the microbial biomass, which recovered 8.2–10.6% of the residue N. Wheat and rape recovered about the same amount of residue N. The absolute contribution of soil derived N to the subsequent crops was similar in all treatments and averaged 149 mg N pot–1 at maturity. At flowering 17–23% of the residue derived N was recovered in the subsequent wheat and in the microbial biomass; 70% of the residue N was recovered in the microbial biomass in the flowering stage and decreased to about 50% at maturity. In contrast, the recovery in wheat and rape constituted only 30% at flowering and increased to 50% at maturity in all treatments, indicating that the residual N uptake by the subsequent wheat was apparently supplied by mobilisation of residue N temporarily immobilised in the microbial biomass.  相似文献   

17.
Hood  R.C.  N'Goran  K.  Aigner  M.  Hardarson  G. 《Plant and Soil》1999,208(2):259-270
Experiments were carried out to compare the direct approach for estimating crop N uptake from 15N labelled organic inputs, to two indirect approaches, 15N isotope dilution and A value. In the first experiment soils received 25, 50, 75, or 100 mg N kg soil−1 in the form of Casuarina equisitifolia residues in addition to ammonium sulphate fertiliser, to give a total of 100 mg N kg soil−1 added. This was a cross labelling design, thus two matching sets of treatments, were set up, identical in all but the position of the 15N label. Maize (Zea mays L.) plants were grown in the soils amended with residues for 11 weeks and N derived from residues (Ndfr) estimated using the A-value or the direct approach. The A-value approach appeared to significantly overestimate %Ndfr compared to the direct method. In the second experiment contrasting residues were added to soil, fababean (Vicia faba L. var. minor), alfalfa (Medicago sativa L.), soyabean fixing, (Glycine max (L.) Merrill), soyabean non-fixing, barley (Hordeum vulgare L.) and maize. This was also cross-labelling design, labelled and unlabelled residues were used. Maize plants were grown in these soils for 11 weeks and %Ndfr in the maize plants estimated using 15 N isotope dilution and the direct approach. The 15 N isotope dilution approach also overestimated %Ndfr compared to the direct method in this experiment. Pool substitution appeared to be responsible for the discrepancy between the direct and indirect techniques. It was concluded that 15N isotope dilution and A-value approaches as used in these experiments (i.e where residues and 15N label are added simultaneously) were not appropriate techniques for estimating N derived from organic residues in soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Solution culture studies have shown that plant uptake of NH4 + and NO3 - can be improved by increasing the concentration of Ca2+ in the root environment: the same may be true for grass grown in soil culture. An experiment was set up to see whether gypsum (CaSO4 2H2O) increased the rate at which perennial ryegrass absorbed 15NH4 + and 15NO3 - from soil.The results demonstrated that gypsum increases the rates of uptake of both NH4 + and NO3 - by perennial ryegrass. However because there was little potential for mineral-N loss from the experimental system, either by gaseous emission or by N immobilization, long term improvements in fertilizer efficiency were not observed. Nitrogen cycling from shoots to roots commenced once net uptake of N into plants had ceased. Labelled N transferred thus to roots underwent isotopic exchange with unlabelled soil N. It was suggested that this exchange of N might constitute an energy drain from the plant, if plant organic N was exchanged for soil inorganic N. The fact that the exchange occurred at all cast doubt on the suitability of the 15N-isotope dilution technique for assessing fertilizer efficiency in medium to long term experiments. There was evidence that the extra NO3 --N taken up by plants on the all-nitrate treatments as a result of gypsum application, was reduced in root tissue rather than in shoots, but to the detriment of subsequent root growth and N uptake.  相似文献   

19.
Here we describe the fine root distribution of trees and grasses relative to soil nitrogen and water profiles. The primary objective is to improve our understanding of edaphic processes influencing the relative abundance of trees and grasses in savanna systems. We do this at both a mesic (737 mm MAP) site on sandy-loam soils and at an arid (547 mm MAP) site on clay rich soils in the Kruger National Park in South Africa. The proportion of tree and grass fine roots at each soil depth were estimated using the δ13C values of fine roots and the δ13C end members of the fine roots of the dominant trees and grasses at our study sites. Changes in soil nitrogen concentrations with depth were indexed using total soil nitrogen concentrations and soil δ15N values. Soil water content was measured at different depths using capacitance probes. We show that most tree and grass roots are located in the upper layers of the soil and that both tree and grass roots are present at the bottom of the profile. We demonstrate that root density is positively related to the distribution of soil nitrogen and negatively related to soil moisture. We attribute the negative correlation with soil moisture to evaporation from the soil surface and uptake by roots. Our data is a snapshot of a dynamic process, here the picture it provides is potentially misleading. To understand whether roots in this system are primarily foraging for water or for nitrogen future studies need to include a dynamic component.  相似文献   

20.
Two field experiments were performed to evaluate the nitrogen fixation potential of twenty common bean cultivars and breeding lines during summer and winter seasons of 1986 and 1988, respectively. The 15N isotope dilution method was used to quantify N2 fixation. The cultivars and breeding lines were variable in terms of their N2 fixation. The cv. Caballero was very efficient, with more than 50% N derived from the atmosphere and 60–80 kg N ha–1 fixed in both seasons. Other cultivars were less efficient, since the poorest ones derived less than 30% of their nitrogen from the atmosphere and fixed less than 20 kg N ha–1. After additional testing the best cultivars may be used directly by the farmers for cultivation. The experiments have provided information about which genotypes may be used to breed for enhanced fixation in common bean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号