首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce a new multistep mass tagging technique and show its utility for reducing sample complexity when coupled with two-dimensional liquid chromatography/nano-electrospray ionization ion trap mass spectrometry (2D LC/nano ESI-MS). Solid-phase mass tagging reagents were used to identify and obtain relative quantitation of membrane proteins from two established breast cancer cell lines, BT474 and MCF7. The results presented in this study show that sample complexity can be reduced with corresponding increases in protein identification and quantitation.  相似文献   

2.
Lin JH  Tsai CH  Chu JS  Chen JY  Takada K  Shew JY 《Journal of virology》2007,81(11):5705-5713
The role of Epstein-Barr virus (EBV) in the pathogenesis of breast cancer has been of long-standing interest to the field. Breast epithelial cells can be infected by EBV through direct contact with EBV-bearing lymphoblastoid cells, and EBV infection has recently been shown to confer breast cancer cells an increased resistance to chemotherapeutic drugs. In this study, we established EBV-infected breast cancer MCF7 and BT474 cells and demonstrated that EBV infection promotes tumorigenic activity of breast cancer cells. Firstly, we showed that the EBV-infected MCF7-A and BT474-A cells exhibited increased anchorage-independent growth in soft agar. The increased colony formation capacity in soft agar was associated with increased expression and activation of HER2/HER3 signaling cascades, as evidenced by the findings that the treatment of HER2 antibody trastuzumab (Herceptin), phosphatidylinositol 3-kinase inhibitor, or MEK inhibitor completely abolished the tumorigenic capacity. In the EBV-infected breast cancer cells, the expression of EBV latency genes including EBNA1, EBER1, and BARF0 was detected. We next showed that BARF0 alone was sufficient to efficiently up-regulate HER2/HER3 expression and promoted tumorigenic activity in MCF7 and BT474 cells by the use of both overexpression and small interfering RNA knock-down. Collectively, we demonstrated that EBV-encoded BARF0 promotes the tumorigenic activity of breast cancer cells through activation of HER2/HER3 signaling cascades.  相似文献   

3.
Identification of large numbers of proteins from complex biological samples is a continuing challenge in the area of quantitative proteomics. We introduce here a simple and reliable multistep mass tagging technique using our recently developed solid phase mass tagging reagents. When coupled with two-dimensional liquid chromatography/nano-electrospray ionization ion trap mass spectrometry (2D-LC/nano-ESI-MS), this method allows enhanced protein identification when tested on samples from prokaryotic and eukaryotic sources. The proteome of Escherichia coli D21 grown to either mid-exponential or stationary phase, and the membrane proteome from established breast cancer cell lines BT474 and MCF7 were used as model systems in these experiments. In both experiments, the numbers of total identified proteins are at least twice the numbers identified from a single tagging cycle. The sample complexity can be effectively reduced with corresponding increases in protein identification using the multistep method. The strategy described here represents a potentially powerful technique for large-scale qualitative and quantitative proteome research.  相似文献   

4.
5.
The four receptor tyrosine kinases of the ErbB family play essential roles in several physiological processes and have also been implicated in tumor generation and/or progression. Activation of ErbB1/EGFR is mainly triggered by epidermal growth factor (EGF) and other related ligands, while activation of ErbB2, ErbB3, and ErbB4 receptors occurs by binding to another set of EGF-like ligands termed neuregulins (NRGs). Here we show that the Erk5 mitogen-activated protein kinase (MAPK) pathway participates in NRG signal transduction. In MCF7 cells, NRG activated Erk5 in a time- and dose-dependent fashion. The action of NRG on Erk5 was dependent on the kinase activity of ErbB receptors but was independent of Ras. Expression in MCF7 cells of a dominant negative form of Erk5 resulted in a significant decrease in NRG-induced proliferation of MCF7 cells. Analysis of Erk5 in several human tumor cell lines indicated that a constitutively active form of this kinase was present in the BT474 and SKBR3 cell lines, which also expressed activated forms of ErbB2, ErbB3, and ErbB4. Treatments aimed at decreasing the activity of these receptors caused Erk5 inactivation, indicating that the active form of Erk5 present in BT474 and SKBR3 cells was due to a persistent positive stimulus originating at the ErbB receptors. In BT474 cells expression of the dominant negative form of Erk5 resulted in reduced proliferation, indicating that in these cells Erk5 was also involved in the control of proliferation. Taken together, these results suggest that Erk5 may play a role in the regulation of cell proliferation by NRG receptors and indicate that constitutively active NRG receptors may induce proliferative responses in cancer cells through this MAPK pathway.  相似文献   

6.
Humoral tumor-specific immunity has been investigated as a potential tool to identify tumor-associated antigens and evaluate cancer diagnosis and prognosis. Using SDS-PAGE and western blotting techniques we investigated the humoral immune response against tumor cell antigens in 36 breast cancer patients, 17 node-positive (NP) and 19 node-negative (NN). As a source of antigens, we prepared protein lysates from four breast cancer cell lines (AU565, BT474, MCF-7 and MDA-MB-231) which in vitro exhibit different features of invasion, estrogen receptor/progesterone receptor status and HER2/neu expression thereby potentially representing mild to aggressive forms of clinical disease. A higher number of immunocomplexes Ag–Ab were formed when serum from NN patients was immunoreacted against lysates from AU565 and MCF-7 in comparison to serum from NP patients (P < 0.01). BT474 cells were not a good antigenic source. MDA-MB-231 cells could not significantly discriminate between NN and NP patients since both groups showed higher amounts of reactivity against the lysate. However, comparative analysis of protein preparations purified from MCF-7 and MDA-MB-231 cells and immunodetected concomitantly with the same serum samples showed that serum from patients with cancers with worse prognosis (stage, nodality, HER2/neu and hormonal status) reacted more intensely to proteins purified from the relatively more invasive cell line MDA-MB-231 compared to MCF-7. These findings suggest that the study of serum antibody reactivity to antigens purified from breast cancer cell lines with different invasive properties should be further investigated for its potential in providing beneficial prognostic information in breast cancer. Supported by the United States Military Cancer Institute and the Department of Clinical Investigation at Walter Reed Army Medical Center. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the Department of the Army or the Department of Defense.  相似文献   

7.

Background

A contemporary view of the cancer genome reveals extensive rearrangement compared to normal cells. Yet how these genetic alterations translate into specific proteomic changes that underpin acquiring the hallmarks of cancer remains unresolved. The objectives of this study were to quantify alterations in protein expression in two HER2+ cellular models of breast cancer and to infer differentially regulated signaling pathways in these models associated with the hallmarks of cancer.

Results

A proteomic workflow was used to identify proteins in two HER2 positive tumorigenic cell lines (BT474 and SKBR3) that were differentially expressed relative to a normal human mammary epithelial cell line (184A1). A total of 64 (BT474-184A1) and 69 (SKBR3-184A1) proteins were uniquely identified that were differentially expressed by at least 1.5-fold. Pathway inference tools were used to interpret these proteins in terms of functionally enriched pathways in the tumor cell lines. We observed "protein ubiquitination" and "apoptosis signaling" pathways were both enriched in the two breast cancer models while "IGF signaling" and "cell motility" pathways were enriched in BT474 and "amino acid metabolism" were enriched in the SKBR3 cell line.

Conclusion

While "protein ubiquitination" and "apoptosis signaling" pathways were common to both the cell lines, the observed patterns of protein expression suggest that the evasion of apoptosis in each tumorigenic cell line occurs via different mechanisms. Evidently, apoptosis is regulated in BT474 via down regulation of Bid and in SKBR3 via up regulation of Calpain-11 as compared to 184A1.  相似文献   

8.
HER2 is overexpressed in 20–25% of breast cancers. Overexpression of HER2 is an adverse prognostic factor and correlates with decreased patient survival. HER2 stimulates breast tumorigenesis via a number of intracellular signaling molecules, including PI3K/AKT and MAPK/ERK. S100A14, one member of the S100 protein family, is significantly associated with outcome of breast cancer patients. Here, for the first time, we show that S100A14 and HER2 are coexpressed in invasive breast cancer specimens, and there is a significant correlation between the expression levels of the two proteins by immunohistochemistry. S100A14 and HER2 are colocalized in plasma membrane of breast cancer tissue cells and breast cancer cell lines BT474 and SK-BR3. We demonstrate that S100A14 binds directly to HER2 by co-immunoprecipitation and pull-down assays. Further study shows that residues 956–1154 of the HER2 intracellular domain and residue 83 of S100A14 are essential for the two proteins binding. Moreover, we observe a decrease of HER2 phosphorylation, downstream signaling, and HER2-stimulated cell proliferation in S100A14-silenced MCF-7, BT474, and SK-BR3 cells. Our findings suggest that S100A14 functions as a modulator of HER2 signaling and provide mechanistic evidence for its role in breast cancer progression.  相似文献   

9.
Treatment of human epidermal growth factor receptor 2 (HER2)-driven breast cancer with tyrosine kinase inhibitor lapatinib can induce a compensatory HER3 increase, which may attenuate antitumor efficacy. Therefore, we explored in vivo HER3 tumor status assessment after lapatinib treatment with zirconium-89 (89Zr)-labeled anti-HER3 antibody mAb3481 positron emission tomography (PET). Lapatinib effects on HER3 cell surface expression and mAb3481 internalization were evaluated in human breast (BT474, SKBR3) and gastric (N87) cancer cell lines using flow cytometry. Next, in vivo effects of daily lapatinib treatment on89Zr-mAb3481 BT474 and N87 xenograft tumor uptake were studied. PET-scans (BT474 only) were made after daily lapatinib treatment for 9 days, starting 3 days prior to 89Zr-mAb3481 administration. Subsequently, ex vivo 89Zr-mAb3481 organ distribution analysis was performed and HER3 tumor levels were measured with Western blot and immunohistochemistry. In vitro, lapatinib increased membranous HER3 in BT474, SKBR3 and N87 cells, and consequently mAb3481 internalization 1.7-fold (BT474), 1.4-fold (SKBR3) and 1.4-fold (N87). 89Zr-mAb3481 BT474 tumor uptake was remarkably high at SUVmean 5.6±0.6 (51.8±7.7%ID/g) using a 10 μg 89Zr-mAb3481 protein dose in vehicle-treated mice. However, compared to vehicle, lapatinib did not affect 89Zr-mAb3481 ex vivo uptake in BT474 and N87 tumors, while HER3 tumor expression remained unchanged. In conclusion, lapatinib increased in vitro HER3 tumor cell expression, but not when these cells were xenografted. 89Zr-mAb3481 PET accurately reflected HER3 tumor status. 89Zr-mAb3481 PET showed high, HER3-specific tumor uptake, and such an approach might sensitively assess HER3 tumor heterogeneity and treatment response in patients.  相似文献   

10.
为验证真核表达的携带绿色荧光的抗HER2单链抗体应用于临床诊断HER2阳性肿瘤细胞和病理组织的可靠性,构建融合基因Anti HER2 ScFv-GFP,重组入pFAST Bac HT A载体,在昆虫细胞Sf9中表达,以Ni2+-NTA亲和层析法纯化Anti HER2 ScFv-GFP融合蛋白,测定其浓度与纯度,将同浓度的纯化蛋白分别与3种乳腺癌细胞BT474、SKBR3和MCF7各混合12 h、24 h和48 h,分析其在不同时间段结合HER2阳性肿瘤细胞的稳定性。用纯化蛋白直接检测经抗原修复的乳腺癌病理组织,与免疫组织化学法检测结果对比。结果在昆虫细胞Sf9中可观察到明显绿色荧光,纯化的融合蛋白相对分子量约60 kDa,浓度为115.5μg/mL,纯度约97%,SKBR3和BT474鉴定为HER2阳性。结合12 h、24 h、48 h后其细胞表面均有明显绿色荧光,而HER2阴性MCF7被洗脱后无荧光,该抗体滴度为1:64,48 h内该荧光抗体仍具有稳定性。携带绿色荧光的融合抗体检测病理组织与IHC法的结果完全一致。表明成功表达的携带绿色荧光的抗HER2单链抗体可特异性检测HER2阳性乳腺癌细胞BT474和SKBR3,在HER2阳性肿瘤细胞和临床病理组织检测上具有应用前景。  相似文献   

11.
12.
Intrinsic and acquired resistance to the monoclonal antibody drug trastuzumab is a major problem in the treatment of HER2-positive breast cancer. A deeper understanding of the underlying mechanisms could help to develop new agents. Our intention was to detect genes and single nucleotide polymorphisms (SNPs) affecting trastuzumab efficiency in cell culture. Three HER2-positive breast cancer cell lines with different resistance phenotypes were analyzed. We chose BT474 as model of trastuzumab sensitivity, HCC1954 as model of intrinsic resistance, and BTR50, derived from BT474, as model of acquired resistance. Based on RNA-Seq data, we performed differential expression analyses on these cell lines with and without trastuzumab treatment. Differentially expressed genes between the resistant cell lines and BT474 are expected to contribute to resistance. Differentially expressed genes between untreated and trastuzumab treated BT474 are expected to contribute to drug efficacy. To exclude false positives from the candidate gene set, we removed genes that were also differentially expressed between untreated and trastuzumab treated BTR50. We further searched for SNPs in the untreated cell lines which could contribute to trastuzumab resistance. The analysis resulted in 54 differentially expressed candidate genes that might be connected to trastuzumab efficiency. 90% of 40 selected candidates were validated by RT-qPCR. ALPP, CALCOCO1, CAV1, CYP1A2 and IGFBP3 were significantly higher expressed in the trastuzumab treated than in the untreated BT474 cell line. GDF15, IL8, LCN2, PTGS2 and 20 other genes were significantly higher expressed in HCC1954 than in BT474, while NCAM2, COLEC12, AFF3, TFF3, NRCAM, GREB1 and TFF1 were significantly lower expressed. Additionally, we inferred SNPs in HCC1954 for CAV1, PTGS2, IL8 and IGFBP3. The latter also had a variation in BTR50. 20% of the validated subset have already been mentioned in literature. For half of them we called and analyzed SNPs. These results contribute to a better understanding of trastuzumab action and resistance mechanisms.  相似文献   

13.
Heregulin regulation of Akt/protein kinase B in breast cancer cells.   总被引:3,自引:0,他引:3  
In the present studies, we demonstrate that heregulin is a potent and rapid activator of the serine/threonine kinase called Akt in the MCF-7 breast cancer cell line but not in 3 other breast cancer cell lines (T47D, HBL-100, and MDA-231). The extent of activation of Akt in the 4 cell lines correlated with the ability of heregulin to activate phosphatidylinositol 3-kinase and inhibition of the kinase blocked Akt activation. A monoclonal antibody to HER2 inhibited the ability of heregulin to activate Akt in the MCF-7 cells. BT474, a breast cancer cell line which overexpresses HER2, had high basal Akt enzymatic activity. This high basal activity was lowered when cells were pre-incubated with an anti-HER2 monoclonal antibody which is used to treat breast cancer patients. Our results indicate that heregulin is a potent activator of Akt and that overexpression of HER2 in breast cancers could also lead to activation of Akt.  相似文献   

14.
Despite the development of novel targeted therapies, de novo or acquired chemoresistance remains a significant factor for treatment failure in breast cancer therapeutics. Neratinib and dacomitinib are irreversible panHER inhibitors, which block their autophosphorylation and downstream signaling. Moreover, neratinib and dacomitinib have been shown to activate cell death in HER2-overexpressing cell lines. Here we showed that increased MCL1 and decreased BIM and PUMA mediated resistance to neratinib in ZR-75-30 and SKBR3 cells while increased BCL-XL and BCL-2 and decreased BIM and PUMA promoted neratinib resistance in BT474 cells. Cells were also cross-resistant to dacomitinib. BH3 profiles of HER2+ breast cancer cells efficiently predicted antiapoptotic protein dependence and development of resistance to panHER inhibitors. Reactivation of ERK1/2 was primarily responsible for acquired resistance in SKBR3 and ZR-75-30 cells. Adding specific ERK1/2 inhibitor SCH772984 to neratinib or dacomitinib led to increased apoptotic response in neratinib-resistant SKBR3 and ZR-75-30 cells, but we did not detect a similar response in neratinib-resistant BT474 cells. Accordingly, suppression of BCL-2/BCL-XL by ABT-737 was required in addition to ERK1/2 inhibition for neratinib- or dacomitinib-induced apoptosis in neratinib-resistant BT474 cells. Our results showed that different mitochondrial apoptotic blocks mediated acquired panHER inhibitor resistance in HER2+ breast cancer cell lines as well as highlighted the potential of BH3 profiling assay in prediction of panHER inhibitor resistance in breast cancer cells.  相似文献   

15.
16.
Identification of breast cancer peptide epitopes presented by HLA-A*0201   总被引:1,自引:0,他引:1  
Cellular immune mechanisms detect and destroy cancerous and infected cells via the human leukocyte antigen (HLA) class I molecules that present peptides of intracellular origin on the surface of all nucleated cells. The identification of novel, tumor-specific epitopes is a critical step in the development of immunotherapeutics for breast cancer. To directly identify peptide epitopes unique to cancerous cells, secreted human class I HLA molecules (sHLA) were constructed by deletion of the transmembrane and cytoplasmic domain of HLA A*0201. The resulting sHLA-A*0201 was transferred and expressed in breast cancer cell lines MCF-7, MDA-MB-231, and BT-20 as well as in the immortal, nontumorigenic cell line MCF10A. Stable transfectants were seeded into bioreactors for production of > 25 mg of sHLA-A*0201. Peptides eluted from affinity purified sHLA were analyzed by mass spectroscopy. Comparative analysis of HLA-A*0201 peptides revealed 5 previously uncharacterized epitopes uniquely presented on breast cancer cells. These peptides were derived from intracellular proteins with either well-defined or putative roles in breast cancer development and progression: Cyclin Dependent Kinase 2 (Cdk2), Ornithine Decarboxylase (ODC1), Kinetochore Associated 2 (KNTC2 or HEC1), Macrophage Migration Inhibitory Factor (MIF), and Exosome Component 6 (EXOSC6). Cellular recognition of the MIF, KNTC2, EXOSC6, and Cdk2 peptides by circulating CD8+ cells was demonstrated by tetramer staining and IFN-gamma ELISPOT. The identification and characterization of peptides unique to the class I of breast cancer cells provide putative targets for the development of immune diagnostic tools and therapeutics.  相似文献   

17.
Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEK293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the P1 position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells.  相似文献   

18.
The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve–ArPIKfyve–Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P–PtdIns(3,5)P2 synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer, the role of the PAS proteins and the PtdIns3P–PtdIns(3,5)P2 conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P2 in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting directly or indirectly the homeostasis of these lipids in TNBC. Together, our results uncover an unexpected role for Sac3 phosphatase in TNBC cell proliferation. Database analyses, discussed herein, reinforce the involvement of Sac3 in breast cancer pathogenesis.  相似文献   

19.
Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.  相似文献   

20.
The role exerted by protein kinase C (PKC) on estrogen-induced DNA synthesis has been investigated in hepatic and mammary gland cells, HepG2 and MCF7. 17-beta-estradiol stimulated DNA synthesis in HepG2 and MCF7 cells, maximal effect occurring at 10 nM. DNA synthesis stimulation was prevented by anti-estrogen ICI 182,780 and by inhibitor of PKC, Ro 31-8220. The rapid estradiol effects in MCF7 cells were determined by following the inositol trisphosphate (IP(3)) production and PKC-alpha membrane translocation. After estradiol treatment the increase of IP(3) production, prevented by anti-estrogen or by phospholipase C (PLC) inhibitor (neomycin), was present in MCF7 cells. In MDA cells, devoid of estrogen receptor, no effect was observed. The PKC-alpha presence on the membranes appeared unchanged in MCF7 cells. The PLC inhibitors, neomycin and U73,122, and PKC-alpha down regulator, phorbol 12-myristate 13-acetate (PMA), were able to prevent estradiol-induced DNA synthesis in hepatoma cells, but ineffective in mammary cells; wortmannin, an inhibitor of phosphoinositide 3-kinases (PI3-K), blocked DNA synthesis in both cell lines. These data show that beta-estradiol, via an estrogen receptor-mediated mechanism, activates more signal transduction pathways, and consequently different PKC isoforms in two responsive cell lines. In both cell lines PI3-K/PKC pathway is functional to the estrogen regulation of DNA synthesis, whereas in HepG2 cells the parallel involvement of the PLC/PKC-alpha pathway is present. The reported results indicate that the DNA synthesis stimulation by beta-estradiol requires the estrogen receptor and utilises one or more activated pathways in dependence on the cell equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号