首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Several QTLs for cell wall degradability and lignin content were previously detected in the F288 × F271 maize RIL progeny, including a set of major QTLs located in bin 6.06. Unexpectedly, allelic sequencing of genes located around the bin 6.06 QTL positions revealed a monomorphous region, suggesting that these QTLs were likely “ghost” QTLs. Refining the positions of all QTLs detected in this population was thus considered, based on a linkage map densification in most important QTL regions, and in several large still unmarked regions. Re-analysis of data with an improved genetic map (173 markers instead of 108) showed that ghost QTLs located in bin 6.06 were then fractionated over two QTL positions located upstream and downstream of the monomorphic region. The area located upstream of bin 6.06 position carried the major QTLs, which explained from 37 to 59 % of the phenotypic variation for per se values and extended on only 6 cM, corresponding to a physical distance of 2.2 Mbp. Among the 92 genes present in the corresponding area of the B73 maize reference genome, nine could putatively be considered as involved in the formation of the secondary cell wall [bHLH, FKBP, laccase, fasciclin, zinc finger C2H2-type and C3HC4-type (two genes), NF-YB, and WRKY]. In addition, based on the currently improved genetic map, eight QTLs were detected in bin 4.09, while only one QTL was highlighted in the initial investigation. Moreover, significant epistatic interaction effects were shown for all traits between these QTLs located in bin 4.09 and the major QTLs located in bin 6.05. Three genes related to secondary cell wall assembly (ZmMYB42, COV1-like, PAL-like) underlay QTL support intervals in this newly identified bin 4.09 region. The current investigations, even if they were based only on one RIL progeny, illustrated the interest of a targeted marker mapping on a genetic map to improve QTL position.  相似文献   

3.
A meta-analysis of quantitative trait loci (QTL) associated with plant digestibility and cell wall composition in maize was carried out using results from 11 different mapping experiments. Statistical methods implemented in “MetaQTL” software were used to build a consensus map, project QTL positions and perform meta-analysis. Fifty-nine QTL for traits associated with digestibility and 150 QTL for traits associated with cell wall composition were included in the analysis. We identified 26 and 42 metaQTL for digestibility and cell wall composition traits, respectively. Fifteen metaQTL with confidence interval (CI) smaller than 10 cM were identified. As expected from trait correlations, 42% of metaQTL for digestibility displayed overlapping CIs with metaQTL for cell wall composition traits. Coincidences were particularly strong on chromosomes 1 and 3. In a second step, 356 genes selected from the MAIZEWALL database as candidates for the cell wall biosynthesis pathway were positioned on our consensus map. Colocalizations between candidate genes and metaQTL positions appeared globally significant based on χ2 tests. This study contributed in identifying key chromosomal regions involved in silage quality and potentially associated genes for most of these regions. These genes deserve further investigation, in particular through association mapping.  相似文献   

4.
Floral stems of Arabidopsis thaliana accessions were used as a model system relative to forage plant stems in genetic variation studies of lignin content and cell wall digestibility related traits. Successive investigations were developed in a core collection of 24 Arabidopsis accessions and in a larger collection of 280 accessions. Significant genetic variation for lignin content in the cell wall, and for the two in vitro cell wall digestibility investigated traits, were found both in the core collection and in the large collection. Genotype × environment interactions, investigated in the core collection, were significant with a few genotypes contributing greatly to interactions, based on ecovalence value estimates. In the core collection, genotypes 42AV, 224AV, and 8AV had low cell wall digestibility values, whatever be the environmental conditions. Genotype 157AV, observed only in one environment, also appeared to have a low cell wall digestibility. Conversely, genotypes 236AV, 162AV, 70AV, 101AV, 83AV had high cell wall digestibility values, genotype 83AV having a slightly greater instability across differing environments than others. The well-known accession Col-0 (186AV) appeared with a medium level of cell wall digestibility and a weak to medium level of interaction between environments. The ranges of variation in cell wall digestibility traits were higher in the large collection than in the core collection of 24 accessions, these results needing confirmation due to the lower number of replicates. Accessions 295AV, 148AV, and 309AV could be models for low stem cell wall digestibility values, with variable lignin content. Similarly, accessions 83AV and 162AV, already identified from the study of the core collection, and five accessions (6AV, 20AV, 91AV, 114AV, and 223AV) could be models for high stem cell wall digestibility values. The large variations observed between Arabidopsis accessions for both lignin content and cell wall digestibility in floral stems have strengthened the use this species as a powerful tool for discovering genes involved in cell wall biosynthesis and lignification of dicotyledons forage plants. Investigations of this kind might also be applicable to monocotyledons forage plants due to the basic similarity of the genes involved in the lignin pathway of Angiosperms and the partial homology of the cell wall composition and organization of the mature vascular system in grasses and Arabidopsis.  相似文献   

5.

Background  

Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits.  相似文献   

6.
The brown-midrib mutants of maize have a reddish-brown pigmentation of the leaf midrib and stalk pith, associated with lignified tissues. These mutants progressively became models for lignification genetics and biochemical studies in maize and grasses. Comparisons at silage maturity of bm1, bm2, bm3, bm4 plants highlighted their reduced lignin, but also illustrated the biochemical specificities of each mutant in p-coumarate, ferulate ester and etherified ferulate content, or syringyl/guaiacyl monomer ratio after thioacidolysis. Based on the current knowledge of the lignin pathway, and based on presently developed data and discussions, C3H and CCoAOMT activities are probably major hubs in controlling cell-wall lignification (and digestibility). It is also likely that ferulates arise via the CCoAOMT pathway.  相似文献   

7.
A combination of the phytohormones naphthalene acetic acid and benzylaminopurine (5 μM each) allows lignification in various plant cell cultures. This system has been used to investigate the relationship between the coniferin-hydrolyzingβ-glucosidase activity and lignification. InPetroselinum hortense andTriticum aestipum cell cultures the appearance of this enzymatic activity coincided with lignification. In parsley cell cultures it was moreover shown that this activity appears concomitantly with other lignin biosynthetic enzymes. The unique enzymes of the flavonoid pathway did not appear by this phytohormone treatment. In other cell cultures investigated the correlation between the coniferin-hydrolyzing activity and lignification was not as evident as in the above two cases. This was probably due to the high activity of coniferin glucosidase already present in the normally grown cultures. Coniferinβ-glucosidase was found in all lignified cell cultures.  相似文献   

8.
Improvement in grain yield is an important objective in high-oil maize breeding. In this study, one high-oil maize inbred was crossed with two normal maize inbreds to produce two connected recombinant inbred line (RIL) populations with 282 and 263 F7:8 families, respectively. The field experiments were conducted under four environments, and eight grain yield components and grain oil content were evaluated. Two genetic linkage maps were constructed using 216 and 208 polymorphic SSR markers. Quantitative trait loci (QTL) were detected for all traits under each environment and in combined analysis. Meta-analysis was used to integrate genetic maps and detected QTL in both populations. A total of 199 QTL were detected, 122 in population 1 and 87 in population 2. Seven, 11 and 19 QTL showed consistency across five environments, across two RIL populations and with respective F2:3 generations, respectively. 183 QTL were integrated in 28 meta-QTL (mQTL). QTL with contributions over 15% were consistently detected in 3–4 cases and integrated in mQTL. Each mQTL included 3–19 QTL related to 1–4 traits, reflecting remarkable QTL co-location for grain yield components and oil content. Further research and marker-assisted selection (MAS) should be concentrated on 37 consistent QTL and four genetic regions of mQTL with more than 10 QTL at bins 3.04–3.05, 7.02, 8.04–8.05 and 9.04–9.05. Near-isogenic lines for 100-grain-weight QTL at bin 7.02–7.03, for ear-length QTL at bin 7.02–7.03 and for rows-per-ear QTL at bin 3.08 are now in construction using MAS. Co-located candidate genes could facilitate the identification of candidate genes for grain yield in maize.  相似文献   

9.
The lignification process and lignin heterogeneity of fibre, vessel and parenchyma cell walls for various age classes of bamboo stems of Phyllostachys pubescens Mazel were investigated. It was shown that protoxylem vessels lignified in the early stage of vascular bundle differentiation, metaxylem vessel and fibre walls initiated lignification from the middle lamella and cell corners after the completion of vascular bundle differentiation. Most of the parenchyma cell walls lignified after the stem reached its full height, while a few parenchyma cells remained non-lignified even in the mature culm. The cell walls of fibres and most parenchyma cells thickened further during the stem growth to form polylamellate structure and the lignification process of these cells may last even up to 7 years. The fibre walls were rich in guaiacyl lignin in the early stage of lignification, and lignin rich in syringyl units were deposited in the later stage. Vessel walls mainly contained guaiacyl lignin, while both guaiacyl and syringyl lignin were present in the fibre and parenchyma cell walls.  相似文献   

10.
Samples of 1 kg of wheat straw, oat straw and paspalum hay were separated manually into botanical fractions, and the three largest fractions of each forage were analysed chemically for cell-wall constituents, silica and nitrogen. Proportions of digested dry matter, cellulose and hemicellulose, and potential digestibility for each of these major botanical fractions were determined when chaffed samples were placed in nylon bags and incubated for 12, 24, 48, 72 and 96 h in the rumen of sheep fed on lucerno. Cross-sections of botanical fractions were stained with safranin and fast green, and proportions of lignified tissue determined by light-microscopy and planimetry.Large differences in dry-matter digestibility between wheat straw and oat straw were attributed to the different proportions of botanical fractions. Within forages, stem was the largest fraction, the most lignified and had the lowest potential digestibility. Proportions of digested dry matter from botanical fractions at 12 h were poorly correlated with lignin content of dry matter (r = 0.25) but at 72 h were negatively correlated with lignin content of dry matter (r = ?0.84, P<0.01) and with proportions of lignified tissue (r = ?0.67, P<0.05) in the respective botanical fractions. Proportions of cellulose and hemicellulose digested at 72 h were strongly correlated with lignin content of cell walls (r = ?0.90, P<0.01; r = ?0.85, P<0.01, respectively). Proportions of lignified tissues were less closely correlated with all measurements of digestibility than were proportions of lignin in cell walls determined chemically. Development of a technique for measuring intensity of lignification might enhance the value of light-microscopy measurements.  相似文献   

11.
12.
13.
Meeting growing energy demands safely and efficiently is a pressing global challenge. Therefore, research into biofuels production that seeks to find cost-effective and sustainable solutions has become a topical and critical task. Lignocellulosic biomass is poised to become the primary source of biomass for the conversion to liquid biofuels1-6. However, the recalcitrance of these plant cell wall materials to cost-effective and efficient degradation presents a major impediment for their use in the production of biofuels and chemicals4. In particular, lignin, a complex and irregular poly-phenylpropanoid heteropolymer, becomes problematic to the postharvest deconstruction of lignocellulosic biomass. For example in biomass conversion for biofuels, it inhibits saccharification in processes aimed at producing simple sugars for fermentation7. The effective use of plant biomass for industrial purposes is in fact largely dependent on the extent to which the plant cell wall is lignified. The removal of lignin is a costly and limiting factor8 and lignin has therefore become a key plant breeding and genetic engineering target in order to improve cell wall conversion.Analytical tools that permit the accurate rapid characterization of lignification of plant cell walls become increasingly important for evaluating a large number of breeding populations. Extractive procedures for the isolation of native components such as lignin are inevitably destructive, bringing about significant chemical and structural modifications9-11. Analytical chemical in situ methods are thus invaluable tools for the compositional and structural characterization of lignocellulosic materials. Raman microscopy is a technique that relies on inelastic or Raman scattering of monochromatic light, like that from a laser, where the shift in energy of the laser photons is related to molecular vibrations and presents an intrinsic label-free molecular "fingerprint" of the sample. Raman microscopy can afford non-destructive and comparatively inexpensive measurements with minimal sample preparation, giving insights into chemical composition and molecular structure in a close to native state. Chemical imaging by confocal Raman microscopy has been previously used for the visualization of the spatial distribution of cellulose and lignin in wood cell walls12-14. Based on these earlier results, we have recently adopted this method to compare lignification in wild type and lignin-deficient transgenic Populus trichocarpa (black cottonwood) stem wood15. Analyzing the lignin Raman bands16,17 in the spectral region between 1,600 and 1,700 cm-1, lignin signal intensity and localization were mapped in situ. Our approach visualized differences in lignin content, localization, and chemical composition. Most recently, we demonstrated Raman imaging of cell wall polymers in Arabidopsis thaliana with lateral resolution that is sub-μm18. Here, this method is presented affording visualization of lignin in plant cell walls and comparison of lignification in different tissues, samples or species without staining or labeling of the tissues.Download video file.(47M, mov)  相似文献   

14.
15.
Polymorphisms within three candidate genes for lignin biosynthesis were investigated to identify alleles useful for the improvement of maize digestibility. The allelic diversity of two caffeoyl-CoA 3-O-methyltransferase genes, CCoAOMT2 and CCoAOMT1, as well as that of the aldehyde O-methyltransferase gene, AldOMT, was evaluated for 34 maize lines chosen for their varying degrees of cell wall digestibility. Frequency of nucleotide changes averaged one SNP every 35 bp. Ninety-one indels were identified in non-coding regions and only four in coding regions. Numerous distinct and highly diverse haplotypes were identified at each locus. Numerous sites were in linkage disequilibrium that declined rapidly within a few hundred bases. For F4, an early flint French line with high cell wall digestibility, the CCoAOMT2 first exon presented many non-synonymous polymorphisms. Notably we found an 18-bp indel, which resembled a microsatellite and was associated with cell wall digestibility variation. Additionally, the CCoAOMT2 gene co-localized with a QTL for cell wall digestibility and lignin content. Together, these results suggest that genetic diversity investigated on a broader genetic basis could contribute to the identification of favourable alleles to be used in the molecular breeding of elite maize germplasm.  相似文献   

16.
Lignin genetic engineering   总被引:5,自引:0,他引:5  
Although lignins play important roles in plants, they often represent an obstacle to the utilization of plant biomass in different areas: pulp industry, forage digestibility. The recent characterization of different lignification genes has stimulated research programmes aimed at modifying the lignin profiles of plants through genetic engineering (antisense and sense suppression of gene expression). The first transgenic plants with a modification of monomeric composition of lignins and lignin content have been recently obtained. Down regulation of the OMT gene induces dramatic reduction of syringyl units. CAD down regulated plants exhibit a unusual red phenotype associated with the developing xylem and several chemical modifications of their lignins including an increase in cinnamaldehydes in the polymer structure. Interestingly this novel lignin is removed more easily during the pulping process. In both OMT and CAD down regulated plants no changes in phenotypic characteristics such as growth architecture and morphology were observed. More recent experiments have shown that a reduction of CCR activity determines specific changes in the coloration of the xylem area suggesting significant chemical modifications which are currently being studied.These different results show that it is possible to manipulate lignins through targeted genetic transformation of plants and that lignins exhibit a relative flexibility of their chemical structure. Future developments should probe the impact of down regulating the expression of other recently characterized lignification genes such as F5H and CCoAOMT and also of a combination of genes in order to tailor lignins more adapted to specific purposes. In addition to biotechnological applications which should provide important economical benefits for utilization of wood in the pulp industry, genetic engineering of lignins offer very promising perspectives for the understanding of lignin synthesis, structure and properties.  相似文献   

17.

Background  

Polymorphisms were investigated within the ZmPox3 maize peroxidase gene, possibly involved in lignin biosynthesis because of its colocalization with a cluster of QTL related to lignin content and cell wall digestibility. The purpose of this study was to identify, on the basis of 37 maize lines chosen for their varying degrees of cell wall digestibility and representative of temperate regions germplasm, ZmPox3 haplotypes or individual polymorphisms possibly associated with digestibility.  相似文献   

18.
Cinnamoyl CoA reductase (CCR; EC 1.2.1.44) is the first enzyme specific to the biosynthetic pathway leading to monolignols. Arabidopsis thaliana (L.) Heynh. plants transformed with a vector containing a full-length AtCCR1 cDNA in an antisense orientation were obtained and characterized. The most severely down-regulated homozygous plants showed drastic alterations to their phenotypical features. These plants had a 50% decrease in lignin content accompanied by changes in lignin composition and structure, with incorporation of ferulic acid into the cell wall. Microscopic analyses coupled with immunolabelling revealed a decrease in lignin deposition in normally lignified tissues and a dramatic loosening of the secondary cell wall of interfascicular fibers and vessels. Evaluation of in vitro digestibility demonstrated an increase in the enzymatic degradability of these transgenic lines. In addition, culture conditions were shown to play a substantial role in lignin level and structure in the wild type and in the effects of AtCCR1 repression efficiency.  相似文献   

19.
The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan (LM5), heteroxylan (LM10 and LM11), and galactoglucomannan (LM21 and LM22). Lignin and crystalline cellulose were localized on the same sections used for immunocytochemistry by autofluorescence and polarized light microscopy, respectively. Changes in the distribution of noncellulosic polysaccharides between normal and compression wood were associated with changes in lignin distribution. Increased lignification of compression wood secondary walls was associated with novel deposition of β(1,4)-galactan and with reduced amounts of xylan and mannan in the outer S2 (S2L) region of tracheids. Xylan and mannan were detected in all lignified xylem cell types (tracheids, ray tracheids, and thick-walled ray parenchyma) but were not detected in unlignified cell types (thin-walled ray parenchyma and resin canal parenchyma). Mannan was absent from the highly lignified compound middle lamella, but xylan occurred throughout the cell walls of tracheids. Using colocalization measurements, we confirmed that polysaccharides containing galactose, mannose, and xylose have consistent correlations with lignification. Low or unsubstituted xylans were localized in cell wall layers characterized by transverse cellulose microfibril orientation in both normal and compression wood tracheids. Our results support the theory that the assembly of wood cell walls, including lignification and microfibril orientation, may be mediated by changes in the amount and distribution of noncellulosic polysaccharides.  相似文献   

20.
Grabber JH  Lu F 《Planta》2007,226(3):741-751
Abstract Grass cell walls are atypical because their xylans are acylated with ferulate and lignins are acylated with p-coumarate. To probe the role and interactions of these p-hydroxycinnamates during lignification, feruloylated primary cell walls isolated from maize cell suspensions were lignified with coniferyl and sinapyl alcohols and with varying levels of p-coumarate esters. Ferulate xylan esters enhanced the formation of wall-bound syringyl lignin more than methyl p-coumarate, however, maximal concentrations of syringyl lignin were only one-third that of guaiacyl lignin. Including sinapyl p-coumarate, the presumed precursor of p-coumaroylated lignins, with monolignols unexpectedly accelerated peroxidase inactivation, interfered with ferulate copolymerization into lignin, and had minimal or adverse effects on cell wall lignification. Free phenolic groups of p-coumarate esters in isolated maize lignin and pith cell walls did not undergo oxidative coupling with each other or with added monolignols. Thus, the extensive formation of syringyl-rich lignins and the functional role of extensive lignin acylation by p-coumarate in grasses remains a mystery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号