首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progress in reproductive biotechnology in swine.   总被引:4,自引:0,他引:4  
H Niemann  D Rath 《Theriogenology》2001,56(8):1291-1304
This article summarizes recent progress in reproductive biotechnology in swine with special reference to in vitro production of embryos, generation of identical multiples, and transgenic pigs useful for xenotransplantation. In vitro production (in vitro maturation, in vitro fertilization, and in vitro culture) of viable porcine embryos is possible, although with much lower success rates than in cattle. The main problems are insufficient cytoplasmic maturation of porcine oocytes, a high proportion of polyspermic fertilization and a low proportion of blastocysts that, in addition, are characterized by a low number of cells, hampering their development in vivo upon transfer to recipients. Microsurgical bisection of morula and blastocyst stage embryos leads to a 2 to 3% monozygotic twinning rate of the transferred demiembryos, which is similar to that in rabbits and mice but considerably lower than in ruminants. It was found that with decreasing quality an increasing proportion of demi-embryos did not possess an inner cell mass. Porcine individual blastomeres derived from 4- and 8-cell embryos can be cultured in defined medium to the blastocyst stage. Leukemia inhibitory factor has been shown to be effective at defined embryonic stages and supports the formation of the inner cell mass in cultured isolated blastomeres in a concentration-dependent manner. For maintaining pregnancies with micromanipulated porcine embryos, it is not necessary to transfer extraordinarily high numbers of embryos. Porcine nuclear transfer is still struggling from the inefficiency of producing normally functioning blastocysts. Blastomeres, blastocyst-derived cells, fibroblasts and granulosa cells have been employed as donor cells in porcine nuclear transfer and have yielded blastocysts. Recently, the generation of the first piglets from somatic cell nuclear transfer has been achieved. DNA-microinjection into pronuclei of porcine zygotes has reliably resulted in the generation of transgenic pigs, which have special importance for the production of valuable pharmaceutical proteins in milk and xenotransplantation. It has been demonstrated that by expression of human complement regulatory proteins in transgenic pigs the hyperacute rejection response occurring after xenotransplantation can be overcome in a clinically relevant manner. Although biotechnological procedures in swine have recently undergone tremendous progress, the development is still lagging behind that in cattle and sheep. With regard to genetic engineering, considerable progress will originate from the possibility of employing homologous recombination in somatic cell lines and their subsequent use in nuclear transfer. In combination with the increasing knowledge in gene sequences this will allow in the foreseeable future widespread use in the pig industry either for agricultural or biomedical purposes.  相似文献   

2.
3.
Bovine morulae and blastocysts were either produced in vitro through maturation, fertilization and culture of immature oocytes recovered from slaughterhouse-derived ovaries, collected in vivo or obtained after 24 h in vitro culture of in vivo collected embryos. The morulae and blastocysts were classified into four categories of embryo quality and two stages of embryonic development. Embryos were frozen by a controlled freezing method using 10% glycerol as a cryoprotectant. The ability of individual embryos to withstand freeze/thawing was measured immediately before and after cryopreservation by changes in CO2 production from (U-14C)glucose during a 2 h incubation period in a non-invasive closed system immediately before and after cryopreservation. Post-thaw survival was assessed by development in vitro during a 48 h culture period. Survival rates and oxidative metabolism after freeze/thawing were similar in embryos of the two developmental stages. However, after freeze/thawing, the rate of CO2 production of in vitro produced embryos was reduced to one half of their pre-freeze levels and was associated with poor survival rates. In vivo collected embryos had a significantly better tolerance to freezing and higher survival rates. However, when in vivo embryos were exposed to in vitro culture conditions, the rates of CO2 production and survival were significantly reduced. Pre-freeze embryo quality affected post-thaw in vitro development and metabolic activity markedly in embryos produced in vitro or pre-exposed to in vitro culture conditions. While there was no relationship between pre-freeze levels of CO2 production and post-thaw in vitro embryo development, all embryos which developed in vitro after freezing/thawing retained at least 58% of the pre-freeze levels of CO2 production regardless of their origin. Results of the present study indicate that embryos produced in vitro or pre-exposed to in vitro culture conditions are more sensitive to cryo-injury. This sensitivity is affected by embryo quality and is similarly reflected at the biochemical level. Determination of oxidative metabolism offers a feasibility for selection of viable morulae/blastocysts after freezing/thawing.  相似文献   

4.
《Epigenetics》2013,8(6):803-815
The use of Assisted Reproductive Technologies (ARTs) in modern cattle breeding is an important tool for improving the production of dairy and beef cattle. A frequently employed ART in the cattle industry is in vitro production of embryos. However, bovine in vitro produced embryos differ greatly from their in vivo produced counterparts in many facets, including developmental competence. The lower developmental capacity of these embryos could be due to the stress to which the gametes and/or embryos are exposed during in vitro embryo production, specifically ovarian hormonal stimulation, follicular aspiration, oocyte in vitro maturation in hormone supplemented medium, sperm handling, gamete cryopreservation, and culture of embryos. The negative effects of some ARTs on embryo development could, at least partially, be explained by disruption of the physiological epigenetic profile of the gametes and/or embryos. Here, we review the current literature with regard to the putative link between ARTs used in bovine reproduction and epigenetic disorders and changes in the expression profile of embryonic genes. Information on the relationship between reproductive biotechnologies and epigenetic disorders and aberrant gene expression in bovine embryos is limited and novel approaches are needed to explore ways in which ARTs can be improved to avoid epigenetic disorders.  相似文献   

5.
Embryo survival rates obtained after transfer of in vitro produced porcine blastocysts are very poor. This is probably related to poor quality of the embryos. The aim of the present study was to determine markers for good quality blastocysts. Therefore, we tried to link blastocyst morphology to several morphological and cell biological properties, and evaluated the survival of in vitro produced, morphologically classified, blastocysts following non-surgical transfer. In vitro and in vivo produced blastocysts were allocated to two groups (classes A and B) on the basis of morphological characteristics. The quality of their actin cytoskeleton, their total cell number, their ability to re-expand after cytochalasin-B treatment and the occurrence of numerical chromosome aberrations were studied and compared. In vivo produced blastocysts were used as a control. Our results indicate that the ability of blastocysts to re-expand after cytochalasin-B-induced actin depolymerization was positively correlated with the morphology of the blastocyst, and associated with the quality of the actin cytoskeleton. Chromosome analysis revealed that mosaicism is inherent to the in vitro production of porcine embryos, but also that in vivo produced blastocysts contained some non-diploid cells. In non-surgical embryo transfer experiments more recipients receiving class A blastocysts were pregnant on Day 20 than those receiving class B blastocysts. One recipient gave birth to six piglets from class A in vitro produced blastocysts, providing a verification of the enhanced viability of blastocysts that were scored as 'good' on the basis of their morphology.  相似文献   

6.
The use of Assisted Reproductive Technologies (ARTs) in modern cattle breeding is an important tool for improving the production of dairy and beef cattle. A frequently employed ART in the cattle industry is in vitro production of embryos. However, bovine in vitro produced embryos differ greatly from their in vivo produced counterparts in many facets, including developmental competence. The lower developmental capacity of these embryos could be due to the stress to which the gametes and/or embryos are exposed during in vitro embryo production, specifically ovarian hormonal stimulation, follicular aspiration, oocyte in vitro maturation in hormone supplemented medium, sperm handling, gamete cryopreservation, and culture of embryos. The negative effects of some ARTs on embryo development could, at least partially, be explained by disruption of the physiological epigenetic profile of the gametes and/or embryos. Here, we review the current literature with regard to the putative link between ARTs used in bovine reproduction and epigenetic disorders and changes in the expression profile of embryonic genes. Information on the relationship between reproductive biotechnologies and epigenetic disorders and aberrant gene expression in bovine embryos is limited and novel approaches are needed to explore ways in which ARTs can be improved to avoid epigenetic disorders.  相似文献   

7.
8.
Frozen-thawed spermatozoa collected from a beef bull (Japanese Black) were used for in vitro fertilization (IVF) of matured oocytes obtained from dairy (Holstein) and beef (Japanese Black) females. Embryos were examined for fertilization, cleavage rate, interval between insemination and blastocyst production (experiment I), total cell number per embryo and sex ratio during blastocyst formation (experiment II), and blastocyst production rate of zygotes that developed to 2-, 4-, and 8-cell stages at 48h post-fertilization (experiment III). Fertilized oocytes were cultured in vitro on a cumulus cell co-culture system. The fertilization and cleavage rate of oocytes groups were similar, however, the blastocyst production rate was greater (P<0.05) in hybrid than from purebred embryos (27% versus 20%). Development of blastocysts produced from hybrid embryos developed at a faster rate than blastocysts produced from the straightbred embryos. In hybrid embryos, blastocyst production was significantly greater on day 7 (56%) and gradually decreased from 20% on day 8 to 17% on day 9. In contrast, blastocyst production rate from the purebred embryos was lower on day 7 (17%), increasing on day 8 to 59% and then decreased on day 9 to 24%. The total number of cells per embryo and sex ratio of in vitro-produced blastocysts were not different between hybrid and purebred embryos. The number of blastocysts obtained from embryos at the 8-cell stage of development by 48h post-fertilization (94%) was greater (P<0.01) than the number of zygotes producing blastocysts that had developed to the 4-cell stage (4%) and the 2-cell stage (2%) during the same interval. These results show that the blastocyst production rate and developmental rate to the blastocyst stage were different between hybrid and purebred embryos, and that almost all of the in vitro-produced blastocysts were obtained from zygotes that had developed to the 8-cell stage 48h post-fertilization.  相似文献   

9.
A total of 1161 8- to 16-cell mouse embryos and 31 cattle early morulae and late blastocysts were frozen to ?40°C before transfer to liquid nitrogen. After thawing, mouse embryo viability was determined by in vitro development to the blastocyst stage and cattle embryo viability by both in vivo and in vitro development.Using glycerol as the cryoprotective agent, 88% of the mouse embryos developed to the blastocyst stage: thawing at 45 and 360° C/min gave the best results (88.8 and 84.8%, respectively). In another test with holding times at ?40°C of up to 60 min, about 70% of embryos developed to blastocysts with holding time 30–60 min.In cattle, 11 embryos frozen in DMSO and thawed at 360°C/min were transplanted to eight recipients. Four pregnancies (six fetuses) resulted. Thawing rates of 200 and 360°C/min resulted in the best in vitro development of cattle embryos.  相似文献   

10.
Embryo production by ovum pick up from live donors   总被引:7,自引:0,他引:7  
Embryo production by in vitro techniques has increased steadily over the years. For cattle where this technology is more advanced and is applied more, the number of in vitro produced embryos transferred to final recipients was over 30,000 in 1998. An increasing proportion of in vitro produced embryos are coming from oocytes collected from live donors by ultrasound-guided follicular aspiration (ovum pick up, OPU). This procedure allows the repeated production of embryos from live donors of particular value and is a serious alternative to superovulation. Ovum pick up is a very flexible technique. It can be performed twice a week for many weeks without side effects on the donor's reproductive career. The donor can be in almost any physiological status and still be suitable for oocyte recovery. A scanner with a sectorial or convex probe and a vacuum pump are required. Collection is performed with minimal stress to the donor. An average of 8 to 10 oocytes are collected per OPU with an average production of 2 transferable embryos. The laboratory production of embryos from such oocytes does not differ from that of oocytes harvested at slaughter as the results after transfer to final recipients. For other species such as buffalo and horses OPU has been attempted similarly to cattle and data will be presented and reviewed. For small ruminants, laparotomy or laparoscopy seems the only reliable route so far to collect oocytes from live donors.  相似文献   

11.
In vitro techniques for production of bovine embryos including in vitro oocyte maturation (IVM), fertilization (IVF) and culture (IVC) are becoming increasingly employed for a variety of research purposes. However, decreased viability following cryopreservation by conventional methods has limited commercial applications of these technologies. A practical alternative to facilitate transport would be to arrest development by chilling without freezing. The present research was undertaken to evaluate chilling sensitivity of IVM-IVF embryos at different stages of development, and to determine possible beneficial effects of cysteamine treatment during IVM, previously shown to enhance embryo development in culture, on survival following chilling at different stages. Embryos produced by standard IVM-IVF-IVC methods were chilled to 0 degrees C for 30 min at 2-cell (30-34 h post-insemination, hpi), 8-cell (48-52 hpi) or blastocyst (166-170 hpi) stages. Viability after chilling was assessed by IVC with development to expanded blastocyst stage determined on days 7 and 8 post-insemination (pi) and hatching blastocyst stage determined on days 9 and 10 pi. Control embryos at the same stages were handled similarly, but without chilling, and development during culture similarly assessed. The effect of cysteamine supplementation (100 microM) of the IVM medium was determined for both chilled and non-chilled (control) embryos. Cysteamine supplementation during IVM had no significant effect on oocyte maturation or fertilization, but increased the proportions of oocytes developing to blastocyst stage by day 7 (13.7+/-0.9% versus 7.2+/-0.9%; P<0.05), total blastocysts (20.5+/-0.9% versus 15.3+/-1.3%; P<0.05), and hatching blastocysts (16.8+/-1.6% versus 12.0+/-1.5%; P<0.05). The greater survival in terms of hatching (78.6+/-7.0) following chilling of blastocysts produced by IVM-IVF of oocytes matured in media supplemented with cysteamine offers promise for applications requiring short-term storage to facilitate transport of in vitro produced bovine embryos.  相似文献   

12.
The occurrence of pregnancies and births after embryo transfer (ET) of in vivo produced embryos is generally more successful compared to that of embryos produced in vitro. This difference in ET success has been observed when embryos of morphological equal (high) quality were used. The incidence of apoptosis has been suggested as an additional criterion to morphological embryo evaluation in order to assess embryo quality and effectively predict embryo viability. In this study, equine, porcine, ovine, caprine and bovine in vivo and in vitro produced morphologically selected high quality (grade-I) blastocysts were compared for the occurrence of apoptosis in blastomeres. The total number of cells per embryo and the number of cells with damaged plasma membranes, fragmented DNA and fragmented nuclei per embryo were assessed in selected blastocysts by combining Ethidium homodimer (EthD-1), terminal dUTP nick end labeling (TUNEL) and Hoechst 33342 staining. In general, the level of blastomere apoptosis was low. A higher level of apoptosis was observed in in vitro produced equine, porcine and bovine blastocysts compared to their in vivo counterparts. Interestingly, 4 of the initially selected 29 bovine in vitro produced blastocysts exhibited extensive signs of apoptosis affecting the inner cell mass (ICM), which is not compatible with a viable conceptus. Repeated occurrence of this observation may explain the lower ET outcome of in vitro produced bovine embryos compared to in vivo produced embryos. It is concluded that, although in morphologically high quality blastocysts of several farm animal species a significant difference exists in the percentages of apoptotic cells between in vivo and in vitro produced embryos, the incidence of apoptosis at the blastocyst stage is at such a low level that it cannot reflect the substantial differences in embryo viability that have been described between in vivo and in vitro produced blastocysts following ET.  相似文献   

13.
Viability of equine embryos produced by oocyte maturation, intracytoplasmic sperm injection and embryo culture to the blastocyst stage in vitro was evaluated after transfer of embryos to recipient mares. No pregnancies were produced after transfer of five blastocysts that had been cultured in G media. Transfer of 10 blastocysts cultured in modified DMEM/F-12 medium produced five pregnancies and three live foals; the two lost pregnancies developed only trophoblast (based on transrectal ultrasonography). To evaluate the status of the inner cell mass, equine blastocysts produced in vivo and in vitro were assessed after differential staining. A discrete inner cell mass could not be appreciated in blastocysts of either source after staining; this was attributed to the presence of a network of cells within the trophoblastic vesicle. Because increased medium calcium concentrations have been reported to decrease the incidence of trophoblast-only pregnancy after transfer of equine nuclear transfer embryos, we investigated the effect of increased calcium concentrations during oocyte maturation or during embryo culture. Increasing calcium concentration of culture medium from 2 to 5.6mM during in vitro oocyte maturation did not affect maturation rate (75 and 68%, respectively) or blastocyst development after fertilization (23 and 27%). However, increasing calcium concentration (from 1.3 to 4.9 mM) of medium used for embryo culture significantly decreased blastocyst development (27% versus 13%, respectively) and adversely affected embryo morphology. More work is needed to optimize culture systems for in vitro production of equine embryos.  相似文献   

14.
Men H  Agca Y  Critser ES  Critser JK 《Theriogenology》2005,64(6):1340-1349
The ability of porcine blastocysts produced in vitro, in the presence or absence of serum, to survive cryopreservation was investigated in this experiment. Porcine oocytes were matured, fertilized and cultured in vitro using serum-free culture systems. Starting at Day 4 of in vitro embryo culture (Day 0 = fertilization), the culture medium was supplemented with 10% fetal bovine serum (FBS). Embryos were cultured under these conditions until Day 6. Embryos cultured with only BSA supplementation served as serum-free controls. Day 6 blastocysts and expanded blastocysts of excellent quality were vitrified using the open pulled straw method. After warming, blastocysts were cultured in the presence of 10% FBS for an additional 18 h to recover. Portions of blastocysts from both groups, without cryopreservation, were also cultured under the same conditions to serve as non-vitrified controls. To further investigate the influence of FBS on the quality of embryos produced, the total cell numbers in Day 6 blastocysts from both groups were compared. In addition, the ratio of viable to total cells in fully recovered blastocysts at each group was examined. Blastocysts produced in the presence of FBS had an increased ability to survive cryopreservation and also had a higher cell number compared to those produced in serum-free systems (P < 0.05). The fully recovered blastocysts had a normal viable to total cell ratio, compared to non-vitrified controls. Overall, this experiment supports the hypothesis that serum supplementation during in vitro production of porcine embryos is beneficial to the ability of a blastocyst to survive cryopreservation.  相似文献   

15.
In 5 replicates a total of 719 immature oocytes recovered from 94 slaughterhouse-derived bovine ovaries were matured and fertilized in vitro, then cultured for 7 to 9 d on a granulosa cell monolayer in TCM 199 supplemented with calf serum. Of 338 blastocysts (47% of oocytes cultured), 301 were vitrified in Hepes/bicarbonate buffered TCM-199 medium, 20% calf serum and dimethylsulfoxide and ethylene glycol as the cryoprotectants. After thawing in 1 M sucrose and subsequent culture in vitro, 237 (79%) of the blastocysts re-expanded and 177 (59%) hatched. Re-expansion and hatching rates differed between the blastocysts vitrified on Day 7 and Day 8 (84 and 69% vs 70 and 41%, respectively). We conclude that the applied methods are relatively simple and inexpensive to use, with an overall efficiency of the in vitro production/vitrification procedure being 1.9 hatched blastocyst/ovary. Therefore, this system seems suitable for large-scale production of cryopreserved bovine embryos for various purposes.  相似文献   

16.
The ratio of male/female embryos may be modified by environmental factors such as maternal diet in vivo and the composition of embryo culture media in vitro. We have used amino acid profiling, a noninvasive marker of developmental potential to compare the effect of sex on the metabolism of bovine blastocysts conceived in vivo and in vitro. Blastocysts were incubated individually for 24 hr in a close‐to‐physiological mixture of amino acids and the depletion or appearance of 18 amino acids measured using HPLC. Blastocysts were then sexed by PCR. Amino acid depletion by in vitro‐produced blastocysts and expanded blastocysts was higher than in embryos conceived in vivo (P = 0.02). When cultured in vitro, female embryos exhibited increased depletion of arginine, glutamate, and methionine and appearance of glycine, while male embryos displayed increased depletion of phenylalanine, tyrosine, and valine. Overall, in vitro‐produced blastocysts exhibited sex‐specific differences in metabolic profiles of 7 out of 18 amino acids; in vivo‐produced, in 2 out of 18. These differences had disappeared by the expanded blastocyst stages. We have also shown that amino acid metabolism can predict the ability of bovine zygotes to develop to the blastocyst stage, providing “proof of principle” for the use of this technology in clinical IVF to select single embryos for transfer and thereby avoid the problem of multiple births. Mol. Reprod. Dev. 77: 285–296, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The growth hormone gene (GH1) and its polypeptide product (GH) have a crucial role in reproduction, embryogenesis and general development. A polymorphism present in the fifth exon of the bovine GH1 gene (GH1 p.Leu127Val) has been associated with GH release and milk production in cattle. The objective of the present study was to examine the genotype frequencies of the GH1 p.Leu127Val polymorphism in bovine blastocysts produced in vitro and in vivo to determine if allelic variation of the GH1 gene affects embryo development and survival. A heterozygous (p.Leu127/Val127) sire was used for in vitro fertilization of oocytes of unknown maternal genotype (n = 104) and known maternal genotype (n = 115). PCR amplification and genotyping of the GH1 gene from Day 8 blastocysts derived from these fertilized oocytes demonstrated that there was significant over-representation from the expected Mendelian ratio of GH1 p.Leu127/Leu127 homozygotes from oocytes of known maternal genotype (P = 0.006). Contrary to this, analysis of in vivo-produced bovine blastocysts of known parental GH1 genotype (n = 69) did not reveal an overrepresentation of GH1 p.Leu127/Leu127 homozygotes. These results suggest that developing in vitro-produced embryos are exposed to a selection process, probably due to a less favorable culture environment, that acts to increase the number of GH1 p.Leu127/Leu127 homozygotes, thereby giving rise to the observed transmission ratio distortion (TRD) of GH1 genotypes when compared to in vivo produced embryos.  相似文献   

18.
This study examined whether the viability, determined in vitro, of DNA-injected bovine embryos produced in vitro was affected by freezing, and if the frozen embryos developed to term following transfer to recipients. In vitro fertilized zygotes were injected with the pBL1 gene and then co-cultured with mouse embryonic fibroblasts (MEF) in CR1aa medium. Embryos were prepared for cryopreservation by exposure to a 10% (v/v) glycerol solution, loaded into 0.25 ml straws and then frozen by conventional slow freezing. Thawing was by rapid warming in water (37 degrees C) and embryos were rehydrated in PBS diluents of 6%, 3% and 0% (v/v) glycerol supplemented with 0.25 M sucrose and 0.5% (w/v) BSA. In Experiment 1, blastocysts that developed from DNA-injected embryos were individually classified into three morphological groups and three stages of development prior to freezing. DNA-injected blastocysts of excellent quality at freezing showed a higher survival rate (78.8+/-10.6%) after thawing than those of good (60. 9+/-16.4%) or fair (12.5+/-5.9%) quality (P<0.05). Post-thaw survival rate, judged in vitro, increased with more advanced stage of blastocyst development at freezing (early 48.8+/-15.9%, mid 52. 1+/-12.6% and expanded 71.2+/-1.1; P<0.05). In Experiment 2, the frozen/thawed embryos were transferred to recipients to examine in vivo viability. Following transfer of one or two embryos per recipient, pregnancy rates at 60 days of gestation were 13.6% (13/96) for frozen embryos and 26.5% (43/162) for fresh embryos (P<0. 05). Of the 12 live calves born from the frozen/thawed embryos, two males (18.3%) were transgenic. None of the live-born calves derived from fresh embryos exhibited the transgene. One of transgenic bulls did not produce transgenic sperm. Three out of 23 calves (13.0%) produced from cows inseminated with semen of the other bull were transgenic, suggesting that this animal was a germ-line mosaic. These studies indicated that the viability of in vitro produced, DNA-injected bovine blastocysts was affected by freezing and by both the quality and stage of development of the embryo prior to freezing. The generation of transgenic cattle demonstrates that it is feasible to freeze DNA-injected, in vitro produced embryos.  相似文献   

19.
The aim of this work was to investigate the minimum technical requirements for production of live offspring with somatic cell nuclear transfer. The experiment was performed in a field type laboratory without micromanipulators and carbon dioxide incubators. All long-term incubations were performed in the Submarine Incubation System (SIS) using various gas mixtures. The somatic cell culture was established from ear biopsy of a 9-year-old Holstein cow. Nuclear transfer was performed using the Handmade Cloning (HMC) technique. Zona-free oocytes were randomly bisected by hand with a disposable blade and a stereomicroscope. Cytoplast were selected using Hoechst staining and a fluorescent microscope. After a two-step fusion embryos were activated with calcium ionophore and dimethylaminopurine. Embryos were cultured in microwells (WOWs) in SOFaaci medium supplemented with 5% cattle serum. In two consecutive experiments, six blastocysts were produced from 52 reconstructed embryos. On Day 7, five blastocysts were transferred into synchronized recipients. All three recipients became pregnant but two pregnancies aborted at 6 and 7 months, respectively. A heifer calf weighing 27 kg was delivered at term by Caesarean section from the third pregnancy. The healthy 6-month-old heifer, the first cloned animal of Africa, is living evidence that nuclear transfer technology may be successfully used under basic laboratory conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号