首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular alterations in the mismatch repair system suggest that this mechanism may be important in the evolution of cutaneous melanoma. Our current study evaluated the expression of two mismatch repair proteins, hMLH1 and hMSH2, in dysplastic nevi (DN) and cutaneous melanoma (CM). Immunohistochemical staining of these proteins was performed on 55 CM and 30 DN specimens. The staining results were divided into three groups: negative, partially positive and strongly positive. Normal adjacent skin cells served as an internal control for positive immunostaining. Altered immunoreactivity of one of the proteins was found in four (13.4%) DN and seven (12.7%) CM. Lack of staining for hMLH1 was observed in two (6.7%) cases of DN and five (9.1%) cases of CM; staining for hMSH2 was absent in two (6.7%) of the DN and two (3.6%) of the CM specimens. Partially positive staining was found in 33.3% and 53.3% for hMLH1 and hMSH2, respectively, in DN, and in 54.5% and 69.1%, respectively, in CMM. Our study shows that complete or partial loss of MMR protein expression occurs in a subset of both DN and CM and may represent a distinct pathway in the development of some DN and CM.  相似文献   

2.
There is a critical need to understand why missense mutations are deleterious. The deleterious effects of missense mutations are commonly attributed to their impact on primary amino acid sequence and protein structure. However, several recent studies have shown that some missense mutations are deleterious because they disturb cis-acting splicing elements-so-called "exonic splicing enhancers" (ESEs). It is not clear whether the ESE-related deleterious effects of missense mutations are common. We have evaluated colocalization of pathogenic missense mutations (found in affected individuals) with high-score ESE motifs in the human mismatch-repair genes hMSH2 and hMLH1. We found that pathogenic missense mutations in the hMSH2 and hMLH1 genes are located in ESE sites significantly more frequently than expected. Pathogenic missense mutations also tended to decrease ESE scores, thus leading to a higher propensity for splicing defects. In contrast, nonpathogenic missense mutations (polymorphisms found in unaffected individuals) and nonsense mutations are distributed randomly in relation to ESE sites. Comparison of the observed and expected frequencies of missense mutations in ESE sites shows that pathogenic effects of >/=20% of mutations in hMSH2 result from disruption of ESE sites and disturbed splicing. Similarly, pathogenic effects of >/=16% of missense mutations in the hMLH1 gene are ESE related. The colocalization of pathogenic missense mutations with ESE sites strongly suggests that their pathogenic effects are splicing related.  相似文献   

3.
ABSTRACT: BACKGROUND: Papillary renal cell carcinoma (RCC) represents a rare tumor, which is divided, based on histological criteria, into two subtypes. In contrast to type I papillary RCC type II papillary RCC shows a worse prognosis. So far, reliable immunohistochemical markers for the distinction of these subtypes are not available. METHODS: In the present study the expression of N(neural)-, E(epithelial)-, P(placental)-, und KSP(kidney specific)-cadherin was examined in 22 papillary RCC of histological type I and 18 papillary RCC of histological type II (n = 40). RESULTS: All papillary RCC type II displayed a membranous expression for N-cadherin, whereas type I did not show any membranous positivity for N-cadherin. E-cadherin exhibited a stronger, but not significant, membranous as well as cytoplasmic expression in type II than in type I papillary RCC. A diagnostic relevant expression of P- and KSP-cadherin could not be demonstrated in both tumor entities. CONCLUSION: Thus N-cadherin represents the first immunhistochemical marker for a clear cut differentiation between papillary RCC type I and type II and could be a target for therapy and diagnostic in the future. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2011556982761733.  相似文献   

4.
The LIM proteins FHL1 and FHL3 are expressed differently in skeletal muscle   总被引:8,自引:0,他引:8  
We have determined the complete mRNA sequence of FHL3 (formerly SLIM2). We have confirmed that it is a member of the family of LIM proteins that share a similar secondary protein structure, renamed as Four-and-a-Half-LIM domain (or FHL) proteins in accordance with this structure. The "half-LIM" domain is a single zinc finger domain that may represent a subfamily of LIM domains and defines this particular family of LIM proteins. The distribution of FHL mRNA expression within a variety of murine tissues is complex. Both FHL1 and FHL3 were expressed in a number of skeletal muscles while FHL2 was expressed at high levels in cardiac muscle. Localisation of FHL3 to human chromosome 1 placed this gene in the proximity of, but not overlapping with, alleles associated with muscle diseases. FHL1 and FHL3 mRNAs were reciprocally expressed in the murine C2C12 skeletal muscle cell line and this suggested that the pattern of expression was linked to key events in myogenesis.  相似文献   

5.
目的:探讨错配修复基因1(hMLH1)、错配修复基因2(hMSH2)启动子区甲基化与子宫内膜异位症的关系。方法:采用甲基化特异性PCR方法检测23例子宫内膜异位症组织和20例正常子宫内膜中hMLH1、hMSH2基因启动子区的甲基化状态。结果:hMLH1基因在子宫内膜异位症中的甲基化率为39%(9/23),在正常子宫内膜组织中的甲基化率为5%(1/20),两者比较,差异有统计学意义(P〈0.05);hMSH2基因在子宫内膜异位症中的甲基化率为8%(2/23),在正常子宫内膜组织中的甲基化率为5%(1/20),两者比较,无明显差异(P〉0.05)。结论:hMLH1基因启动子区甲基化可能与子宫内膜异位症发病有关;hMSH2基因启动子区甲基化与子宫内膜异位症之间不存在显著联系。  相似文献   

6.
7.
目的:探讨人类错配修复基因2 the human mutS homolog 2(hMSH2)人类错配修复基因1human mutL homolog 1(hMLH1)在涎腺粘液表皮样癌(salivary gland mucoepidermoid carcinoma-SMEC)表达水平及临床病理意义。重点研究人类错配修复基因2和人类错配修复基因1与目标肿瘤发生的相关性。方法:采用HE染色方法筛选共计47例典型病例,采用免疫组织化学染色分析37例SMEC、10例正常组织涎腺中hMSH2、hMLH1的表达水平,结合计算机辅助高清晰图像分析处理技术做出综合评价。结果:hMLH1的表达与SMEC分化呈负相关(P0.05);hMLH1的低表达或表达缺失在低分化的SMEC中较普遍,在中分化和高分化中表达逐步增强;hMSH2的表达与SMEC分化不相关(P0.05)。结论:hMSH2、hMLH1异常表达与涎腺黏液表皮样的发生、演进存在相关性,以hMLH1、hMSH2为切入点为涎腺黏液表皮样癌治疗与预防提供参考依据。  相似文献   

8.
The aim of this work was to study the mutation profile in hMSH2 and hMLH1 genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients in India. On the basis of the Bethesda criteria, 31 colorectal cancer patients were studied first for microsatellite instability, using the five markers recommended by the Bethesda guidelines. Twelve of 31 tumor samples were found to be MSI-H, 9 of 31 were MSI-L, and the rest were MSS. The 12 patients with MSI-H were analyzed for mutations in hMSH2 and hMLH1 genes using PCR-denaturing high-performance liquid chromatography (dHPLC), followed by sequencing of samples showing abnormal peaks. Of the five mutations detected, three were found to be deleterious mutations (hMSH2-R680X, hMLH1-E671X, and a splice junction mutation IVS16-2A --> G); one had a mutation of probable significance (hMLH1-C680G) and one was of unknown significance (hMSH2-R171K). This study has also shown that most of the early-onset colon (4/7) and early-onset rectal (15/21) cancers are MSS or MSI-L. This is the first study to describe the mutation in hMSH2 and hMLH1 in Indian patients, a low incidence region for colorectal cancer. A two-stage procedure using MSI testing followed by PCR-dHPLC was found to be an efficient method in studying the mutation profile in high-risk patients.  相似文献   

9.
Polymorphisms of DNA repair genes are associated with renal cell carcinoma   总被引:2,自引:0,他引:2  
DNA repair gene alterations have been shown to cause a reduction in DNA repair capacity and may influence an individual's susceptibility to carcinogenesis. Single nucleotide polymorphisms (SNPs) of DNA repair genes have been shown to cause a reduction in repair activity. We hypothesized that SNPs of DNA repair genes may be a risk factor for renal cell carcinoma (RCC). To test this hypothesis, DNA samples from 112 cases of renal cell cancer and healthy controls (n=180) were analyzed by PCR-RFLP to determine the genotypic frequency of six different polymorphic loci on five DNA repair genes (XRCC1, XPC, ERCC1, XRCC3, and XRCC7). The chi(2) test was applied to compare the genotype frequency between patients and controls. We found that the frequency of 399Gln variant at XRCC1 Arg399Gln was significantly higher in RCC cases than in controls (OR=2.83, 95%CI=1.24-6.49, P=0.01). The frequency of T-A haplotype of XRCC1 194 Trp and XRCC1 399Gln was significantly higher in RCC than controls. No differences in genotypes were observed at the other sites. This is the first report on SNPs of DNA repair genes in renal cell carcinoma that suggests XRCC1 399Gln polymorphism may be a risk factor for RCC. Our present data suggest that the XRCC1 399Gln allele may be linked to susceptibility for RCC.  相似文献   

10.
11.
The prevalence of pathological germline mutations in colorectal cancer has been widely studied, as germline mutations in the DNA mismatch repair genes hMLH1 and hMSH2 confer a high risk of colorectal cancer. However, because the sample size and population of previous studies are very different from each other, the conclusions still remain controversial. In this paper, Databases such as PubMed were applied to search for related papers. The data were imported into Comprehensive Meta-Analysis V2, which was used to estimate the weighted prevalence of hMLH1 and hMSH2 pathological mutations and compare the differences of prevalence among different family histories, ethnicities and related factors. This study collected and utilized data from 102 papers. In the Amsterdam-criteria positive group, the prevalence of pathological germline mutations of the hMLH1 and hMSH2 genes was 28.55% (95%CI 26.04%–31.19%) and 19.41% (95%CI 15.88%–23.51%), respectively, and the prevalence of germline mutations in hMLH1/hMSH2 was 15.44%/10.02%, 20.43%/13.26% and 15.43%/11.70% in Asian, American multiethnic and European/Australian populations, respectively. Substitution mutations accounted for the largest proportion of germline mutations (hMLH1: 52.34%, hMSH2: 43.25%). The total prevalence of mutations of hMLH1 and hMSH2 in Amsterdam-criteria positive, Amsterdam-criteria negative and sporadic colorectal cancers was around 45%, 25% and 15%, respectively, and there were no obvious differences in the prevalence of germline mutations among different ethnicities.  相似文献   

12.
变性高效液相色谱法筛检hMLH1和hMSH2微小突变技术   总被引:1,自引:0,他引:1  
目的:建立基于变性高效液相色谱法(DHPLC)的快速筛检错配修复基因hMLH1和hMSH2微小突变的技术平台。方法:自行设计PCR扩增hMLH1和hMSH2各外显子的引物,应用DHPLC检测26个遗传性非息肉病性结直肠癌(HNPCC)家系的先证者hMLH1和hMSH2种系微小突变,并与先前进行的DNA直接测序结果相比较。结果:hMLH1与hMSH2各外显子的PCR扩增引物,均能很好地扩增出相应的外显子及剪接区;DHPLC检出了所有已知突变,突变阳性筛检与阴性筛检的灵敏度和特异性均为100%;hMLH1的扩增子12A和hMSH2的扩增子2、3、7、5中相应外显子的剪接区跨越2个温度,而且相差较大(2.2-8.5℃):与DNA直接测序相比较,DHPLC具有快速、高效、低劳动强度、费用低、人为误差小、灵敏度和特异性高等优点。结论:基于DH- PLC的突变筛检平台,能够有效地筛检hMLH1和hMSH2微小突变,并具有较高的费用效率比。  相似文献   

13.
张渊智  盛剑秋  张宏  陈彪  李世荣 《生物磁学》2009,(15):2854-2857
目的:探讨遗传性非息肉病性结直肠癌(HNPCC)家系中错配修复基因hMLH1和hMSH2种系突变携带者发生HNPCC相关恶性肿瘤的累积风险度。方法:通过随访14个HNPCC家系中222例hMLH1或hMSH2种系突变携带者与非携带者,应用SPSS14.0统计软件包分析种系突变携带者在不同年龄点发生HNPCC相关恶性肿瘤的累积风险度及两种基因种系突变累积患癌风险的差异。结果:hMLH1或hMSH2种系突变携带者肿瘤发生率为63.8%(60/94),非突变携带者肿瘤发生率为0.8%(1/128),种系突变携带者发生恶性肿瘤的相对危险度为非突变携带者的317.6倍;种系突变携带者发生各种HNPCC相关恶性肿瘤的累积风险度随年龄的增加逐渐增大,在60岁时发生各种HNPCC相关恶性肿瘤、结直肠癌、胃癌等的平均累积风险度分别为92.4%、81.3%、29.6%,40岁以前发生胃癌的平均风险度较低(6.1%);hMLH1与hMSH2种系突变携带者发生各种HNPCC相关恶性肿瘤、结直肠癌、胃癌等累积风险度的差异无统计学意义(均为P>0.05)。结论:hMLH1或hMSH2种系突变携带者为HNPCC家系中患癌高危人群,发生HNPCC相关恶性肿瘤的风险度随年龄的增加而增大,最常发生恶性肿瘤的部位为胃和结直肠;hMLH1与hMSH2种系突变携带者发生各种HNPCC相关恶性肿瘤的累积风险度无明显差异。  相似文献   

14.
15.
DNA methylation is one of the epigenetic mechanisms and plays important roles during oogenesis and early embryo development in mammals. DNA methylation is basically known as adding a methyl group to the fifth carbon atom of cytosine residues within cytosine–phosphate–guanine (CpG) and non-CpG dinucleotide sites. This mechanism is composed of two main processes: de novo methylation and maintenance methylation, both of which are catalyzed by specific DNA methyltransferase (DNMT) enzymes. To date, six different DNMTs have been characterized in mammals defined as DNMT1, DNMT2, DNMT3A, DNMT3B, DNMT3C, and DNMT3L. While DNMT1 primarily functions in maintenance methylation, both DNMT3A and DNMT3B are essentially responsible for de novo methylation. As is known, either maintenance or de novo methylation processes appears during oocyte and early embryo development terms. The aim of the present study is to investigate spatial and temporal expression levels and subcellular localizations of the DNMT1, DNMT3A, and DNMT3B proteins in the mouse germinal vesicle (GV) and metaphase II (MII) oocytes, and early embryos from 1-cell to blastocyst stages. We found that there are remarkable differences in the expressional levels and subcellular localizations of the DNMT1, DNMT3A and DNMT3B proteins in the GV and MII oocytes, and 1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stage embryos. The fluctuations in the expression of DNMT proteins in the analyzed oocytes and early embryos are largely compatible with DNA methylation changes and genomic imprintestablishment appearing during oogenesis and early embryo development. To understand precisemolecular biological meaning of differently expressing DNMTs in the early developmental periods, further studies are required.  相似文献   

16.
目的比较肾透明细胞癌Caki-1细胞系与正常肾上皮细胞系ASE-5063中的差异表达基因(DEGs),寻找潜在的肾透明细胞癌特异性分子标志物。 方法利用GEO数据库自带的GEO2R在线分析工具分析基因芯片GSE78179,将筛选出的DEGs分别导入Metascape、STRING以及Cytoscape进行综合分析并筛选出核心基因。最后使用FunRich等软件对筛选出的核心基因进行GO和KEGG富集分析。 结果共筛选出562个DEGs,其中上调基因345个,下调基因217个。进一步使用MCODE筛选出36个关键基因,GO功能分析发现这些基因与细胞粘附分子活性、趋化因子活性、细胞通讯和信号转导等密切相关;KEGG通路富集结果则表明差异基因主要集中在趋化因子信号通路、TNF信号通路以及NF-κB信号通路等多种与肿瘤相关的通路上。 结论运用生物信息学方法筛选出肾透明细胞癌Caki-1细胞系中DEGs,其中数个核心基因广泛参与多种肿瘤的病理进程,但尚未在肾透明细胞癌有相关研究报道,提示其可能是治疗肾透明细胞癌的潜在靶点。  相似文献   

17.
18.
Renal cell carcinoma (RCC) is the most common adult renal epithelial cancer susceptible to metastasis and patients with irresectable RCC always have a poor prognosis. Long noncoding RNAs (lncRNAs) have recently been documented as having critical roles in the etiology of RCC. Nevertheless, the prognostic significance of lncRNA-based signature for outcome prediction in patients with RCC has not been well investigated. Therefore, it is essential to identify a lncRNA-based signature for predicting RCC prognosis. In the current study, we comprehensively analyzed the RNA sequencing data of the three main pathological subtypes of RCC (kidney renal clear cell carcinoma [KIRC], kidney renal papillary cell carcinoma [KIRP], and kidney chromophobe carcinoma [KICH]) from The Cancer Genome Atlas (TCGA) database, and identified a 6-lncRNA prognostic signature with the help of a step-wise multivariate Cox regression model. The 6-lncRNA signature stratified the patients into low- and high-risk groups with significantly different prognosis. Multivariate Cox regression analysis showed that predictive value of the 6-lncRNA signature was independent of other clinical or pathological factors in the entire cohort and in each cohort of RCC subtypes. In addition, the three independent prognostic clinical factors (including age, pathologic stage III, and stage IV) was also stratified into low- and high-risk groups basis on the risk score, and the stratification analyses demonstrated that the high-risk score was a poor prognostic factor. In conclusion, these findings indicate that the 6-lncRNA signature is a novel prognostic biomarker for all three subtypes of RCC, and can increase the accuracy of predicting overall survival.  相似文献   

19.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a syndrome characterized by familial predisposition to colorectal carcinoma and extracolonic cancers of the gastrointestinal, urological, and female reproductive tracts. This dominant disorder is caused by germline defects in one of at least five DNA mismatch repair (MMR) genes: hMLH1, hMSH2, hPMS1, hPMS2, and hMSH6 (GTBP). Germline mutations of hMSH2 and hMLH1 are also frequently identified in families not fulfilling all the Amsterdam criteria, thereby demonstrating that the involvement of these genes is not confined to typical HNPCC. To evaluate the respective involvement of the various MMR genes in typical and incomplete HNPCC syndromes, we have performed an analysis of the hMLH1, hMSH2, hPMS1, hPMS2, and hMSH6 genes in a large series of French kindreds (n=75) with colorectal tumors and/or aggregation of extracolonic cancers belonging to the HNPCC spectrum. Mutational analysis has been performed in all families, without preselection for the tumor phenotype. We have detected 26 pathogenic germline mutations of the hMLH1 and hMSH2 genes and several novel variants of the hPMS1, hPMS2, and hMSH6 genes. Our data confirm that, regardless of the type of families and the tumor phenotype, hPMS1, hPMS2, and hMSH6 germline mutations are rare in familial aggregation of colorectal cancers. Furthermore, they suggest that the presence of multiple primary malignancies in a single individual and the observation of extracolonic tumors in relatives of a colorectal cancer patient should be included among the guidelines for referring patients for genetic testing. Electronic Publication  相似文献   

20.
Denaturing high-performance liquid chromatography (DHPLC) is an efficient method for detection of mutations involving a single or few numbers of nucleotides, and it has been successfully used for mutation detection in disease-related genes. Colorectal cancer is one of the most common cancers, and mutations in the genes for hereditary nonpolyposis colon cancer (HNPCC), hMLH1 and hMSH2, also involve mainly point mutations. Sequence analysis is supposed to be a screening method with high sensitivity; however, it is time-consuming and expensive. We therefore decided to test sensitivity and reproducibility of DHPLC for 71 sequence variants in hMLH1 and hMSH2 initially found by sequence analysis in DNA samples of German HNPCC patients. DHPLC conditions of the PCR products were based on the melting pattern of the wild-type sequence of the corresponding PCR fragments. All but one of the 71 mutations was detected using DHPLC (sensitivity of 97%). Running time per sample averaged only 7 min, and the system is highly automated. Thus DHPLC is a rapid and sensitive method for the detection of hMLH1 and hMSH2 sequence variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号