首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CyclosporinA (CsA) is an immunosuppressive drug which induces severe adverse effects such as cardiotoxicity and nephrotoxicity. In several therapeutic protocols CsA is used in association with corticosteroids to obtain better therapeutic results. Recently, our studies showed that CsA increases blood pressure while inhibit Nitric Oxide (NO) production in vivo. In this study we evaluated in rat cardiomyocytes the effects of CsA, used alone or in association with Hydrocortisone (HY), on intracellular calcium concentration, NO production and lipid peroxidation (MDA level). Our results demonstrated that CsA increased intracellular calcium and such effect was dose-dependent. HY used alone, slightly decreased intracellular calcium, while dramatically reduced CsA-induced calcium fluxes. CsA (3.2 microM) increased lipid peroxidation and this effect was blunted by HY. Both CsA and HY inhibited NO production in rat cardiomyocytes acting on this pathway synergically. Our results demonstrated that in rat cardiomyocytes, CsA toxicity is due to a calcium overload, which in turn induce lipid peroxidation and determines oxidative stress-induced cell injury. Treatment with HY effectively inhibits CsA-induced toxicity, decreasing lipid peroxidation as well as calcium intracellular concentration. Our findings seem to suggest that glucocorticoids may be effective in reducing CsA-induced cardiotoxicity at concentrations which are consistent with current therapeutic doses.  相似文献   

2.
The aim of this study was to investigate whether hATMSCs protect against cyclosporine (CsA)-induced renal injury. CsA (7.5 mg/kg) and hATMSCs (3×106/5 mL) were administered alone and together to rats for 4 weeks. The effect of hATMSCs on CsA-induced renal injury was evaluated by assessing renal function, interstitial fibrosis, infiltration of inflammatory cells, and apoptotic cell death. Four weeks of CsA-treatment produced typical chronic CsA-nephropathy. Combined treatment with CsA and hATMSCs did not prevent these effects and showed a trend toward further renal deterioration. To evaluate why hATMSCs aggravated CsA-induced renal injury, we measured oxidative stress, a major mechanism of CsA-induced renal injury. Both urine and serum 8-hydroxydeoxyguanosine(8-OHdG) levels were higher in the CsA+hATMSCs group than in the CsA group (P<0.05). An in vitro study showed similar results. Although the rate of apoptosis did not differ significantly between HK-2 cells cultured in hATMSCs-conditioned medium and those cultured in DMEM, addition of CsA resulted in greater apoptosis in HK-2 cells cultured in hATMSCs-conditioned medium. Addition of CsA increased oxidative stress in the hATMSCs-conditioned medium. The results of our study suggest that treatment with hATMSCs may aggravate CsA-induced renal injury because hATMSCs cause oxidative stress in the presence of CsA.  相似文献   

3.
Cyclosporine A (CsA) use is associated with several side effects, the most important of which is nephrotoxicity that includes, as we previously showed, tubular injury and interstitial fibrosis. Recently, many researchers have been interested in minimizing these effects by pharmacological interventions. To do this, we tested whether the administration of a red wine polyphenol, Provinol (PV), prevents the development of CsA-induced nephrotoxicity. Rats were treated for 21 days and divided into four groups: control; group treated with PV (40 mg/kg/day by oral administration in tap water); group treated with CsA (15 mg/kg/day by subcutaneous injection); group treated with CsA plus PV. CsA produced a significant increase of systolic blood pressure; it did not affect urinary output, but caused a significant decrease in creatinine clearance. These side effects were associated with an increase in conjugated dienes, which are lipid peroxidation products, inducible NO-synthase (iNOS), and nuclear factor (NF)-kB, which are involved in antioxidant damage. However, PV prevented these negative effects through a protective mechanism that involved reduction of both oxidative stress and increased iNOS and NF-kB expression induced by CsA. These results provide a pharmacological basis for the beneficial effects of plant-derived polyphenols against CsA-induced renal damage associated with CsA.  相似文献   

4.
Cyclosporine A (CsA) is a potent and effective immunosuppressive agent, but its action is frequently accompanied by severe renal toxicity. The precise mechanism by which CsA causes renal injury is not known. Reactive oxygen species (ROS) have been shown to play a role, since CsA-induced renal lipid peroxidation is attenuated in vivo and in vitro by the concomitant administration of antioxidants such as vitamin E. We show here the effect of the antioxidant melatonin (MLT), a hormone produced by the pineal gland during the dark phase of the circadian cycle, in a model of CsA nephrotoxicity in the isolated and perfused rat kidney. Kidneys isolated from rats were divided into seven groups. At the end of perfusion, malondialdehyde and 4-hydroxyalkenals (MDA+4-HDA), metabolites of nitric oxide N O 2 &#109 +N O 3 &#109 were measured and histopathological examination was performed. CsA treatment induced a significant increase in MDA+4-HDA while not affecting the nitric oxide metabolite level. MLT remarkably prevented glomerular collapse and tubular damage as revealed by morphometric analysis. Our study suggests that lipid peroxidation is an early important event in the pathogenesis of CsA nephrotoxicity and that MLT is able to protect kidneys from CsA at a relatively low concentration.  相似文献   

5.
Cyclosporine A (CsA) is a potent and effective immunosuppressive agent, but its action is frequently accompanied by severe renal toxicity. The precise mechanism by which CsA causes renal injury is not known. Reactive oxygen species (ROS) have been shown to play a role, since CsA-induced renal lipid peroxidation is attenuated in vivo and in vitro by the concomitant administration of antioxidants such as vitamin E. We show here the effect of the antioxidant melatonin (MLT), a hormone produced by the pineal gland during the dark phase of the circadian cycle, in a model of CsA nephrotoxicity in the isolated and perfused rat kidney. Kidneys isolated from rats were divided into seven groups. At the end of perfusion, malondialdehyde and 4-hydroxyalkenals (MDA+4-HDA), metabolites of nitric oxide N O 2 - +N O 3 - were measured and histopathological examination was performed. CsA treatment induced a significant increase in MDA+4-HDA while not affecting the nitric oxide metabolite level. MLT remarkably prevented glomerular collapse and tubular damage as revealed by morphometric analysis. Our study suggests that lipid peroxidation is an early important event in the pathogenesis of CsA nephrotoxicity and that MLT is able to protect kidneys from CsA at a relatively low concentration.  相似文献   

6.
Functional and morphological changes of blood vessels in cyclosporine A (CsA)-induced hypertension and nephrotoxicity were studied in spontaneously hypertensive rats (SHR). The role of the L-arginine-nitric oxide (NO) pathway and the importance of oxidative stress in CsA toxicity were also assessed. SHR (7-8 week old) on a high-sodium diet were treated with CsA (5 mg kg(-1) d(-1) s.c.) for 6 weeks. A proportion of the rats were treated concomitantly with the NO precursor L-arginine (1.7 g kg(-1)d(-1) p.o.). CsA elevated blood pressure and caused renal dysfunction and morphological nephrotoxicity. CsA also impaired mesenteric and renal arterial function and caused structural damage to intrarenal and extrarenal small arteries and arterioles. Medial atrophy of the mesenteric resistance vessels and decreased viability of smooth muscle cells of the thoracic aorta were observed. Renal and arterial damage was associated with the presence of inflammatory cells. CsA did not affect markers of the L-arginine-NO pathway (urinary cyclic GMP excretion or endothelial or inducible NO synthase expression in kidney, aorta or heart) or oxidative stress (urinary excretion of 8-isoprostaglandin F2alpha, plasma urate concentration or total radical trapping capacity). Concomitant L-arginine treatment did not affect CsA-induced changes in blood pressure or histological findings but tended to alleviate the arterial dysfunction. The renal and cardiovascular toxicity of CsA was associated with arterial dysfunction and morphological changes in small arteries and arterioles in SHR on a high-sodium diet. The findings did not support the role of oxidative stress or a defect in the L-arginine-NO pathway.  相似文献   

7.
The calcineurin-inhibitors (CNIs) cyclosporine (CsA) and tacrolimus (TAC) remain the pillars of modern immunosuppression regimens used in solid organ transplantation. Nephrotoxicity is an adverse effect that limits their successful use. The precise molecular mechanisms underlying this nephrotoxicity remain unclear. Using SILAC together with LC-MALDI-TOF/TOF, we investigated the CNIs-induced proteomic perturbations in renal cells. Among the 495 proteins quantifiable in both forward and reverse SILAC, 69 displayed CsA-induced perturbations: proteins involved in ER-stress/protein folding, apoptosis, metabolism/transport or cytoskeleton pathways were up-regulated, while cyclophilin B as well as nuclear and RNA-processing proteins were down-regulated. Co-administration of CsA with the antioxidant N-acetylcysteine significantly decreased lipid peroxidation and also partially corrected the CsA-induced unfolded protein response. TAC toxicity profile was apparently different from that of CsA, especially without perturbation of cyclophilins A and B, up-regulation of ER-chaperones nor down-regulation of a number of nuclear proteins. These results provide a new insight and are consistent with recent data regarding the molecular mechanisms of CNIs-induced nephrotoxicity. Our findings offer new directions for future research aiming to identify specific biomarkers of CsA nephrotoxicity.  相似文献   

8.
9.
Cyclosporine A (CsA) has been universally used as an immunosuppressant for the management of organ transplantation and various autoimmune diseases. However, nephrotoxicity due to CsA remains to be an important clinical challenge. In the present investigation, an attempt has been made to appraise the effect of sulphated polysaccharides on oxidative renal injury caused by CsA. Adult male Wistar rats were divided into four groups. Two groups received CsA by oral gavage (25 mg/kg body weight) for 21 days to provoke nephrotoxicity, one of which simultaneously received sulphated polysaccharides subcutaneously, (5 mg/kg body weight). A vehicle (olive oil) treated control group and sulphated polysaccharides drug control were also built-in. An increase in lipid peroxidation along with abnormal levels of enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and glucose-6-phosphate dehydrogenase) and non-enzymic antioxidants (glutathione, vitamin C and vitamin E) are the salient features observed in CsA induced nephrotoxicity. CsA induced impairment of renal toxicity was evident from the marked decline in the activities of renal marker enzymes like alkaline phosphatase, acid phosphatase and lactate dehydrogenase, as well as an apparent increase in the serum urea, uric acid and creatinine; diagnostic of renal damage was normalized by sulphated polysaccharides co-administration. Sulphated polysaccharides treatment showed an effectual role in counteracting the free radical toxicity by bringing about a significant decrease in peroxidative levels and increase in antioxidant status. These observations emphasize the antioxidant property of sulphated polysaccharides and its cytoprotective action against CsA induced nephrotoxicity.  相似文献   

10.
Cyclosporine A (CsA)-induced direct failures in hypothalamic-pituitary-gonadal axis and Sertoli cell phagocytic function have been considered for testicular toxicity so far. It has clearly been reported that oxidative stress leads to damage in sperm functions and structure of the testis. Therefore, this study was conducted to demonstrate whether CsA causes testicular and spermatozoal toxicity associated with the oxidative stress, and to investigate the possible protective effect of lycopene against CsA-induced damages in all reproductive organs and sperm characteristics in male rats. While the daily administration of CsA at the dose 15 mg/kg for 21 days significantly decreased the seminal vesicles weight, epididymal sperm concentration, motility, testicular tissue glutathione (GSH), glutathione peroxidase (GSH-Px) and catalase (CAT), diameter of seminiferous tubules and germinal cell thickness, it increased malondialdehyde (MDA) level and abnormal sperm rates along with degeneration, necrosis, desquamative germ cells in testicular tissue. However, the CsA along with simultaneous administration of lycopene at the dose of 10mg/kg markedly ameliorated the CsA-induced all the negative changes observed in the testicular tissue, sperm parameters and oxidant/antioxidant balance. In conclusion, CsA-induced oxidative stress leads to the structural and functional damages in the testicular tissue and sperm quality of rats and, lycopene has a potential protective effect on these damages.  相似文献   

11.
The main side effect of cyclosporine A (CsA), a widely used immunosuppressive drug, is nephrotoxicity. Early detection of CsA-induced acute nephrotoxicity is essential for stop or minimize kidney injury, and timely detection of chronic nephrotoxicity is critical for halting the drug and preventing irreversible kidney injury. This study aimed to identify urinary biomarkers for the detection of CsA-induced nephrotoxicity. We allocated salt-depleted rats to receive CsA or vehicle for 7, 14 or 21 days and evaluated renal function and hemodynamics, microalbuminuria, renal macrophage infiltration, tubulointerstitial fibrosis and renal tissue and urinary biomarkers for kidney injury. Kidney injury molecule-1 (KIM-1), tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), fibronectin, neutrophil gelatinase-associated lipocalin (NGAL), TGF-β, osteopontin, and podocin were assessed in urine. TNF-α, IL-6, fibronectin, osteopontin, TGF-β, collagen IV, alpha smooth muscle actin (α -SMA) and vimentin were assessed in renal tissue. CsA caused early functional renal dysfunction and microalbuminuria, followed by macrophage infiltration and late tubulointerstitial fibrosis. Urinary TNF-α, KIM-1 and fibronectin increased in the early phase, and urinary TGF-β and osteopontin increased in the late phase of CsA nephrotoxicity. Urinary biomarkers correlated consistently with renal tissue cytokine expression. In conclusion, early increases in urinary KIM-1, TNF-α, and fibronectin and elevated microalbuminuria indicate acute CsA nephrotoxicity. Late increases in urinary osteopontin and TGF-β indicate chronic CsA nephrotoxicity. These urinary kidney injury biomarkers correlated well with the renal tissue expression of injury markers and with the temporal development of CsA nephrotoxicity.  相似文献   

12.
13.
The present study was undertaken to evaluate the effects of platelet activating factor (PAF) antagonists, PMS 536 and PMS 549, on LLC-PK1 toxicity induced by Cyclosporin A (CsA). The LLC-PK1 cell line was used as an in vitro model. CsA cytotoxicity was determined in relation with ATP content. Alkaline phosphatase and N-acetyl-beta-glucosaminidase activities, which are directly correlated with tubular cell damage, were used as markers for renal injury. CsA alone provoked in the LLC-PKI cell line a marked decrease in cell viability (55%) and membrane integrity (56%), and a significant increase in AP and NAG activities and in oxidized glutathione level. The ATP decrease and the ADP increase, resulting in a decline of the ATP/ADP ratio, is indicative of an anoxic energy charge. Co-treatment with CsA plus PMS 536 or PMS 549 resulted in a minor decrease in cell viability and in significant membrane integrity recovery. Moreover, the ATP depletion and the increase in ATP metabolites, hypoxanthine and uric acid induced by CsA were strongly prevented by PAF antagonists. In contrast, GSSG level remained high as in CsA-treated cells, but GSH level was in the range of controls. Our results suggest that both PAF antagonists attenuate CsA oxidative injury and prevent energy metabolism disturbances probably by maintaining cell integrity. The lipophilicity of both molecules may be responsible for membrane stabilization and may confer the protective effects observed in energy metabolism. The results obtained with PMS 536 and PMS 549 are indicative of interactions between PAF and CsA in renal injury and suggest the therapeutic potential of these PAF-antagonists against CsA-induced nephrotoxicity.  相似文献   

14.
Renal proximal tubule injury is induced by agents/conditions known to cause endoplasmic reticulum (ER) stress, including cyclosporine A (CsA), an immunosuppressant drug with nephrotoxic effects. However, the underlying mechanism by which ER stress contributes to proximal tubule cell injury is not well understood. In this study, we report lipid accumulation, sterol regulatory element-binding protein-2 (SREBP-2) expression, and ER stress in proximal tubules of kidneys from mice treated with the classic ER stressor tunicamycin (Tm) or in human renal biopsy specimens showing CsA-induced nephrotoxicity. Colocalization of ER stress markers [78-kDa glucose regulated protein (GRP78), CHOP] with SREBP-2 expression and lipid accumulation was prominent within the proximal tubule cells exposed to Tm or CsA. Prolonged ER stress resulted in increased apoptotic cell death of lipid-enriched proximal tubule cells with colocalization of GRP78, SREBP-2, and Ca(2+)-independent phospholipase A(2) (iPLA(2)β), an SREBP-2 inducible gene with proapoptotic characteristics. In cultured HK-2 human proximal tubule cells, CsA- and Tm-induced ER stress caused lipid accumulation and SREBP-2 activation. Furthermore, overexpression of SREBP-2 or activation of endogenous SREBP-2 in HK-2 cells stimulated apoptosis. Inhibition of SREBP-2 activation with the site-1-serine protease inhibitor AEBSF prevented ER stress-induced lipid accumulation and apoptosis. Overexpression of the ER-resident chaperone GRP78 attenuated ER stress and inhibited CsA-induced SREBP-2 expression and lipid accumulation. In summary, our findings suggest that ER stress-induced SREBP-2 activation contributes to renal proximal tubule cell injury by dysregulating lipid homeostasis.  相似文献   

15.
Previous results showed that pyrazole potentiates lipopolysaccharide (LPS)-induced liver injury in mice. Mechanisms involved the overexpression of cytochrome P450 2E1 (CYP2E1), oxidative stress, and activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). The current study was carried out to test the hypothesis that the mitochondria permeability transition (MPT) plays a role in this pyrazole plus LPS toxicity. Mice were injected intraperitoneally with pyrazole for 2 days, followed by a challenge with LPS with or without treatment with cyclosporin A (CsA), an inhibitor of the MPT. Serum alanine aminotransferase and aspartate aminotransferase were increased by pyrazole plus LPS treatment, and CsA treatment could attenuate these increases. CsA also prevented pyrazole plus LPS-induced hepatocyte necrosis. Formation of 4-hydroxynonenal protein adducts and 3-nitrotyrosine protein adducts in liver tissue was increased by the pyrazole plus LPS treatment, and CsA treatment blunted these increases. Swelling, cytochrome c release from mitochondria to the cytosol, and lipid peroxidation were increased in mitochondria isolated from the pyrazole plus LPS-treated mice, and CsA treatment prevented these changes. CsA did not prevent the increased levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), pp38 MAPK, and p-JNK2. In conclusion, although CsA does not prevent elevations in upstream mediators of the pyrazole plus LPS toxicity (iNOS, TNF-α, CYP2E1, MAPK), it does protect mice from the pyrazole plus LPS-induced liver toxicity by preventing the MPT and release of cytochrome c and decreasing mitochondrial oxidative stress. These results indicate that mitochondria are the critical targets of pyrazole plus LPS in mediating liver injury.  相似文献   

16.
Amyloid-beta peptide (Aβ) is known to induce the redox imbalance, mitochondrial dysfunction and caspase activation, resulting in neuronal cell death. Treatment with antioxidants provided a new therapeutic strategy for Alzheimer’s disease (AD) patients. Here we investigate the effects of purple sweet potato anthocyanins (PSPA), the known strong free radical scavengers, on Aβ toxicity in PC12 cells. The results showed that pretreatment of PC12 cells with PSPA reduced Aβ-induced toxicity, intracellular reactive oxygen species (ROS) generation and lipid peroxidation dose-dependently. In parallel, cell apoptosis triggered by Aβ characterized with the DNA fragmentation and caspase-3 activity were also inhibited by PSPA. The concentration of intracellular Ca2+ and membrane potential loss associated with cell apoptosis were attenuated by PSPA. These results suggested that PSPA could protect the PC-12 cell from Aβ-induced injury through the inhibition of oxidative damage, intracellular calcium influx, mitochondria dysfunction and ultimately inhibition of cell apoptosis. The present study indicates that PSPA may be a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.  相似文献   

17.
Exposure to lead induces oxidative stress and renal damage. Although most forms of oxidative stress are characterized by simultaneous elevation of nitrogen and oxidative species, lead-induced oxidative stress is unusual in that it is associated with a reduction in nitric oxide (NO) levels in the kidney. The role of NO in kidney injury is controversial; some studies suggest that it is associated with renal injury, whereas others show that it exerts protective effects. Concentration-dependent effects have also been proposed, linking low levels with vasodilatation and high levels with toxicity. The aim of this study was to evaluate the effects of melatonin co-exposure on the lead-induced reduction in renal NO levels. We found that sub-acute intraperitoneal administration of 10 mg/kg/day of lead for 15 days induced toxic levels of lead in the blood and caused renal toxicity (pathological and functional). Under our experimental conditions, lead induced an increase in lipid peroxidation and a decrease in NO. Melatonin co-treatment decreased lead-induced oxidative stress (peroxidation level) and toxic effects on kidneys without altering the lead-induced reduction in renal NO. These results suggest that, in our experimental model, the reduction in renal NO levels by lead exposure is not the only responsible factor for lead-induced kidney damage.  相似文献   

18.
Renal tubular cell injury induced by oxidative stress via mitochondrial collapse is thought to be the initial process of renal calcium crystallization. Mitochondrial collapse is generally caused by mitochondrial permeability transition pore (mPTP) opening, which can be blocked by cyclosporine A (CsA). Definitive evidence for the involvement of mPTP opening in the initial process of renal calcium crystallization, however, is lacking. In this study, we examined the physiological role of mPTP opening in renal calcium crystallization in vitro and in vivo. In the in vitro study, cultured renal tubular cells were exposed to calcium oxalate monohydrate (COM) crystals and treated with CsA (2 μM). COM crystals induced depolarization of the mitochondrial membrane potential and generated oxidative stress as evaluated by Cu-Zn SOD and 4-HNE. Furthermore, the expression of cytochrome c and cleaved caspase 3 was increased and these effects were prevented by CsA. In the in vivo study, Sprague-Dawley rats were administered 1% ethylene glycol (EG) to generate a rat kidney stone model and then treated with CsA (2.5, 5.0, and 10.0 mg/kg/day) for 14 days. EG administration induced renal calcium crystallization, which was prevented by CsA. Mitochondrial collapse was demonstrated by transmission electron microscopy, and oxidative stress was evaluated by measuring Cu-Zn SOD, MDA, and 8-OHdG generated by EG administration, all of which were prevented by CsA. Collectively, our results provide compelling evidence for a role of mPTP opening and its associated mitochondrial collapse, oxidative stress, and activation of the apoptotic pathway in the initial process of renal calcium crystallization.  相似文献   

19.
The use of cyclosporine A (CsA) is limited by its severe nephrotoxicity that includes reversible vasoconstrictor effects and proximal tubule cell injury, the latter associated whith chronic kidney disease progression. The mechanisms of CsA-induced tubular injury, mainly on the S3 segment, have not been completely elucidated. Kidney androgen-regulated protein (KAP) is exclusively expressed in kidney proximal tubule cells, interacts with the CsA-binding protein cyclophilin B and its expression diminishes in kidneys of CsA-treated mice. Since we reported that KAP protects against CsA toxicity in cultured proximal tubule cells, we hypothesized that low KAP levels found in kidneys of CsA-treated mice might correlate with proximal tubule cell injury. To test this hypothesis, we used KAP Tg mice developed in our laboratory and showed that these mice are more resistant to CsA-induced tubular injury than control littermates. Furthermore, we found that calpain, which was activated by CsA in cell cultures and kidney, is involved in KAP degradation and observed that phosphorylation of serine and threonine residues found in KAP PEST sequences by protein kinase CK2 enhances KAP degradation by calpain. Moreover, we also observed that CK2 inhibition protected against CsA-induced cytotoxicity. These findings point to a novel mechanism for CsA-induced kidney toxicity that might be useful in developing therapeutic strategies aimed at preventing tubular cell damage while maintaining the immunosuppressive effects of CsA.  相似文献   

20.
Cyclosporine A (CsA) significantly improves the success of organ transplantation, however renal fibrosis, characterised by severe tubulointerstitial fibrosis is a complication of CsA therapy. Previously we have reported the involvement of PKC-beta isoforms in a model of CsA-induced tubulointerstitial fibrosis and we have now further elucidated this role. Treatment of human proximal tubular epithelial cells with CsA resulted in increased fibronectin production which coincided with increased PKC activity. To delineate the respective contributions of the two PKC-beta isoforms in fibrotic events, we overexpressed PKC-betaI, -betaII, or both in combination. Overexpression of the two PKC-beta isoforms induced morphological alterations, secretion of the profibrotic cytokine TGF-beta1, and fibronectin release from proximal tubular cells however PKC-betaII induced more significant effects in all parameters examined. Inhibition of PKC-beta completely abrogated the CsA-induced increase in fibronectin secretion demonstrating a direct antifibrotic effect of PKC-beta inhibition. Further studies also identified a role for the p44/42 mitogen activated kinase signalling pathway in CsA-induced fibrotic effects downstream of PKC-beta. Overall, these findings demonstrate a central role for PKC-beta, and particularly PKC-betaII in the development of tubulointerstitial fibrosis and suggest that PKC-beta may be a viable therapeutic target in CsA nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号