首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
Xu P  Wu X  Wang B  Liu Y  Ehlers JD  Close TJ  Roberts PA  Diop NN  Qin D  Hu T  Lu Z  Li G 《PloS one》2011,6(1):e15952
Asparagus bean (Vigna. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea [Vigna. unguiculata (L.) Walp.] that apparently originated in East Asia and is characterized by extremely long and thin pods and an aggressive climbing growth habit. The crop is widely cultivated throughout Asia for the production of immature pods known as 'long beans' or 'asparagus beans'. While the genome of cowpea ssp. unguiculata has been characterized recently by high-density genetic mapping and partial sequencing, little is known about the genome of asparagus bean. We report here the first genetic map of asparagus bean based on SNP and SSR markers. The current map consists of 375 loci mapped onto 11 linkage groups (LGs), with 191 loci detected by SNP markers and 184 loci by SSR markers. The overall map length is 745 cM, with an average marker distance of 1.98 cM. There are four high marker-density blocks distributed on three LGs and three regions of segregation distortion (SDRs) identified on two other LGs, two of which co-locate in chromosomal regions syntenic to SDRs in soybean. Synteny between asparagus bean and the model legume Lotus. japonica was also established. This work provides the basis for mapping and functional analysis of genes/QTLs of particular interest in asparagus bean, as well as for comparative genomics study of cowpea at the subspecies level.  相似文献   

2.
X Chen  D Min  TA Yasir  YG Hu 《PloS one》2012,7(9):e44510
To ascertain genetic diversity, population structure and linkage disequilibrium (LD) among a representative collection of Chinese winter wheat cultivars and lines, 90 winter wheat accessions were analyzed with 269 SSR markers distributed throughout the wheat genome. A total of 1,358 alleles were detected, with 2 to 10 alleles per locus and a mean genetic richness of 5.05. The average genetic diversity index was 0.60, with values ranging from 0.05 to 0.86. Of the three genomes of wheat, ANOVA revealed that the B genome had the highest genetic diversity (0.63) and the D genome the lowest (0.56); significant differences were observed between these two genomes (P<0.01). The 90 Chinese winter wheat accessions could be divided into three subgroups based on STRUCTURE, UPGMA cluster and principal coordinate analyses. The population structure derived from STRUCTURE clustering was positively correlated to some extent with geographic eco-type. LD analysis revealed that there was a shorter LD decay distance in Chinese winter wheat compared with other wheat germplasm collections. The maximum LD decay distance, estimated by curvilinear regression, was 17.4 cM (r(2)>0.1), with a whole genome LD decay distance of approximately 2.2 cM (r(2)>0.1, P<0.001). Evidence from genetic diversity analyses suggest that wheat germplasm from other countries should be introduced into Chinese winter wheat and distant hybridization should be adopted to create new wheat germplasm with increased genetic diversity. The results of this study should provide valuable information for future association mapping using this Chinese winter wheat collection.  相似文献   

3.
The house sparrow is an important model species for studying physiological, ecological and evolutionary processes in wild populations. Here, we present a medium density, genome wide linkage map for house sparrow (Passer domesticus) that has aided the assembly of the house sparrow reference genome, and that will provide an important resource for ongoing mapping of genes controlling important traits in the ecology and evolution of this species. Using a custom house sparrow 10 K iSelect Illumina SNP chip we have assigned 6,498 SNPs to 29 autosomal linkage groups, based on a mean of 430 informative meioses per SNP. The map was constructed by combining the information from linkage with that of the physical position of SNPs within scaffold sequences in an iterative process. Averaged between the sexes; the linkage map had a total length of 2,004 cM, with a longer map for females (2,240 cM) than males (1,801 cM). Additionally, recombination rates also varied along the chromosomes. Comparison of the linkage map to the reference genomes of zebra finch, collared flycatcher and chicken, showed a chromosome fusion of the two avian chromosomes 8 and 4A in house sparrow. Lastly, information from the linkage map was utilized to conduct analysis of linkage disequilibrium (LD) in eight populations with different effective population sizes (Ne) in order to quantify the background level LD. Together, these results aid the design of future association studies, facilitate the development of new genomic tools and support the body of research that describes the evolution of the avian genome.  相似文献   

4.
The identification of molecular markers associated with economic and quality traits will help improve breeding for new apple (Malus × domestica Borkh.) cultivars. Tools such as the 8K apple SNP array developed by the RosBREED consortium allow for high-throughput genotyping of SNP polymorphisms within collections. However, genetic characterization and the identification of population stratification and kinship within germplasm collections is a fundamental prerequisite for identifying robust marker–trait associations. In this study, a collection of apple germplasm originally developed for plant architectural studies and consisting of both non-commercial/local and elite accessions was genotyped using the 8K apple SNP array to identify cryptic relationships between accessions, to analyze population structure and to calculate the linkage disequilibrium (LD). A total of nine pairs of synonyms and several triploids accessions were identified within the 130 accessions genotyped. In addition, most of the known parent-child relations were confirmed, and several putative, previously unknown parent-child relations were identified among the local accessions. No clear subgroups could be identified although some separation between local and elite accessions was evident. The study of LD showed a rapid decay in our collection, indicating that a larger number of SNPs is necessary to perform whole genome association mapping. Finally, an association mapping effort for architectural traits was carried out on a small number of accessions to estimate the feasibility of this approach.  相似文献   

5.
The narrow genetic base of cultivated cotton germplasm is hindering the cotton productivity worldwide. Although potential genetic diversity exists in Gossypium genus, it is largely ‘underutilized’ due to photoperiodism and the lack of innovative tools to overcome such challenges. The application of linkage disequilibrium (LD)-based association mapping is an alternative powerful molecular tool to dissect and exploit the natural genetic diversity conserved within cotton germplasm collections, greatly accelerating still ‘lagging’ cotton marker-assisted selection (MAS) programs. However, the extent of genome-wide linkage disequilibrium (LD) has not been determined in cotton. We report the extent of genome-wide LD and association mapping of fiber quality traits by using a 95 core set of microsatellite markers in a total of 285 exotic Gossypium hirsutum accessions, comprising of 208 landrace stocks and 77 photoperiodic variety accessions. We demonstrated the existence of useful genetic diversity within exotic cotton germplasm. In this germplasm set, 11–12% of SSR loci pairs revealed a significant LD. At the significance threshold (r2 ≥ 0.1), a genome-wide average of LD declines within the genetic distance at < 10 cM in the landrace stocks germplasm and > 30 cM in variety germplasm. Genome wide LD at r2 ≥ 0.2 was reduced on average to  1–2 cM in the landrace stock germplasm and 6–8 cM in variety germplasm, providing evidence of the potential for association mapping of agronomically important traits in cotton. We observed significant population structure and relatedness in assayed germplasm. Consequently, the application of the mixed liner model (MLM), considering both kinship (K) and population structure (Q) detected between 6% and 13% of SSR markers associated with the main fiber quality traits in cotton. Our results highlight for the first time the feasibility and potential of association mapping, with consideration of the population structure and stratification existing in cotton germplasm resources. The number of SSR markers associated with fiber quality traits in diverse cotton germplasm, which broadly covered many historical meiotic events, should be useful to effectively exploit potentially new genetic variation by using MAS programs.  相似文献   

6.
We have previously shown that linkage disequilibrium (LD) in the elite cultivated barley (Hordeum vulgare) gene pool extends, on average, for <1-5 cM. Based on this information, we have developed a platform for whole genome association studies that comprises a collection of elite lines that we have characterized at 3060 genome-wide single nucleotide polymorphism (SNP) marker loci. Interrogating this data set shows that significant population substructure is present within the elite gene pool and that diversity and LD vary considerably across each of the seven barley chromosomes. However, we also show that a subpopulation comprised of only the two-rowed spring germplasm is less structured and well suited to whole genome association studies without the need for extensive statistical intervention to account for structure. At the current marker density, the two-rowed spring population is suited for fine mapping simple traits that are located outside of the genetic centromeres with a resolution that is sufficient for candidate gene identification by exploiting conservation of synteny with fully sequenced model genomes and the emerging barley physical map.  相似文献   

7.
Population-based mapping approaches are attractive for tracing the genetic background to phenotypic traits in wild species, given that it is often difficult to gather extensive and well-defined pedigrees needed for quantitative trait locus analysis. However, the feasibility of association or hitch-hiking mapping is dependent on the degree of linkage disequilibrium (LD) in the population, on which there is yet limited information for wild species. Here we use single nucleotide polymorphism (SNP) markers from 23 genes in a recently established linkage map of the Z chromosome of the collared flycatcher, to study the extent of LD in a natural bird population. In most but not all cases we find SNPs within the same intron (less than 500 bp) to be in perfect LD. However, LD then decays to background level at a distance 1cM or 400-500 kb. Although LD seems more extensive than in other species, if the observed pattern is representative for other regions of the genome and turns out to be a general feature of natural bird populations, dense marker maps might be needed for genome scans aimed at identifying association between marker and trait loci.  相似文献   

8.
Association mapping is a method to test the association between molecular markers and quantitative trait loci (QTL) based on linkage disequilibrium (LD). In this study, the collection of 108 wheat germplasm accessions form China were evaluated for their plant heights, spike length, spikelets per spike, grains per spike, thousand kernel weight and spikelets density in 3 years at three locations. And they were genotyped with 85 SSR markers and 40 EST-SSR markers. The population structure was inferred on the basis of unlinked 48 SSR markers and 40 EST-SSR markers. The extent of LD on chromosome 2A was 2.3 cM. Association of 37 SSR loci on chromosomes 2A with six agronomic traits was analysed with a mixed linear model. A total of 14 SSR loci were significantly associated with agronomic traits. Some of the associated markers were located in the QTL region detected in previous linkage mapping analysis. Our results demonstrated that association mapping can enhance QTL information and achieves higher resolution with short LD extent.  相似文献   

9.
Perennial ryegrass (Lolium perenne L.) is a highly valued temperate climate grass species grown as forage crop and for amenity uses. Due to its outbreeding nature and recent domestication, a high degree of genetic diversity is expected among cultivars. The aim of this study was to assess the extent of linkage disequilibrium (LD) within European elite germplasm and to evaluate the appropriate methodology for genetic association mapping in perennial ryegrass. A high level of genetic diversity was observed in a set of 380 perennial ryegrass elite genotypes when genotyped with 40 SSRs and 2 STS markers. A Bayesian structure analysis identified two subpopulations, which were confirmed by principal coordinate analysis (PCoA). One subpopulation consisted mainly of genotypes originating from the UK, while germplasm mostly from Continental Europe was grouped into the second subpopulation. LD (r2) decay was rapid and occurred within 0.4 cM across European varieties, when population structure was taken into consideration. However, an extended LD of up to 6.6 cM was detected within the variety Aberdart. High genetic diversity and rapid LD decay provide means for high resolution association mapping in elite materials of perennial ryegrass. However, different strategies need to be applied depending on the material used. Genome-wide association study (GWAS) with several hundred markers can be applied within synthetic varieties to identify large (up to 10 cM) genomic regions affecting trait variation. A combination of available and novel DNA markers is needed to achieve resolution required for GWAS in elite breeding materials. An even higher marker density of several million SNPs might be needed for GWAS in diverse ecotype collections, potentially resulting in quantitative trait polymorphism (QTP) identification.  相似文献   

10.
Zhang P  Li J  Li X  Liu X  Zhao X  Lu Y 《PloS one》2011,6(12):e27565
The assessment of genetic diversity and population structure of a core collection would benefit to make use of these germplasm as well as applying them in association mapping. The objective of this study were to (1) examine the population structure of a rice core collection; (2) investigate the genetic diversity within and among subgroups of the rice core collection; (3) identify the extent of linkage disequilibrium (LD) of the rice core collection. A rice core collection consisting of 150 varieties which was established from 2260 varieties of Ting's collection of rice germplasm were genotyped with 274 SSR markers and used in this study. Two distinct subgroups (i.e. SG 1 and SG 2) were detected within the entire population by different statistical methods, which is in accordance with the differentiation of indica and japonica rice. MCLUST analysis might be an alternative method to STRUCTURE for population structure analysis. A percentage of 26% of the total markers could detect the population structure as the whole SSR marker set did with similar precision. Gene diversity and MRD between the two subspecies varied considerably across the genome, which might be used to identify candidate genes for the traits under domestication and artificial selection of indica and japonica rice. The percentage of SSR loci pairs in significant (P<0.05) LD is 46.8% in the entire population and the ratio of linked to unlinked loci pairs in LD is 1.06. Across the entire population as well as the subgroups and sub-subgroups, LD decays with genetic distance, indicating that linkage is one main cause of LD. The results of this study would provide valuable information for association mapping using the rice core collection in future.  相似文献   

11.
The combination of large-scale population genomic analyses and trait-based mapping approaches has the potential to provide novel insights into the evolutionary history and genome organization of crop plants. Here, we describe the detailed genotypic and phenotypic analysis of a sunflower (Helianthus annuus L.) association mapping population that captures nearly 90% of the allelic diversity present within the cultivated sunflower germplasm collection. We used these data to characterize overall patterns of genomic diversity and to perform association analyses on plant architecture (i.e., branching) and flowering time, successfully identifying numerous associations underlying these agronomically and evolutionarily important traits. Overall, we found variable levels of linkage disequilibrium (LD) across the genome. In general, islands of elevated LD correspond to genomic regions underlying traits that are known to have been targeted by selection during the evolution of cultivated sunflower. In many cases, these regions also showed significantly elevated levels of differentiation between the two major sunflower breeding groups, consistent with the occurrence of divergence due to strong selection. One of these regions, which harbors a major branching locus, spans a surprisingly long genetic interval (ca. 25 cM), indicating the occurrence of an extended selective sweep in an otherwise recombinogenic interval.  相似文献   

12.
To make progress in genome analysis of azuki bean (Vigna angularis) a genetic linkage map was constructed from a backcross population of (V. nepalensis x V. angularis) x V.angularis consisting of 187 individuals. A total of 486 markers—205 simple sequence repeats (SSRs), 187 amplified fragment length polymorphisms (AFLPs) and 94 restriction fragment length polymorphisms (RFLPs) —were mapped onto 11 linkage groups corresponding to the haploid chromosome number of azuki bean. This map spans a total length of 832.1 cM with an average marker distance of 1.85 cM and is the most saturated map for a Vigna species to date. In addition, RFLP markers from other legumes facilitated finding several orthologous linkage groups based on previously published RFLP linkage maps. Most SSR primers that have been developed from SSR-enriched libraries detected a single locus. The SSR loci identified are distributed throughout the azuki bean genome. This moderately dense linkage map equipped with many SSR markers will be useful for mapping a range of useful traits such as those related to domestication and stress resistance. The mapping population will be used to develop advanced backcross lines for high resolution QTL mapping of these traits. O.K. Han, A. Kaga, T. Isemura have contributed equally to this paper.  相似文献   

13.
The small annual grass Brachypodium distachyon (Brachypodium) is rapidly emerging as a powerful model system to study questions unique to the grasses. Many Brachypodium resources have been developed including a whole genome sequence, highly efficient transformation and a large germplasm collection. We developed a genetic linkage map of Brachypodium using single nucleotide polymorphism (SNP) markers and an F2 mapping population of 476 individuals. SNPs were identified by targeted resequencing of single copy genomic sequences. Using the Illumina GoldenGate Genotyping platform we placed 558 markers into five linkage groups corresponding to the five chromosomes of Brachypodium. The unusually long total genetic map length, 1,598 centiMorgans (cM), indicates that the Brachypodium mapping population has a high recombination rate. By comparing the genetic map to genome features we found that the recombination rate was positively correlated with gene density and negatively correlated with repetitive regions and sites of ancestral chromosome fusions that retained centromeric repeat sequences. A comparison of adjacent genome regions with high versus low recombination rates revealed a positive correlation between interspecific synteny and recombination rate.  相似文献   

14.
Association mapping enables the detection of marker-trait associations in unstructured populations by taking advantage of historical linkage disequilibrium (LD) that exists between a marker and the true causative polymorphism of the trait phenotype. Our first objective was to understand the pattern of LD decay in the diploid alfalfa genome. We used 89 highly polymorphic SSR loci in 374 unimproved diploid alfalfa (Medicago sativa L.) genotypes from 120 accessions to infer chromosome-wide patterns of LD. We also sequenced four lignin biosynthesis candidate genes (caffeoyl-CoA 3-O-methyltransferase (CCoAoMT), ferulate-5-hydroxylase (F5H), caffeic acid-O-methyltransferase (COMT), and phenylalanine amonialyase (PAL 1)) to identify single nucleotide polymorphisms (SNPs) and infer within gene estimates of LD. As the second objective of this study, we conducted association mapping for cell wall components and agronomic traits using the SSR markers and SNPs from the four candidate genes. We found very little LD among SSR markers implying limited value for genomewide association studies. In contrast, within gene LD decayed within 300 bp below an r (2) of 0.2 in three of four candidate genes. We identified one SSR and two highly significant SNPs associated with biomass yield. Based on our results, focusing association mapping on candidate gene sequences will be necessary until a dense set of genome-wide markers is available for alfalfa.  相似文献   

15.
The history of tomato (Solanum lycopersicum L.) improvement includes genetic bottlenecks, wild species introgressions, and divergence into distinct market classes. This history makes tomato an excellent model to investigate the effects of selection on genome variation. A combination of linkage mapping in two F(2) populations and physical mapping with emerging genome sequence data was used to position 434 PCR-based markers including SNPs. Three-hundred-and-forty markers were used to genotype 102 tomato lines representing wild species, landraces, vintage cultivars, and contemporary (fresh market and processing) varieties. Principal component analysis confirmed genetic divergence between market classes of cultivated tomato (P <0.0001). A genome-wide survey indicated that linkage disequilibrium (LD) decays over 6-8 cM when all cultivated tomatoes, including vintage and contemporary, were considered together. Within contemporary processing varieties, LD decayed over 6-14 cM, and decay was over 3-16 cM within fresh market varieties. Significant inter-chromosomal (gametic phase) LD was detected in both fresh market and processing varieties between chromosomes 2 and 3, and 2 and 4, but in distinct chromosomal locations for each market class. Additional LD was detected between chromosomes 3 and 4, 3 and 11, and 4 and 6 in fresh market varieties and chromosomes 3 and 12 in processing varieties. These results suggest that breeding practices for market specialization in tomato have led to a genetic divergence between fresh market and processing types.  相似文献   

16.
Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.  相似文献   

17.
"第三次全国农作物种质资源普查与收集行动"浙江项目组从全省32个县(市/区)共收集到豇豆地方资源76份。本研究通过对76份种质43个基本农艺性状的田间调查,发现76份种质包括30份长豇豆(Vigna unguiculata(L.)Walp.ssp.sesquipedialis)、46份普通豇豆(Vigna unguiculata(L.)Walp.ssp.unguiculata)。浙江地方豇豆种质在生长习性、嫩荚商品性及产量相关性状均存在丰富的遗传变异。利用101个在染色体上均匀分布的SNP标记对该群体的基因型进行鉴定,主成分分析和系统进化树分析发现这些种质可以依据荚长分为长荚和短荚2大类,长荚类群以长豇豆种质为主,短荚类群以普通豇豆种质为主。本研究进一步丰富了我国豇豆遗传基础,为地方豇豆资源的高效利用和新品种选育提供了科学依据。  相似文献   

18.
Cotton is the world’s leading cash crop, but it lags behind other major crops for marker-assisted breeding due to limited polymorphisms and a genetic bottleneck through historic domestication. This underlies a need for characterization, tagging, and utilization of existing natural polymorphisms in cotton germplasm collections. Here we report genetic diversity, population characteristics, the extent of linkage disequilibrium (LD), and association mapping of fiber quality traits using 202 microsatellite marker primer pairs in 335 G. hirsutum germplasm grown in two diverse environments, Uzbekistan and Mexico. At the significance threshold (r 2 ≥ 0.1), a genome-wide average of LD extended up to genetic distance of 25 cM in assayed cotton variety accessions. Genome wide LD at r 2 ≥ 0.2 was reduced to ~5–6 cM, providing evidence of the potential for association mapping of agronomically important traits in cotton. Results suggest linkage, selection, inbreeding, population stratification, and genetic drift as the potential LD-generating factors in cotton. In two environments, an average of ~20 SSR markers was associated with each main fiber quality traits using a unified mixed liner model (MLM) incorporating population structure and kinship. These MLM-derived significant associations were confirmed in general linear model and structured association test, accounting for population structure and permutation-based multiple testing. Several common markers, showing the significant associations in both Uzbekistan and Mexican environments, were determined. Between 7 and 43% of the MLM-derived significant associations were supported by a minimum Bayes factor at ‘moderate to strong’ and ‘strong to very strong’ evidence levels, suggesting their usefulness for marker-assisted breeding programs and overall effectiveness of association mapping using cotton germplasm resources. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The extent of linkage disequilibrium in rice (Oryza sativa L.)   总被引:1,自引:0,他引:1       下载免费PDF全文
Despite its status as one of the world's major crops, linkage disequilibrium (LD) patterns have not been systematically characterized across the genome of Asian rice (Oryza sativa). Such information is critical to fully exploit the genome sequence for mapping complex traits using association techniques. Here we characterize LD in five 500-kb regions of the rice genome in three major cultivated rice varieties (indica, tropical japonica, and temperate japonica) and in the wild ancestor of Asian rice, Oryza rufipogon. Using unlinked SNPs to determine the amount of background linkage disequilibrium in each population, we find that the extent of LD is greatest in temperate japonica (probably >500 kb), followed by tropical japonica (approximately 150 kb) and indica (approximately 75 kb). LD extends over a shorter distance in O. rufipogon (<40 kb) than in any of the O. sativa groups assayed here. The differences in the extent of LD among these groups are consistent with differences in outcrossing and recombination rate estimates. As well as heterogeneity between groups, our results suggest variation in LD patterns among genomic regions. We demonstrate the feasibility of genomewide association mapping in cultivated Asian rice using a modest number of SNPs.  相似文献   

20.
Lu Y  Shah T  Hao Z  Taba S  Zhang S  Gao S  Liu J  Cao M  Wang J  Prakash AB  Rong T  Xu Y 《PloS one》2011,6(9):e24861
Understanding of genetic diversity and linkage disequilibrium (LD) decay in diverse maize germplasm is fundamentally important for maize improvement. A total of 287 tropical and 160 temperate inbred lines were genotyped with 1943 single nucleotide polymorphism (SNP) markers of high quality and compared for genetic diversity and LD decay using the SNPs and their haplotypes developed from genic and intergenic regions. Intronic SNPs revealed a substantial higher variation than exonic SNPs. The big window size haplotypes (3-SNP slide-window covering 2160 kb on average) revealed much higher genetic diversity than the 10 kb-window and gene-window haplotypes. The polymorphic information content values revealed by the haplotypes (0.436-0.566) were generally much higher than individual SNPs (0.247-0.259). Cluster analysis classified the 447 maize lines into two major groups, corresponding to temperate and tropical types. The level of genetic diversity and subpopulation structure were associated with the germplasm origin and post-domestication selection. Compared to temperate lines, the tropical lines had a much higher level of genetic diversity with no significant subpopulation structure identified. Significant variation in LD decay distance (2-100 kb) was found across the genome, chromosomal regions and germplasm groups. The average of LD decay distance (10-100 kb) in the temperate germplasm was two to ten times larger than that in the tropical germplasm (5-10 kb). In conclusion, tropical maize not only host high genetic diversity that can be exploited for future plant breeding, but also show rapid LD decay that provides more opportunity for selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号