首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately 10% of all pathological mutations are nonsense mutations that are responsible for several severe genetic diseases for which no treatment regimens are currently available. The most widespread strategy for treating nonsense mutations is by enhancing ribosomal readthrough of premature termination codons (PTCs) to restore the production of the full-length protein. In the past decade several compounds with readthrough potential have been identified. However, although preclinical results on these compounds are promising, clinical studies have not yielded positive outcomes. We review preclinical and clinical research related to readthrough compounds and characterize factors that contribute to the observed translational gap.  相似文献   

2.
Gene selective suppression of nonsense termination using antisense agents   总被引:1,自引:0,他引:1  
An estimated one third of all inherited genetic disorders and many forms of cancer are caused by premature (nonsense) termination codons. Aminoglycoside antibiotics are candidate drugs for a large number of such genetic diseases; however, aminoglycosides are toxic, lack specificity and show low efficacy in this application. Because translational termination is an active process, we considered that steric hindrance by antisense sequences could trigger the ribosome's "default mode" of readthrough when positioned near nonsense codons. To test this hypothesis, we performed experiments using plasmids containing a luciferase reporter with amber, ochre and opal nonsense mutations within the luxB gene in Escherichia coli. The nonspecific termination inhibitors gentamicin and paromomycin and six antisense peptide nucleic acids (PNA) spanning the termination region were tested for their potential to suppress the luxB mutation. Gentamicin and paromomycin increased luciferase activity up to 2.5- and 10-fold, respectively. Two of the PNAs increased Lux activity up to 2.5-fold over control levels, with no significant effect on cell growth or mRNA levels. Thus, it is possible to significantly suppress nonsense mutations within target genes using antisense PNAs. The mechanism of suppression likely involves enhanced readthrough, but this requires further investigation. Nonsense termination in human cells may also be susceptible to suppression by antisense agents, providing a new approach to address numerous diseases caused by nonsense mutations.  相似文献   

3.
The mechanisms leading to non-lethality of nonsense mutations in essential genes are poorly understood. Here, we focus on the factors influencing viability of yeast cells bearing premature termination codons (PTCs) in the essential gene SUP45 encoding translation termination factor eRF1. Using a dual reporter system we compared readthrough efficiency of the natural termination codon of SUP45 gene, spontaneous sup45-n (nonsense) mutations, nonsense mutations obtained by site-directed mutagenesis (76Q → TAA, 242R → TGA, 317L → TAG). The nonsense mutations in SUP45 gene were shown to be situated in moderate contexts for readthrough efficiency. We showed that readthrough efficiency of some of the mutations present in the sup45 mutants is not correlated with full-length Sup45 protein amount. This resulted from modification of both sup45 mRNA stability which varies 3-fold among sup45-n mutants and degradation rate of mutant Sup45 proteins. Our results demonstrate that some substitutions in the place of PTCs decrease Sup45 stability. The viability of sup45 nonsense mutants is therefore supported by diverse mechanisms that control the final amount of functional Sup45 in cells.  相似文献   

4.
Enhanced stop codon readthrough is a potential treatment strategy for diseases caused by nonsense mutations. Here, we compare readthrough levels induced by three types of factors: aminoglycoside antibiotics, suppressor tRNAs, and factors decreasing translation termination efficiency. We show that the highest levels of readthrough were obtained by prolonged treatment with aminoglycosides and suppressor tRNAs, whereas prolonged depletion of release factors induced only a moderate increase in readthrough. We discuss the benefits and inconvenients of the three types of factors for their use in the therapy of diseases caused by premature stop codons.  相似文献   

5.
BACKGROUND: The most common form of congenital muscular dystrophy is caused by a deficiency in the alpha2 chain of laminin-211, a protein of the extracellular matrix. A wide variety of mutations, including 20 to 30% of nonsense mutations, have been identified in the corresponding gene, LAMA2. A promising approach for the treatment of genetic disorders due to premature termination codons (PTCs) is the use of drugs to force stop codon readthrough. METHODS: Here, we analyzed the effects of two compounds on a PTC in the LAMA2 gene that targets the mRNA to nonsense-mediated RNA decay, in vitro using a dual reporter assay, as well as ex vivo in patient-derived myotubes. RESULTS: We first showed that both gentamicin and negamycin promote significant readthrough of this PTC. We then demonstrated that the mutant mRNAs were strongly stabilized in patient-derived myotubes after administration of negamycin, but not gentamicin. Nevertheless, neither treatment allowed re-expression of the laminin alpha2-chain protein, pointing to problems that may have arisen at the translational or post-translational levels. CONCLUSIONS: Taken together, our results emphasize that achievement of a clinical benefit upon treatment with novel readthrough-inducing agents would require several favourable conditions including PTC nucleotide context, intrinsic and induced stability of mRNA and correct synthesis of a full-length active protein.  相似文献   

6.
Floquet C  Rousset JP  Bidou L 《PloS one》2011,6(8):e24125
The APC tumor suppressor gene is frequently mutated in human colorectal cancer, with nonsense mutations accounting for 30% of all mutations in this gene. Reintroduction of the WT APC gene into cancer cells generally reduces tumorigenicity or induces apoptosis. In this study, we explored the possibility of using drugs to induce premature termination codon (PTC) readthrough (aminoglycosides, negamycin), as a means of reactivating endogenous APC. By quantifying the readthrough of 11 nonsense mutations in APC, we were able to identify those giving the highest levels of readthrough after treatment. For these mutations, we demonstrated that aminoglycoside or negamycin treatment led to a recovery of the biological activity of APC in cancer cell lines, and showed that the level of APC activity was proportional to the level of induced readthrough. These findings show that treatment with readthrough inducers should be considered as a potential strategy for treating cancers caused by nonsense mutations APC gene. They also provide a rational basis for identifying mutations responsive to readthrough inducers.  相似文献   

7.
Introducing sense into nonsense in treatments of human genetic diseases   总被引:1,自引:0,他引:1  
Approximately one-third of alleles causing genetic diseases carry premature termination codons (PTCs), which lead to the production of truncated proteins. The past decade has seen considerable interest in therapeutic approaches aimed at readthrough of in-frame PTCs to enable synthesis of full-length proteins. However, attempts to readthrough PTCs in many diseases resulted in variable effects. Here, we focus on the efforts of such therapeutic approaches in cystic fibrosis and Duchenne muscular dystrophy and discuss the factors contributing to successful readthrough and how the nonsense-mediated mRNA decay (NMD) pathway regulates this response. A deeper understanding of the molecular basis for variable response to readthrough of PTCs is necessary so that appropriate therapies can be developed to treat many human genetic diseases caused by PTCs.  相似文献   

8.
ABSTRACT: BACKGROUND: Nonsense mutations are at the origin of many cancers and inherited genetic diseases. The consequence of nonsense mutations is often the absence of mutant gene expression due to the activation of an mRNA surveillance mechanism called nonsense-mediated mRNA decay (NMD). Strategies to rescue the expression of nonsense-containing mRNAs have been developed such as NMD inhibition or nonsense mutation readthrough. METHODS: Using a dedicated screening system, we sought molecules capable to block NMD. Additionally, 3 cell lines derived from patient cells and harboring a nonsense mutation were used to study the effect of the selected molecule on the level of nonsense-containing mRNAs and the synthesis of proteins from these mutant mRNAs. RESULTS: We demonstrate here that amlexanox, a drug used for decades, not only induces an increase in nonsense-containing mRNAs amount in treated cells, but also leads to the synthesis of the full-length protein in an efficient manner. We also demonstrated that these full length proteins are functional. CONCLUSIONS: As a result of this dual activity, amlexanox may be useful as a therapeutic approach for diseases caused by nonsense mutations.  相似文献   

9.
The efficiency of translation termination depends on the nature of the stop codon and the surrounding nucleotides. Some molecules, such as aminoglycoside antibiotics (gentamicin), decrease termination efficiency and are currently being evaluated for diseases caused by premature termination codons. However, the readthrough response to treatment is highly variable and little is known about the rules governing readthrough level and response to aminoglycosides. In this study, we carried out in-depth statistical analysis on a very large set of nonsense mutations to decipher the elements of nucleotide context responsible for modulating readthrough levels and gentamicin response. We quantified readthrough for 66 sequences containing a stop codon, in the presence and absence of gentamicin, in cultured mammalian cells. We demonstrated that the efficiency of readthrough after treatment is determined by the complex interplay between the stop codon and a larger sequence context. There was a strong positive correlation between basal and induced readthrough levels, and a weak negative correlation between basal readthrough level and gentamicin response (i.e. the factor of increase from basal to induced readthrough levels). The identity of the stop codon did not affect the response to gentamicin treatment. In agreement with a previous report, we confirm that the presence of a cytosine in +4 position promotes higher basal and gentamicin-induced readthrough than other nucleotides. We highlight for the first time that the presence of a uracil residue immediately upstream from the stop codon is a major determinant of the response to gentamicin. Moreover, this effect was mediated by the nucleotide itself, rather than by the amino-acid or tRNA corresponding to the -1 codon. Finally, we point out that a uracil at this position associated with a cytosine at +4 results in an optimal gentamicin-induced readthrough, which is the therapeutically relevant variable.  相似文献   

10.
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs containing premature translation termination codons. In mammalian cells, a termination codon is ordinarily recognized as "premature" if it is located greater than 50-54 nucleotides 5' to the final exon-exon junction. We have described a set of naturally occurring human beta-globin gene mutations that apparently contradict this rule. The corresponding beta-thalassemia genes contain nonsense mutations within exon 1, and yet their encoded mRNAs accumulate to levels approaching wild-type beta-globin (beta(WT)) mRNA. In the present report we demonstrate that the stabilities of these mRNAs with nonsense mutations in exon 1 are intermediate between beta(WT) mRNA and beta-globin mRNA carrying a prototype NMD-sensitive mutation in exon 2 (codon 39 nonsense; beta 39). Functional analyses of these mRNAs with 5'-proximal nonsense mutations demonstrate that their relative resistance to NMD does not reflect abnormal RNA splicing or translation re-initiation and is independent of promoter identity and erythroid specificity. Instead, the proximity of the nonsense codon to the translation initiation AUG constitutes a major determinant of NMD. Positioning a termination mutation at the 5' terminus of the coding region blunts mRNA destabilization, and this effect is dominant to the "50-54 nt boundary rule." These observations impact on current models of NMD.  相似文献   

11.
12.
Translation is the final stage of gene expression where messenger RNA is used as a template for protein polymerization from appropriate amino acids. Release of the completed protein requires a release factor protein acting at the termination/stop codon to liberate it. In this paper we focus on a complex feedback control mechanism involved in the translation and synthesis of release factor proteins, which has been observed in different systems. These release factor proteins are involved in the termination stage of their own translation. Further, mutations in the release factor gene can result in a premature stop codon. In this case translation can result either in early termination and the production of a truncated protein or readthrough of the premature stop codon and production of the complete release factor protein. Thus during translation of the release factor mRNA containing a premature stop codon, the full length protein negatively regulates its production by its action on a premature stop codon, while positively regulating its production by its action on the regular stop codon. This paper develops a mathematical modelling framework to investigate this complex feedback control system involved in translation. A series of models is established to carefully investigate the role of individual mechanisms and how they work together. The steady state and dynamic behaviour of the resulting models are examined both analytically and numerically.  相似文献   

13.
rRNA plays a central role in protein synthesis and is intimately involved in the initiation, elongation, and termination stages of translation. However, the mode of its participation in these reactions, particularly as to the decoding of genetic information, remains elusive. In this paper, we describe a new approach that allowed us to identify an rRNA segment whose function is likely to be related to translation termination. By screening an expression library of random rRNA fragments, we identified a fragment of the Escherichia coli 23S rRNA (nucleotides 74 to 136) whose expression caused readthrough of UGA nonsense mutations in certain codon contexts in vivo. The antisense RNA fragment produced a similar effect, but in neither case was readthrough of UAA or UAG observed. Since termination at UGA in E. coli specifically requires release factor 2 (RF2), our data suggest that the fragments interfere with RF2-dependent termination.  相似文献   

14.
We characterized an anemia-inducing mutation in the human gene for triosephosphate isomerase (TPI) that resulted in the production of prematurely terminated protein and mRNA with a reduced cytoplasmic half-life. The mutation converted a CGA arginine codon to a TGA nonsense codon and generated a protein of 188 amino acids, instead of the usual 248 amino acids. To determine how mRNA primary structure and translation influence mRNA stability, in vitro-mutagenized TPI alleles were introduced into cultured L cells and analyzed for their effect on TPI RNA metabolism. Results indicated that mRNA stability is decreased by all nonsense and frameshift mutations. To determine the relative contribution of the changes in mRNA structure and translation to the altered half-life, the effects of individual mutations were compared with the effects of second-site reversions that restored translation termination to normal. All mutations that resulted in premature translation termination reduced the mRNA half-life solely or mainly by altering the length of the mRNA that was translated. The only mutation that altered translation termination and that reduced the mRNA half-life mainly by affecting the mRNA structure was an insertion that shifted termination to a position downstream of the normal stop codon.  相似文献   

15.
Recognition of the stop codon by the translation machinery is essential to terminating translation at the right position and to synthesizing a protein of the correct size. Under certain conditions, the stop codon can be recognized as a coding codon promoting translation, which then terminates at a later stop codon. This event, called stop codon readthrough, occurs either by error, due to a dedicated regulatory environment leading to generation of different protein isoforms, or through the action of a readthrough compound. This review focuses on the mechanisms of stop codon readthrough, the nucleotide and protein environments that facilitate or inhibit it, and the therapeutic interest of stop codon readthrough in the treatment of genetic diseases caused by nonsense mutations.  相似文献   

16.
17.
Premature translation termination codons resulting from nonsense or frameshift mutations are common causes of genetic disorders. Complications arising from the synthesis of C-terminally truncated polypeptides can be avoided by 'nonsense-mediated decay' of the mutant mRNAs. Premature termination codons in the beta-globin mRNA cause the common recessive form of beta-thalassemia when the affected mRNA is degraded, but the more severe dominant form when the mRNA escapes nonsense-mediated decay. We demonstrate that cells distinguish a premature termination codon within the beta-globin mRNA from the physiological translation termination codon by a two-step specification mechanism. According to the binary specification model proposed here, the positions of splice junctions are first tagged during splicing in the nucleus, defining a stop codon operationally as a premature termination codon by the presence of a 3' splicing tag. In the second step, cytoplasmic translation is required to validate the 3' splicing tag for decay of the mRNA. This model explains nonsense-mediated decay on the basis of conventional molecular mechanisms and allows us to propose a common principle for nonsense-mediated decay from yeast to man.  相似文献   

18.
19.
20.
The Nonsense-Mediated mRNA Decay (NMD) pathway mediates the rapid degradation of mRNAs that contain premature stop mutations in eukaryotic organisms. It was recently shown that mutations in three yeast genes that encode proteins involved in the NMD process, UPF1, UPF2, and UPF3, also reduce the efficiency of translation termination. In the current study, we compared the efficiency of translation termination in a upf1Delta strain and a [PSI(+)] strain using a collection of translation termination reporter constructs. The [PSI(+)] state is caused by a prion form of the polypeptide chain release factor eRF3 that limits its availability to participate in translation termination. In contrast, the mechanism by which Upf1p influences translation termination is poorly understood. The efficiency of translation termination is primarily determined by a tetranucleotide termination signal consisting of the stop codon and the first nucleotide immediately 3' of the stop codon. We found that the upf1Delta mutation, like the [PSI(+)] state, decreases the efficiency of translation termination over a broad range of tetranucleotide termination signals in a unique, context-dependent manner. These results suggest that Upf1p may associate with the termination complex prior to polypeptide chain release. We also found that the increase in readthrough observed in a [PSI(+)]/upf1Delta strain was larger than the readthrough observed in strains carrying either defect alone, indicating that the upf1Delta mutation and the [PSI(+)] state influence the termination process in distinct ways. Finally, our analysis revealed that the mRNA destabilization associated with NMD could be separated into two distinct forms that correlated with the extent the premature stop codon was suppressed. The minor component of NMD was a 25% decrease in mRNA levels observed when readthrough was >/=0.5%, while the major component was represented by a larger decrease in mRNA abundance that was observed only when readthrough was 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号