首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rooting-locus gene B (rolB) on the T-DNA of the root-inducing (Ri) plasmid in Agrobacterium rhizogenes is responsible for the induction of transformed adventitious roots, although the root induction mechanism is unknown. We report here that the RolB protein of pRi1724 (1724RolB) is associated with Nicotianatabacum14-3-3-like protein omegaII (Nt14-3-3 omegaII) in tobacco bright yellow (BY)-2 cells. Nt14-3-3 omegaII directly interacts with 1724RolB protein. Green fluorescent protein (GFP)-fused 1724RolB is localized to the nucleus. GFP-fused mutant 1724RolB proteins having a deletion or amino acid substitution are unable to interact with Nt14-3-3 omegaII and also show impaired nuclear localization. Moreover, these 1724RolB mutants show decreased capacity for adventitious root induction. These results suggest that adventitious root induction by 1724RolB protein correlates with its interaction with Nt14-3-3 omegaII and the nuclear localization of 1724RolB protein.  相似文献   

2.
Members of the 14-3-3 family of proteins participate in signal transduction by modulating flux through various pathways. Potential subfunctionalization within this family has produced a suite of related proteins with diverse client interactions and discrete localization. The associated study assesses the biological roles of two specific 14-3-3 isoforms, using genetic, biochemical and physiological assays to ascertain potential nodes of interaction. Arabidopsis T-DNA insertion mutants representing the ν and μ isoforms exhibited a short, yet clear delay in flowering time on long days. Tests of hypocotyl growth inhibition under narrow bandwidth light indicated a hyposensitivity to red light, while responses to blue and far-red light were normal. These physiological tests suggest a mechanistic link between 14-3-3 proteins, red light sensing, and the pathways that control photoperiodic flowering. The precise entry point into the pathway was assessed using yeast two hybrid assays targeted against specific proteins active in the circadian oscillator, light transduction and photoperiodic flowering. Yeast two hybrid interaction was observed with CONSTANS (CO), and then confirmed with coimmunoprecipitation. Functional interaction with phyB leading to defects in flowering time and direct interaction with CONSTANS circumstantially places these specific 14-3-3 isoforms into the pathway that regulates the transition between vegetative and floral development.Key words: isoform specificity, protein interaction, phosphorylation, signaling  相似文献   

3.
Zhang J  Guo X  Li X  Xiang F  Zhou B  Yu D  Tang D  Liu X 《Molecular biology reports》2012,39(2):1527-1535
The homozygous T-DNA mutants of AtCAL1 (Rat1) and AtCAL2 (Rat2) were obtained. The double mutant of Rat2/Rat1RNAi was constructed which showed obvious late-flowering phenotype from others. The expression of various flowering-related genes was studied among mutants and wild-type plants by quantitative RT–PCR. The double mutant plants showed the shortest root length compared with T-DNA insertion mutants and wild type plants under red light, blue light, and white light. The double mutants showed hypersensitivity to NaCl and ABA. However, these mutants had no effect on stomatal closure by ABA.  相似文献   

4.
NADPH:protochlorophyllide oxidoreductase (POR) catalyzes the light-dependent reduction of protochlorophyllide. To elucidate the physiological function of three differentially regulated POR isoforms (PORA, PORB and PORC) in Arabidopsis thaliana, we isolated T-DNA tagged null mutants of porB and porC. The mature seedlings of the mutants had normal photosynthetic competencies, showing that PORB and PORC are interchangeable and functionally redundant in developed plants. In etiolated seedlings, only porB showed a reduction in the photoactive protochlorophyllide and the size of prolamellar bodies (PLBs), indicating that PORB, as well as PORA, functioned in PLB assembly and photoactive protochlorophyllide formation in etiolated seedlings. When illuminated, the etiolated porB seedling was able to green to a similar extent as the wild type, whereas the greening was significantly reduced under low light conditions. During greening, high light irradiation increased the level of PORC protein, and the greening of porC was repressed under high light conditions. The porB, but not porC, etiolated seedling was more sensitive to the far-red block of greening than the wild type, which is caused by depletion of endogenous POR proteins resulting in photo-oxidative damage. These results suggest that, at the onset of greening, PLBs are important for efficient capture of light energy for photoconversion under various light conditions, and PORC, which is induced by high light irradiation, contributes to photoprotection during greening of the etiolated seedlings.  相似文献   

5.
Microtubules function in concert with associated proteins that modify microtubule behavior and/or transmit signals that effect changes in growth. To better understand how microtubules and their associated proteins influence growth, we analyzed one family of microtubule-associated proteins, the END BINDING1 (EB1) proteins, in Arabidopsis thaliana (EB1a, EB1b, and EB1c). We find that antibodies directed against EB1 proteins colocalize with microtubules in roots, an observation that confirms previous reports using EB1-GFP fusions. We also find that T-DNA insertion mutants with reduced expression from EB1 genes have roots that deviate toward the left on vertical or inclined plates. Mutant roots also exhibit extended horizontal growth before they bend downward after tracking around an obstacle or after a 90 degrees clockwise reorientation of the root. These observations suggest that leftward deviations in root growth may be the result of delayed responses to touch and/or gravity signals. Root lengths and widths are normal, indicating that the delay in bend formation is not due to changes in the overall rate of growth. In addition, the genotype with the most severe defects responds to low doses of microtubule inhibitors in a manner indistinguishable from the wild type, indicating that microtubule integrity is not a major contributor to the leftward deviations in mutant root growth.  相似文献   

6.
Alkaline/neutral invertases (A/N‐Invs) are now recognized as essential proteins in plant life. They catalyze the irreversible breakdown of sucrose into glucose and fructose and thus supply the cells with energy as well as signaling molecules. In this study we report on a mechanism that affects the activity of the cytosolic invertase AtCINV1 (At‐A/N‐InvG or AT1G35580). We demonstrate that Ser547 at the extreme C‐terminus of the AtCINV1 protein is a substrate of calcium‐dependent kinases (CPK3 and 21) and that phosphorylation creates a high‐affinity binding site for 14‐3‐3 proteins. The invertase as such has basal activity, but we provide evidence that interaction with 14‐3‐3 proteins enhances its activity. The analysis of three quadruple 14‐3‐3 mutants generated from six T‐DNA insertion mutants of the non‐epsilon family shows both specificity as well as redundancy for this function of 14‐3‐3 proteins. The strong reduction in hexose levels in the roots of one 14‐3‐3 quadruple mutant plant is in line with the activating function of 14‐3‐3 proteins. The physiological relevance of this mechanism that affects A/N‐invertase activity is underscored by the light‐induced activation and is another example of the central role of 14‐3‐3 proteins in mediating dark/light signaling. The nature of the light‐induced signal that travels from the shoot to root and the question whether this signal is transmitted via cytosolic Ca++ changes that activate calcium‐dependent kinases, await further study.  相似文献   

7.
A promoter tagging program in the legume Lotus japonicus was initiated to identify plant genes involved in the nitrogen-fixing symbiosis between legumes and rhizobia. Seven transformed plant lines expressing the promoterless reporter gene uidA (beta-glucuronidase; GUS) specifically in roots and/or nodules were identified. Four of these expressed GUS in the roots only after inoculation with nodule-forming Mesorhizobium loti. In one line (T90), GUS activity was found in the root epidermis, including root hairs. During seedling growth, GUS expression gradually became focused in developing nodules and disappeared from root tissue. No GUS activity was detected when a non-nodulating mutant of M. loti was used to inoculate the plants. The T-DNA insertion in this plant line was located 1.3 kb upstream of a putative coding sequence with strong homology to calcium-binding proteins. Four motifs were identified, which were very similar to the "EF hands" in calmodulin-related proteins, each binding one Ca2+. We have named the gene LjCbp1 (calcium-binding protein). Northern (RNA) analyses showed that this gene is expressed specifically in roots of L. japonicus. Expression was reduced in roots inoculated with non-nodulating M. loti mutants and in progeny homozygous for the T-DNA insertion, suggesting a link between the T-DNA insertion and this gene.  相似文献   

8.
9.
Role of a single aquaporin isoform in root water uptake   总被引:23,自引:0,他引:23       下载免费PDF全文
Aquaporins are ubiquitous channel proteins that facilitate the transport of water across cell membranes. Aquaporins show a typically high isoform multiplicity in plants, with 35 homologs in Arabidopsis. The integrated function of plant aquaporins and the function of each individual isoform remain poorly understood. Matrix-assisted laser desorption/ionization time-of-flight analyses suggested that Plasma Membrane Intrinsic Protein2;2 (PIP2;2) is one of the abundantly expressed aquaporin isoforms in Arabidopsis root plasma membranes. Two independent Arabidopsis knockout mutants of PIP2;2 were isolated using a PCR-based strategy from a library of plant lines mutagenized by the insertion of Agrobacterium tumefaciens T-DNA. Expression in transgenic Arabidopsis of a PIP2;2 promoter-beta-glucuronidase gene fusion indicated that PIP2;2 is expressed predominantly in roots, with a strong expression in the cortex, endodermis, and stele. The hydraulic conductivity of root cortex cells, as measured with a cell pressure probe, was reduced by 25 to 30% in the two allelic PIP2;2 mutants compared with the wild type. In addition, free exudation measurements revealed a 14% decrease, with respect to wild-type values, in the osmotic hydraulic conductivity of roots excised from the two PIP2;2 mutants. Together, our data provide evidence for the contribution of a single aquaporin gene to root water uptake and identify PIP2;2 as an aquaporin specialized in osmotic fluid transport. PIP2;2 has a close homolog, PIP2;3, showing 96.8% amino acid identity. The phenotype of PIP2;2 mutants demonstrates that, despite their high homology and isoform multiplicity, plant aquaporins have evolved with nonredundant functions.  相似文献   

10.
The objective of this study was to assess effects of different light intensities on shoot growth, root development and allocation of root-borne solutes via the transpiration stream to various shoot parts of young wheat plants (Triticum aestivum L.). Hydroponic culture allowed direct access to the roots and shoots throughout the experiment. Under low light intensity (100?μmol photons m?2?s?1), shoot growth was restricted, less (but larger) leaves were produced at the main shoot and only a few tillers became visible as compared to plants under high light intensity (380?μmol photons m?2?s?1). The root system was indirectly also affected by the illumination of the aerial parts. A larger number of shorter roots were produced under high light leading to a denser root system, while only a small number of longer roots were present under low light. The distribution of 54Mn (xylem-mobile, but essentially phloem-immobile in wheat) from the roots to the shoot lead to the conclusion that light regime strongly influences the distribution of root-borne solutes within the shoots. Labels introduced into the roots may allow a deeper insight into the transfer of solutes from the root system to the various shoot parts under different light regimes.  相似文献   

11.
12.
以拟南芥野生型(C24)和T-DNA插入诱发的突变体(155系)为材料,通过表型分析、组织切片、GUS基因表达的组织化学定位等研究方法对155系的形态结构和生长发育进行了较为细致的观察分析,结果发现:(1)T-DNA插入诱发的155系突变体植株矮化,叶片等器官体积减小,营养生长阶段延长,发育较C24缓慢;(2)同一时期155系的茎顶端分生组织面积较C24减小,顶端平坦,细胞层数减少,两侧叶原基基部之间的距离缩短,呈现出发育迟缓、从茎顶端分生组织向花分生组织转变延迟等特征;(3)GUS基因特异性地在155系茎顶端分生组织和维管组织中表达.结果表明,T-DNA诱捕基因可能在茎顶端分生组织中发挥作用,由于T-DNA的插入使该基因的功能受到了影响,进而影响了155系中茎顶端分生组织的发育模式,产生了155系的一系列表型改变.  相似文献   

13.
高盐和渗透等非生物胁迫是影响农作物产量和品质的重要因素,非生物胁迫发生时,植物通过体内各类转录因子启动胁迫应答反应,进而降低非生物胁迫对植物的损伤。本研究筛选出植物特异性转录因子ANAC055编码基因的纯合T-DNA插入突变体SALK_152738,测序分析发现T-DNA插在ANAC055基因的3'UTR区域。实时荧光定量PCR结果表明叶中ANAC055基因表达量最高;与野生型相比,突变体叶、茎和花中ANAC055基因表达量分别下降了40%、50%和70%。高盐胁迫后,野生型和突变体叶中ANAC055基因表达量分别比对照上升了320%和55.4%;而渗透胁迫时,该基因叶中的表达量分别比对照下降了47.7%和56.3%;电子表达谱分析发现该基因根中的表达可受高盐和渗透等多种非生物胁迫的诱导表达。高盐和渗透胁迫时野生型和突变体幼根的生长均受到明显抑制,但高盐胁迫对突变体根生长的抑制作用比对野生型根生长的抑制作用更大。上述分析表明拟南芥ANAC055基因可受高盐和渗透等非生物胁迫的诱导表达,并且其在拟南芥幼根的生长发育过程中具有一定的作用,本研究有助于进一步明确其在非生物胁迫过程中的作用。  相似文献   

14.
The RPW8 locus from Arabidopsis thaliana Ms-0 includes two functional paralogous genes ( RPW8.1 and RPW8.2 ) and confers broad-spectrum resistance via the salicylic acid-dependent signaling pathway to the biotrophic fungal pathogens Golovinomyces spp. that cause powdery mildew diseases on multiple plant species. To identify proteins involved in regulation of the RPW8 protein function, a yeast two-hybrid screen was performed using RPW8.2 as bait. The 14-3-3 isoform lambda (designated GF14λ) was identified as a potential RPW8.2 interactor. The RPW8.2–GF14λ interaction was specific and engaged the C-terminal domain of RPW8.2, which was confirmed by pulldown assays. The physiological impact of the interaction was revealed by knocking down GF14λ by T-DNA insertion, which compromised basal and RPW8-mediated resistance to powdery mildew. In addition, over-expression of GF14λ resulted in hypersensitive response-like cell death and enhanced resistance to powdery mildew via the salicylic acid-dependent signaling pathway. The results from this study suggest that GF14λ may positively regulate the RPW8.2 resistance function and play a role in enhancing basal resistance in Arabidopsis.  相似文献   

15.
从拟南芥T-DNA插入突变体库中筛选到2个根发育相关基因ATMYB123和ATKOR1表达缺失的突变体atmyb123和atkor1,通过杂交构建这两个基因表达缺失的双突变体atmyb123/atkor1,以明确这两个基因在根发育中的作用。结果显示:(1)ATMYB123表达缺失突变体atmyb123植株地上部分发育减缓,种皮颜色变黄,而ATKOR1表达缺失突变体atkor1植株在这两方面与其野生型没有明显差异;两基因缺失均显著影响了拟南芥根的发育,根生长受到了严重抑制。(2)双突变体atmyb123/atkor1在植株形态和种皮颜色方面表现出单突变体AT-MYB123的特点,而其根长却介于两单突变体的中间。(3)进一步研究发现,培养基pH改变、NaCl处理、外源GA施用均没有改变突变体根生长趋势,显示这3种因素与两基因缺失突变引起的根发育抑制无关。研究表明,AT-MYB123和ATKOR1基因参与拟南芥根的发育调控,转录因子ATMYB123可能作为主调控因子参与ATKOR1对拟南芥根发育的调控。  相似文献   

16.
Summary. The 14-3-3 proteins are a family of abundant, widely expressed acidic polypeptides. The seven isoforms interact with over 70 different proteins. 14-3-3 isoforms have been demonstrated to be involved in the control of positive as well as negative regulators of mammalian cell proliferation. Here we used the approach of inactivating 14-3-3 protein functions via overexpression of dominant negative mutants to analyse the role of 14-3-3 proteins in mammalian cell proliferation. We found 14-3-3 dominant negative mutants to downregulate the proliferation rates of HeLa cells. Overexpression of these dominant negative mutants triggers upregulation of the protein levels of the cyclin-dependent kinase inhibitor p27, a major negative cell cycle regulator. In addition, they downregulate the protein levels of the important cell cycle promoter cyclin D1. These data provide new insights into mammalian cell proliferation control and allow a better understanding of the functions of 14-3-3 proteins.  相似文献   

17.
18.
A root gravitropism mutant was isolated from the DuPont Arabidopsis thaliana T-DNA insertional mutagenesis collection. This mutant has reduced root gravitropism, hence the name rgrl. Roots of rgrl are shorter than those of wild-type, and they have reduced lateral root formation. In addition, roots of rgrl coil clockwise on inclined agar plates, unlike wild-type roots which grow in a wavy pattern. The rgrl mutant has increased resistance, as measured by root elongation, to exogenously applied auxins (6-fold to indole-3-acetic acid, 3-fold to 2,4-dichlorophenoxyacetic acid, and 2-fold to napthyleneacetic acid). It is also resistant to polar auxin transport inhibitors (2-fold to triiodobenzoic acid and 3- to 5-fold lo napthyleneacetic acid). The rgrl mutant does not appear to be resistant to other plant hormone classes. When grown in the presence of 10?2 M 2.4-dichlorophenoxyacetic acid, rgrl roots have fewer root hairs than wild type. All these rgrl phenotypes are Mendelian recessives. Complementation tests indicate that rgrl is not allelic to previously characterized agravitropic or auxin-resistant mutants. The rgrl locus was mapped using visible markers to 1.4 ± 0.6 map units from the CHI locus at 1–65.4. The rgrl mutation and the T-DNA cosegregate, suggesting that rgrl was caused by insertional gene inactivation.  相似文献   

19.
20.
Strigolactones are recently identified plant hormones that inhibit shoot branching. Pleiotropic defects in strigolactone-deficient or -insensitive mutants indicate that strigolactones control various aspects of plant growth and development. However, our understanding of the hormonal function of strigolactones in plants is very limited. In this study we demonstrate that rice dwarf mutants that are strigolactone-deficient or -insensitive exhibit a short crown root phenotype. Exogenous application of GR24, a synthetic strigolactone analog, complemented the crown root defect in strigolactone-deficient mutants but not in strigolactone-insensitive mutants. These observations imply that strigolactones positively regulate the length of crown roots. Histological observations revealed that the meristematic zone is shorter in dwarf mutants than in wild type, suggesting that strigolactones may exert their effect on roots via the control of cell division. We also show that crown roots of wild type, but not dwarf mutants, become longer under phosphate starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号