共查询到20条相似文献,搜索用时 15 毫秒
1.
One short red (R) irradiation increases the ATP content of Kalanchoë blossfeldiana Poelln. cv Feuerblüte seeds before onset of germination. Phytochrome control is demonstrated by the full R/far-red light (FR) reversibility of the effect in water imbibed seeds. In seeds imbibed in the presence of gibberellin A3 (GA3, one short R exposure already increases the ATP content when given 2h after start of imbibition, showing phytochrome control at the energy-metabolic level when one R pulse cannot yet induce germination. After longer imbibition periods in the presence of GA3, one short FR irradiation also increases the ATP content of ungerminated Kalanchoë seeds. The time course of the ATP levels after a R or FR germination inducing irradiation shows an initial increase that clearly preceeds germination. A second increase starts about 15 h after irradiation and is most probably the consequence of the germination itself. The results suggest that, in Kalanchoë seeds, the increase in ATP levels, induced by irradiation(s) and preceding germination, is a phytochrome-mediated process, supplying energy, required for germination. 相似文献
2.
Abstract Adenosine phosphate levels were measured in Kalanchoë blossfeldiana cv. feuerblüte seeds during dark imbibition in aerobic and anaerobic conditions. A correlation between the depth of primary dormancy (light requirement) and the increase of ATP-content during the first hours of aerobic imbibition was found, but the rise of energy charge from about 0.2 in dry seeds to 0.8 after 18 h is not related to the breaking of dormancy and consequently to germination. In an anaerobic environment, the increase in ATP-content is dramatically lowered and the energy charge value stabilizes at about 0.4, most probably as the result of fermentation activity. 相似文献
3.
Extracellular polysaccharide of Erwinia chrysanthemi A350 and ribotyping of Erwinia chrysanthemi spp
Erwinia chrysanthemi spp. are gram-negative bacterial phytopathogens causing soft rots in a number of plants. The structure of the extracellular polysaccharide (EPS) produced by the E. chrysanthemi strain A350, which is a lacZ- mutant of the wild type strain 3937, pathogenic to Saintpaulia, has been determined using a combination of chemical and physical techniques including methylation analysis, low-pressure gel-filtration and anion-exchange chromatography, high-pH anion-exchange chromatography, partial acid hydrolysis, mass spectrometry and 1- and 2D NMR spectroscopy. In contrast to the structures of the EPS reported for other strains of E. chrysanthemi, the EPS from strain A350 contains D-GalA, together with L-Rhap and D-Galp in a 1:4:1 ratio. Evidence is presented for the following hexasaccharide repeat unit: [structure: see text] All the Erwinia chrysanthemi spp. studied to date have been analyzed by ribotyping and collated into families, which are consistent with the related structures of their EPS. 相似文献
4.
5.
Wild-type strains of the phytopathogenic enterobacterium Erwinia chrysanthemi are unable to use lactose as a carbon source for growth although they possess a beta-galactosidase activity. Lactose-fermenting derivatives from some wild types, however, can be obtained spontaneously at a frequency of about 5 X 10(-7). All Lac+ derivatives isolated had acquired a constitutive lactose transport system and most contained an inducible beta-galactosidase. The transport system, product of the lmrT gene, mediates uptake of lactose in the Lac+ derivatives and also appears to be able to mediate uptake of melibiose, raffinose, and galactose. Two genes encoding beta-galactosidase enzymes were detected in E. chrysanthemi strains. That mainly expressed in the wild-type strains was the lacZ product. The other, the lacB product, is very weakly expressed in these strains. These enzymes showed different affinities for the substrates o-nitrophenyl-beta-D-galactopyranoside and lactose and for the inhibitors isopropyl-beta-D-thiogalactopyranoside and galactose. The lmrT and lacZ genes of E. chrysanthemi, together with the lacI gene coding for the regulatory protein controlling lacZ expression, were cloned by using an RP4::miniMu vector. When these plasmids were transferred into Lac- Escherichia coli strains, their expression was similar to that in E. chrysanthemi. The cloning of the lmrT gene alone suggested that the lacZ or lacB gene is not linked to the lmrT gene on the E. chrysanthemi chromosome. One Lac+ E. chrysanthemi derivative showed a constitutive synthesis of the beta-galactosidase encoded by the lacB gene. This mutation was dominant toward the lacI lacZ cloned genes. Besides these mutations affecting the regulation of the lmrT or lacB gene, the isolation of structural mutants unable to grow on lactose was achieved by mutagenic treatment. These mutants showed no expression of the lactose transport system, the lmrT mutants, or the mainly expressed beta-galactosidase, lacZ mutants. The lacZ mutants retained a very low beta-galactosidase level, due to the lacB product, but this level was low enough to permit use of the lacZ mutants for the construction of gene fusions with the Escherichia coli lac genes. 相似文献
6.
V A Prokulevich Iu K Fomichev 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1989,(1):40-45
The recA gene of Erwinia chrysanthemi ENA49 has been cloned in vivo in Escherichia coli K12, recA13 cells using the plasmid pULB113. On the basis or DNA repair and recombination deficiencies complementation, of restoration of the inducible "SOS"-response functions the functional identity of the cloned gene with the recA gene was concluded. The recA gene was localized in the 18th min region of the chromosomal genetical map of Erwinia chrysanthemi ENA49 between the genes proA and pheA. 相似文献
7.
We report the initial characterization of the osmoregulated periplasmic glucans (OPGs) of Erwinia chrysanthemi. OPGs are intrinsic components of the bacterial envelope necessary to the pathogenicity of this phytopathogenic enterobacterium (F. Page, S. Altabe, N. Hugouvieux-Cotte-Pattat, J.-M. Lacroix, J. Robert-Baudouy and J.-P. Bohin, J. Bacteriol. 183:0000-0000, 2001 [companion in this issue]). OPGs were isolated by trichloracetic acid treatment and gel permeation chromatography. The synthesis of these compounds appeared to be osmoregulated, since lower amounts of OPGs were produced when bacteria were grown in media of higher osmolarities. However, a large fraction of these OPGs were recovered in the culture medium. Then, these compounds were characterized by compositional analysis, high-performance anion-exchange chromatography, matrix-assisted laser desorption mass spectrometry, and (1)H and (13)C nuclear magnetic resonance analyses. OPGs produced by E. chrysanthemi are very heterogeneous at the level of both backbone structure and substitution of these structures. The degree of polymerization of the glucose units ranges from 5 to 12. The structures are branched, with a linear backbone consisting of beta-1,2-linked glucose units to which a variable number of branches, composed of one glucose residue, are attached by beta-1,6 linkages in a random way. This glucan backbone may be substituted by O-acetyl and O-succinyl ester-linked residues. 相似文献
8.
A Lac+ mutant of Erwinia chrysanthemi was isolated from the Lac- wild type on lactose agar. beta-Galactosidase was expressed independently of lactose transport in both the mutant and the wild type, and neither strain expressed thiogalactoside transacetylase. Lactose transport and alpha-galactosidase, constitutive in the Lac+ strain, were coordinately induced in the Lac- strain by melibiose and raffinose but not by isopropyl-beta-D-thiogalactopyranoside or thiomethyl-beta-D-galactopyranoside. Melibiose was a strong inhibitor of both the melibiose- and the raffinose-induced lactose permeases, whereas raffinose was a strong inhibitor of only the raffinose-induced lactose permease. 相似文献
9.
The hypersensitive response elicitor harpin (HrpN) of soft rot pathogen Erwinia chrysanthemi strains 3937 and EC16 is secreted via the type III secretion system and remains cell surface bound. Strain 3937 HrpN is essential for cell aggregation, but the C-terminal one-third of the protein is not required for aggregative activity. 相似文献
10.
Recent studies reveal that the intracellular localization of pyruvate,Pi dikinase (PPDK, EC 2.7.9.1) in mesophyll cells of malic enzyme (ME)-dependent Crassulacean acid metabolism (CAM) plants varies among species, occurring not only in the chloroplasts but also in the cytosol in some species. The facultative CAM plant Kalanchoë blossfeldiana accumulates PPDK in both compartments of the mesophyll cells. In this study, the patterns of accumulation of the chloroplastic and cytosolic PPDKs were investigated for K. blossfeldiana plants with different CAM activities by immunogold labeling and electron microscopy. Greater CAM activity was found in plants grown under drought conditions with short days than under well-watered conditions with long days, and in lower leaves than in higher leaves. There was a trend that plants and leaves with greater CAM activity show denser labeling for PPDK in both the cytosol and chloroplasts. However, the ratio of the density of PPDK labeling in the cytosol to that in the chloroplasts was almost constant (2.4–3.0). Higher labeling for phosphoenolpyruvate carboxylase (EC 4.1.1.31) in the cytosol was also correlated with higher CAM activity but there was almost no difference in the density of labeling for ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) in the chloroplasts. These results indicate that the increase in accumulation of cytosolic PPDK is closely associated with the increase of chloroplastic PPDK during enhanced CAM expression. This suggests that both PPDKs are involved in CAM function. 相似文献
11.
We present a method for identifying plant-inducible genes of Erwinia chrysanthemi 3937. Mutagenesis was done with the Mu dIIPR3 transposon, which carries a promoterless neomycin phosphotransferase gene (nptI), so upon insertion, the truncated gene can fuse to E. chrysanthemi promoters. Mutants containing insertions in plant-inducible genes were selected for their sensitivity to kanamycin on minimal plates and for their acquired resistance to this antibiotic when an S. ionantha plant extract was added to kanamycin minimal plates. The selection allowed the identification of E. chrysanthemi promoters inducible by host factors present in the S. ionantha plant extract. Using this method, we isolated 30 mutants and characterized 10 of them. Two mutants were defective in cation uptake, one was defective in the galacturonate degradation pathway, and another was altered in the production of the acidic pectate lyase. The functions of the other mutated genes are still unknown, but we show that most of them are involved in pathogenicity. 相似文献
12.
M H Boyer B Cami J P Chambost M Magnan J Cattanéo 《European journal of biochemistry》1987,162(2):311-316
13.
K N Iakovenko N V Khendogi? S I Sukharev I G Abidor N A Troitski? 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1990,(5):30-32
A new approach has been elaborated for electrofusion of Erwinia chrysanthemi spheroplasts. The new approach consists of superimposition of high voltage impulses on the pellet of tightly contacting cells in the course of centrifugation. The mixture of spheroplasts of two genetically marked strains was placed into the special centrifuge chambers and spinned for 15 min at 2500 g to get a compressed pellet between chamber electrodes. Three successive pulses of 6.6 kv/cm amplitude and 30 microseconds duration were applied to spheroplast pellet during centrifugation. Fusion products were viable and after plating on the surface of hypertonic medium regenerated to the rod forms. As a result, the hybrid clones carrying the markers of both parents were isolated. 相似文献
14.
Erwinia chrysanthemi are gram-negative bacterial phytopathogens causing soft rots in a number of plants. The structure of the extracellular polysaccharide (EPS) produced by E. chrysanthemi strain CU643, pathogenic to Philodendron, has been determined using a combination of chemical and physical techniques including methylation analysis, high- and low-pressure gel-filtration and anion-exchange chromatography, high-pH anion-exchange chromatography, partial acid hydrolysis, mass spectrometry, and 1- and 2-D NMR spectroscopy. In contrast to the structures of the EPS reported for other strains of E. chrysanthemi, the EPS from strain CU643 is a linear polysaccharide containing L-Rhap, D-Galp, and D-GlcAp in the ratio 4:1:1. Evidence is presented for the following hexasaccharide repeat unit: -->3)-beta-D-Galp-(1-->2)-alpha-L-Rhap-(1-->4)-beta-D-GlcAp- (1-->2)-alpha-L- Rhap-(1-->2)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->(1 ). 相似文献
15.
E chrysanthemi, a phytopathogenic enterobacterium, secretes several enzymes into the medium such as pectinases cellulases and proteases. It also produces 3 distinct and antigenically related extracellular proteases. The proteases secretion pathway seems to be distinct from that of the other extracellular enzymes since pleiotropic mutants impaired in cellulase and pectinase secretion are unimpaired in protease secretion. E chrysanthemi proteases B and C secretion occurs without an N-terminal signal peptide and is dependent upon specific secretion functions which are encoded by genes adjacent to the protease structural genes. This secretion pathway might be analogous to the alpha-hemolysin secretion pathway in E coli. Protection against intracellular proteolytic activity is achieved by 2 distinct mechanisms: the proteases are synthesized as inactive precursors with an N-terminal extension of 15 aminoacids (protease B) and 17 aminoacids (protease C) absent in the mature active extracellular enzymes; an intracellular specific protease inhibitor is produced by some E chrysanthemi strains. 相似文献
16.
Generalized transduction in the enterobacterial phytopathogen Erwinia chrysanthemi. 总被引:3,自引:3,他引:3
下载免费PDF全文

Bacteriophages induced by mitomycin treatment of Erwinia chrysanthemi KS612 produced plaques on lawns of E. chrysanthemi EC183 and KS605. Bacteriophage Erch-12, purified from one such plaque, transferred an array of chromosomal genes (arg, leu, his, ser, thr, trp, ura) to appropriate recipient strains derived from E. chrysanthemi EC 183. Recombinants were formed in the absence of cellular contact between donor and recipient bacteria and in the presence of deoxyribonuclease. Ultraviolet irradiation of the bacteriophage stimulated transductional frequency. Linkage was detected in two-factor crosses between the loci thr and ser and between rif and ade; several closely linked mutations in ser were mapped with respect to thr. 相似文献
17.
Various mutations in the pectin catabolic pathway of Erwinia chrysanthemi were isolated by selection of Mu-lac insertions, resulting in expression of the lac genes inducible by pectin degradation products. This approach allowed us to isolate lacZ fusions with the genes pelC, pelD, ogl and pem, encoding pectate lyases PLc and PLd, oligogalacturonate lyase and pectin methytesterase, respectively. Moreover, we obtained mutations affecting the regulation of pectinolytic enzymes; a locus called peel appeared to be involved in induction of pectate tyases and pectin methylesterase. A second locus, called pect, may encode an activator protein acting on pectate lyase production. Both peel and pecL expression are induced in the presence of pectic polymers. The expression of the pem gene was studied in more detail by analysis of the pem-lacZ fusions. The expression of pem appears to be controlled by the negative regulatory gene kdgR, which controls alt the genes involved in pectin degradation (pem, pel, ogl, kduD, kduf, kdgK, kdgA). This study confirmed that 2-keto-3-deoxy-gluconate is a key intermediate for the induction of the pectin catabolic pathway. The three genes pem, pelD and pecl were localized in the same region, near the ade-377 marker on the genetic map of the E. chrysanthemi strain 3937. The pem gene was located more precisely on an 18kb DNA fragment containing the pelADE cluster. However, this 18 kb DNA fragment did not complement the pecl mutation. The pecL mutations were located near the ile-2 marker on the genetic map of E. chrysanthemi strain 3937. 相似文献
18.
Cloning and expression of the Erwinia chrysanthemi asparaginase gene in Escherichia coli and Erwinia carotovora 总被引:1,自引:0,他引:1
A genomic library of Erwinia chrysanthemi DNA was constructed in bacteriophage lambda 1059 and recombinants expressing Er. chrysanthemi asparaginase detected using purified anti-asparaginase IgG. The gene was subcloned on a 4.7 kb EcoRI DNA restriction fragment into pUC9 to generate the recombinant plasmid pASN30. The position and orientation of the asparaginase structural gene was determined by subcloning. The enzyme was produced at high levels in Escherichia coli (5% of soluble protein) and was shown to be exported to the periplasmic space. Purified asparaginase from E. coli cells carrying pASN30 was indistinguishable from the Erwinia enzyme on the basis of specific activity [660-700 units (mg protein)-1], pI value (8.5), and subunit molecular weight (32 X 10(3]. Expression of the cloned gene was subject to glucose repression in E. coli but was not significantly repressed by glycerol. Recombinant plasmids, containing the asparaginase gene, when introduced into Erwinia carotovora, caused increased synthesis of the enzyme (2-4 fold higher than the current production strain). 相似文献
19.
Gloux K Touze T Pagot Y Jouan B Blanco C 《Molecular plant-microbe interactions : MPMI》2005,18(2):150-157
A negative correlation was observed between the aggressiveness of several Erwinia chrysanthemi strains on potato tuber and their osmotic tolerance. The disruption of the ousA gene encoding the major osmoprotectant uptake system highly enhanced bacterial virulence on potato tubers. The ousA disruption also increased the maceration efficiency on potato tubers under anaerobic conditions. In the absence of oxygen, pectate lyase (Pel) production was significantly higher in the tissue macerated with the ousA- strain than with the wild type. Oxygen content is significantly different between infected and healthy tissues; therefore, ousA may be a contributory factor in the infection progression within the host. In minimal medium, ousA disruption enhanced Pel production and pelE expression only under micro-aerobiosis conditions. The effect on Pel was reversed by reintroduction of the ousA gene. The osmoprotectectants glycine betaine, proline betaine, and pipecolic acid are known to be taken up via OusA and to have an inhibitory effect on Pel production. However, their effects on Pel activity were not (glycine betaine) or only weakly (proline and pipecolic acid) affected by ousA disruption. Furthermore, no correlation was observed between their effects on Pel activities and their osmoprotection efficacies. The results demonstrate a relationship between E. chrysanthemi pathogenicity factors and the activity of ousA under low oxygen status. The evidence indicates that ousA and osmoprotectant effects on Pel are not linked to osmoregulation and that complex regulations exist between Pel production, ousA, and osmoprotection via compounds liberated during the plant infection. 相似文献
20.
Uptake of [14C]galacturonic acid in Erwinia chrysanthemi was found to be stimulated during growth on pectin and its degradation products, saturated digalacturonic acid and galacturonic acid. Cells isolated from macerated potato tissue also showed increased levels of uptake activity for this molecule compared with those showed by glycerol-grown cells. Uptake was found to be an active process, and it displayed saturation kinetics. An Escherichia coli galacturonic acid transport mutant harboring the E. chrysanthemi exuT gene(s) for galacturonic acid uptake was able to transport galacturonic acid but unable to take up the dimer [3H]digalacturonic acid. 相似文献