首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent experiments indicate that prostaglandin E2 potentiates the vasodilatory properties of leukotrienes in the skin microcirculation. The present experiments were undertaken to study the effect of leukotriene D4 and prostaglandin E2 on renal hemodynamics and urinary electrolytes in the dog. Experiments were performed in three groups of anesthetized Mongrel dogs: the first group was studied under hydropenia, whereas the two remaining groups were studied during water diuresis with (Group 3) or without indomethacin (Group 2). LTD4 (100 ng/min) and PGE2 (3 ug/min) were infused in the left renal artery to minimize systemic effects of these compounds. LTD4 alone failed to influence urinary sodium excretion in all 3 groups. In Group 1, urinary sodium increased from 77 +/- 6 to 393 +/- 74 uEq/min during PGE2, and further increased to 511 +/- 52 uEq/min during LTD4 + PGE2. No change occurred in the contralateral right kidney. In this group, glomerular filtration as well as renal plasma flow were not statistically influenced. In Group 2, the same phenomenon was observed for urinary sodium. The combined infusion of LTD4 + PGE2 increased urinary sodium without significant changes in glomerular filtration and renal plasma flow. Finally, in Group 3, indomethacin was shown to reduce the natriuretic effects of LTD4 and PGE2: during PGE2 alone, urinary sodium increased from 90 +/- 14 to 260 +/- 66 uEq/min, and only rose from 80 +/- 10 to 175 +/- 19 uEq/min during the combined infusion of LTD4 and PGE2. In groups 2 and 3, free water clearance was utilized as an index of sodium chloride reabsorption in the thick ascending limb: this parameter increased from 2.35 +/- 0.25 to 4.70 +/- 0.30 ml/min, while urinary volume was increasing from 3.55 +/- 0.25 to 10.05 +/- 0.65 ml/min, during LTD4 + PGE2. Indomethacin, administered in Group 3, (3 mg/kg/hr) again abolished the effect of combined PGE2 + LTD4. These results indicate a potentiating effect of leukotriene D4 on the PGE2-induced natriuresis in the anesthetized dog. These phenomena occurred in the absence of significant changes in renal hemodynamics, therefore suggesting a direct tubular effect of these arachidonic acid metabolites. Finally, the water diuresis experiments suggest a proximal site of action of PGE2 and LTD4.  相似文献   

2.
The effect of micropuncture of the renal papilla through an intact ureter on urinary concentrating ability of rats was examined. Micropuncture of the renal papilla caused a fall in urine osmolality in the punctured kidney from 1718 +/- 106 to 1035 +/- 79 mosmol/kg X H2O. In order to investigate the role of renal prostaglandins in this process, PGE2 excretion was measured and found to increase from 63.4 +/- 14.0 to 205.5 +/- 57.1 pg/min. Urine osmolality and PGE2 excretion from the contralateral kidney were not significantly altered. In animals given meclofenamate (2 mg/kg X hr), renal PGE2 excretion was reduced to 22.3 +/- 5.1 pg/min prior to micropuncture and it remained low at 8.9 +/- 1.8 pg/min after papillary micropuncture. Meclofenamate also blocked the fall in urine osmolality caused by micropuncture of the renal papilla, with urine osmolality averaging 1940 +/- 122 before and 1782 +/- 96 mosmol/kg X H2O after the micropuncture. These results indicated that papillary micropuncture through an intact ureter increased renal PGE2 excretion and that a rise in renal production of PGE2 or some other prostanoid is associated with a fall in urine concentrating ability.  相似文献   

3.
Studies were conducted to determine whether prostaglandins are added to the urine during its passage through the rat urinary bladder in vivo. Control rats and rats with chronic streptozotocin-induced diabetes were anesthetized with Inactin, 100 mg/kg i.p., and urine was collected simultaneously from both kidneys. Urine from the left kidney was collected directly from the renal pelvis via a ureteral cannula, while urine from the right kidney was collected via a cannula in the urinary bladder. Prostaglandins in the urine were measured by radioimmunoassay. No difference in urinary concentration or rate of excretion of 6-keto-PGF1 alpha or PGE2 was seen between ureteral urine and bladder urine from either normal or diabetic rats. The results of this study indicate that in vivo there is no intralumenal addition of either 6-keto-PGF1 alpha or PGE2 to the urine by the ureteral bladder of rats.  相似文献   

4.
Urinary PGE(2) concentrations were assayed using a new EIA method, in 16 preterm and 18 term neonates at birth and 3 days later, since there is evidence that PGE(2) in urine are likely to reflect their renal generation and then could be correlated with kidney maturation or renal problems. PGE(2) concentrations were not different at birth (1.50+/-1.12 vs 1.56+/-1.94 ng/day), while resulted significantly higher in preterms, compared to terms, three days after birth (2.22+/-1.23 vs 1.39+/-0.79 ng/day). This increase in daily PGE(2) excretion observed only in preterm neonates could be due to an increased renal biosynthesis as a mechanism of compensatory response to prevent further decrements in renal plasma flow, since prostanoids play an important role in protecting the immature kidney from high levels of angiotensin II. Otherwise, the passive reabsorption of PGE(2) along the distal nephron could be altered because of kidney immaturity. The measurement of PGE(2) in urine of neonates, particularly prematures, could be useful to provide a better understanding of the homeostatic function of the kidney in the phase of adaptation to extra-uterine life.  相似文献   

5.
In the renal medulla, cyclooxygenase (COX)-2 is induced by osmotic stress as present in this kidney region during antidiuresis. Increasing evidence suggests that EGF receptor (EGFR) signaling is involved in this process. The aim of the present study was to examine the mechanisms responsible for COX-2 expression and PGE(2) production during hypertonic conditions and to identify potential autocrine/paracrine EGFR ligands. Immunohistochemisty and Western blot analysis revealed abundant expression of the pro-EGFR ligand pro-transforming growth factor (TGF)-alpha in renal medullary cells in vivo and in cultured Madin-Darby canine kidney cells. In Madin-Darby canine kidney cells, hypertonicity rapidly increased TNF-alpha converting enzyme (TACE)-dependent ectodomain shedding of pro-TGF-alpha; phosphorylation of EGFR, p38, and ERK1/2; expression of COX-2; and production of PGE(2). Conversely, TACE inhibition prevented TGF-alpha release; EGFR, p38, and ERK1/2 activation; and COX-2 expression. Furthermore, cell survival was reduced substantially, a response that could be reversed by the addition of PGE(2). Simultaneous addition of recombinant TGF-alpha during TACE inhibition restored EGFR and MAPK phosphorylation, COX-2 expression, PGE(2) production, and cell survival during osmotic stress. These results indicate that hypertonicity induces TACE-mediated ectodomain shedding of pro-TGF-alpha, which subsequently activates COX-2 expression in an autocrine/paracrine fashion, via EGFR and MAPKs. We conclude that tonicity-induced TGF-alpha release is required for COX-2 expression, PGE(2) synthesis, and survival of renal medullary cells during osmotic stress.  相似文献   

6.
Basal prostaglandin synthesis by the isolated perfused rat kidney   总被引:1,自引:0,他引:1  
In order to assess the main characteristics of the prostaglandin (PG) biosynthesis by the isolated perfused rat kidney, the urinary and venous outputs of PGE2, PGF2alpha, 6-keto-PGF1alpha and of thromboxane (Tx)B2 were followed during 120 min after an equilibration period of 30 min. Single pass kidneys were perfused with a Krebs-Henseleit solution added with Polygeline at a constant flow rate providing a perfusion pressure about 90 mm Hg. From the beginning of the study, major differences could be observed in the renal biosynthetic rate of the 4 PG studied which were mainly excreted into the venous effluent. During the perfusion, urinary and venous outputs of PGE2, PGF2alpha and of TxB2 remained stable whereas those of 6-keto-PGF1alpha sharply increased and were found inversely related to the glomerular filtration rate (r = -0.95; p n 0.001). Finally, the urinary and venous outputs of each of the four PGs studied were found positively related. It is concluded that the isolated perfused rat kidney is a valuable preparation for studying the biosynthesis of PGs and that, at least in thi model, the urinary excretion of PGs is a good index of their renal synthesis.  相似文献   

7.
An experimental model in conscious dogs was developed to investigate the role of prostaglandins (PG) in the obstructed kidney. Renal veins were separately catheterized. Urine flow was shunted to the skin by surgically implanted polyurethane loop ureterostomy so as to allow atraumatic manipulation with maintained continuous flow to the bladder between experiments. One week or more after surgery, renal function parameters as well as renal vein and urinary PGE2 and PGF2 alpha, and renal vein renin were studied during and after unilateral (UUO) and bilateral (BUO) ureteral obstruction. The release of ureteral obstruction produced a constant and marked elevation in urinary PGE2 and PGF2 alpha, two times higher after BUO than after UUO. A close correlation exists between PGE2 and sodium excretion in UUO and BUO. Increasing polyuria was observed only after chronic BUO. In BUO, renal vein renin concentration was augmented after 2 hours but was suppressed after 24 hours of BUO. Renal vein PG concentration was also elevated after chronic UUO and BUO but was in the normal range immediately prior to release of obstruction. The data obtained with the current experimental dog model indicate that the release of ureteral obstruction induces a striking increase in renal PGE2 and PGF2 alpha production which may mediate at least partly the phenomenon of postobstructive diuresis.  相似文献   

8.
Pharmacological blockade of cyclooxygenase-2 (COX-2) causes impairment of kidney development. The present study was aimed at determining temporal expression pattern and activity of the PGE(2) synthetic pathway during postnatal nephrogenesis in mice and its association to the time window sensitive to COX-2 inhibition. During the first 10 days after birth, we observed transient induction of mRNA and protein for microsomal PGE synthase (mPGES)-1 between postnatal days 4 (P4) and P8, but not for mPGES-2 or cytosolic PGE synthase (cPGES). PGE(2) synthetic activity using arachidonic acid and PGH(2) as substrates and also urinary excretion of PGE(2) were enhanced during this time frame. In parallel to the PGE(2) system, COX-2 but not COX-1 expression was also transiently induced. Studying glomerulogenesis in EP receptor knockout mice revealed a reduction in glomerular size in EP1(-/-), EP2(-/-), and EP4(-/-) mice, supporting the developmental role of PGE(2). The most vulnerable time window to COX-2 inhibition by SC-236 was found closely related to the temporal expression of COX-2 and mPGES-1. The strongest effects of COX-2 inhibition were achieved following 8 days of drug administration. Similar developmental damage was caused by application of rofecoxib, but not by the COX-1-selective inhibitor SC-560. COX-2 inhibition starting after P10 has had no effect on the size of glomeruli or on the relative number of superficial glomeruli; however, growth of the renal cortex was significantly diminished, indicating the requirement of COX-2 activity after P10. Effects of COX-2 inhibition on renal cell differentiation and on renal fibrosis needed a prolonged time of exposition of at least 10 days. In conclusion, temporal expression of the PGE(2) synthetic system coincides with the most vulnerable age interval for the induction of irreversible renal abnormalities. We assume that mPGES-1 is coregulated with COX-2 for PGE(2) synthesis to orchestrate postnatal kidney development and growth.  相似文献   

9.
On the basis of acute experiments in animals, a role for prostaglandin E (PGE) in the regulation of urinary sodium excretion has been suggested. Limited information is available, however, concerning the possible role of PGE in chronic adjustments to sodium intake. These studies were designed to determine whether chronic changes in sodium balance would modify renal PGE excretion and whether partial inhibition of prostaglandin synthesis would after the ability of the kidney to adjust to an alteration in sodium intake. Thus, we measured sodium and PGE excretion in rabbits on chronic high and low salt diets before and after inhibition of prostaglandin synthesis with indomethacin or meclofenamate. Although the alterations in salt intake resulted in large changes in sodium excretion there was no significant change in urinary PGE excretion. After administration of either indomethacin or meclofenamate for several days there was a significant fall in PGE excretion, but no significant change in sodium excretion. These results suggest that in the rabbit 1) chronic changes in sodium excretion can occur without modifying PGE excretion (and presumably renal PGE synthesis) and 2) inhibition of PGE synthesis does not impair the kidney's ability to adjust to a chronic high or low sodium intake.  相似文献   

10.
The present study was designed to clarify the possible role of renal prostaglandins (PGs) on blood pressure (BP) regulation during calcium (Ca) restriction or supplementation. Twelve normotensive women with a mean age of 21.2 years participated in the study. After 1 week of normal Ca intake (mean +/- SE, 536 +/- 2 mg/day), a low-Ca diet (163 +/- 1 mg/day) was given for a further 1 week. Additional asparagine Ca (3 g as Ca/day) was also given to half of the subjects. BP, heart rate, and serum total and ionized Ca concentrations were measured at the end of each period. Levels of Ca, sodium, PGE2, 6-keto-PGF1 alpha and thromboxane (TX) B2 excreted into urine were also determined. The plasma level of ionized Ca was significantly increased without any change in total Ca in both groups. Low and high Ca intake decreased and increased urinary Ca excretion by 28% and 56%, respectively. BP was not altered after Ca deprivation or loading. However, urinary PGE2 excretion was significantly augmented from 668.9 +/- 68.1 to 959.7 +/- 183.1 ng/day by Ca loading, whereas Ca deprivation decreased PGE2 excretion (695.4 +/- 108.1 to 513.2 +/- 55.2 ng/day). No changes were observed in 6-keto-PGF1 alpha or TXB2 urinary excretion. These results suggest that renal PGE2 synthesis is stimulated or decreased by 1-week Ca loading or deprivation, indicating a possible antihypertensive role of renal PGE2 during high-Ca intake in hypertensives.  相似文献   

11.
Cyclooxygenase (COX)-dependent prostaglandins are necessary for normal kidney function. These prostaglandins are associated with inflammation, maintenance of sodium and water homeostasis, control of renin release, renal vasodilation, vasoconstriction attenuation, and prenatal renal development. COX-2 expression is regulated by the renin-angiotensin system, glucocorticoids or mineralcorticoids, and aldosterone, supporting a role for COX-2 in kidney function. Indeed, COX-2 mRNA and protein levels as well as enzyme activity are increased, along with PGE2, during kidney failure. In addition, changes in COX-2 expression are associated with increased blood pressure, urinary volume, sodium and protein and decreased urinary osmolarity. Intrarenal mechanisms such as angiotensin II (Ang II) production, increased sodium delivery, glomerular hypertension, and renal tubular inflammation have been suggested to be responsible for the increase in COX-2 expression. Although, specific COX-2 pharmacological inhibition has been related to the prevention of kidney damage, clinical studies have reported that COX-2 inhibition may cause side effects such as edema or a modest elevation in blood pressure and could possibly interfere with antihypertensive drugs and increase the risk of cardiovascular complications. Thus, administration of COX-2 inhibitors requires caution, especially in the presence of underlying cardiovascular disease.  相似文献   

12.
T K Lee  B S Hsieh 《Prostaglandins》1986,32(6):847-855
In 12 of 76 stroke patients complicated by the syndrome of inappropriate secretion of antidiuretic hormone (SIADH), a significant increase in urinary prostaglandin E (PGE) (p less than 0.005), and a significant positive relationship between the plasma arginine vasopressin (AVR) level and urinary PGE excretion were observed (r = 0.72, p less than 0.05). The experimental results are consistent with the view that renal PGE acts as a modulator of ADH. Nowadays acetylsalicylic acid (ASA), an inhibitor of prostaglandin biosynthesis, is widely used in ischemic stroke, it was felt necessary to study the effect of this drug on urinary PGE excretion. Therefore various daily doses of ASA were given orally for 3 days to patients with ischemic stroke. PGE values in 24-hour urine samples were measured every day for 3 days before administration of the drug and for 3 days during ASA administration. In 10 patients who took 75 mg of ASA, the decrease in urinary PGE excretion was not statistically significant. On the other hand when ASA was administered 300 mg once in 19 patients or 300 mg 4 times in 11 cases, urinary PGE excretion decreased significantly (p less than 0.05 and p less than 0.05 respectively). In another group of 8 patients who were observed before, during and after the ASA administration, a daily oral dose of 300 mg for 3 days caused a significant decrease in urinary PGE excretion during these 3 days (p less than 0.05). The urinary PGE excretion returned to the control level within 3 days after cessation of the ASA administration.  相似文献   

13.
Prostaglandin E2 (PGE2) has been implicated to play a pathogenic role in diabetic nephropathy (DN) but its source remains unlcear. To elucidate whether mPGES-1, the best characterized PGE2 synthase, was involved in the development of DN, we examined the renal phenotype of mPGES-1 KO mice subjected to STZ-induced type-1 diabetes. After STZ treatment, mPGES-1 WT and KO mice presented the similar onset of diabetes as shown by similar elevation of blood glucose. Meanwhile, both genotypes of mice exhibited similar increases of urinary and renal PGE2 production. In parallel with this comparable diabetic status, the kidney injury indices including the urinary albumin excretion, kidney weight and the kidney histology (PAS staining) did not show any difference between the two genotypes. By Western-blotting and quantitative qRT-PCR, mPGES-1, mPGES-2, cPGES and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) remain unaltered following six weeks of diabetes. Finally, a selective COX-2 inhibitor celecoxib (50 mg/kg/day) was applied to the STZ-treated KO mice, which resulted in significant reduction of urinary albumin excretion (KO/STZ: 141.5±38.4 vs. KO/STZ + Celebrex: 48.7±20.8 ug/24 h, p<0.05) and the blockade of renal PGE2 induction (kidney: KO/STZ: 588.7±89.2 vs. KO/STZ + Celebrex: 340.8±58.7 ug/24 h, p<0.05; urine: KO/STZ 1667.6±421.4 vs. KO/STZ + Celebrex 813.6±199.9 pg/24 h, p<0.05), without affecting the blood glucose levels and urine volume. Taken together, our data suggests that an as yet unidentified prostaglanind E synthase but not mPGES-1 may couple with COX-2 to mediate increased renal PGE2 sythsesis in DN.  相似文献   

14.
In 17 hospitalized patients affected by acute myocardial infarction (AMI) PGE2 urinary excretion, renal function and, furthermore, cortisol urinary excretion were tested during a 21 days trial. In 12 patients all the parameters under consideration underwent a similar trend: PGE2 urinary excretion exactly like glomerular filtration rate, Na+ excretion and diuresis tended to be reduced during the first 5 days and they rapidly recovered the normality after this period. Cortisol urinary excretion displayed a characteristic pattern: i.e. the highest values were observed in the first days, followed by a progressive decrease towards physiological levels since the 4th day. Different findings were obtained in 5 cases treated with an antiinflammatory drug (Indoprophen i.m. 200 mg x2 die). In fact the low levels of urinary PGE2 on the first days did not display any increasing and GFR, urinary flow, and Na+ tubular balance underwent irregular and not significant variations. These data suggest that an impaired Prostaglandin synthesis may be related to a compromised renal function often occurring in AMI.  相似文献   

15.
In this work PGE(2)concentrations were measured by a new EIA method in the urine of infants (mean age: 9.35+/-4.24 months) with recurrent urinary tract infections or renal malformations. Compared to healthy subjects, PGE(2)excretion rates resulted significantly higher in both pathological groups, in particular in subjects with obstructive uropathies (29.55+/-8.12 vs 18.37+/-4.64 pg/ml). We did not find any age- or pH-dependent difference in urinary excretion of PGE(2); none of the examined indices of renal function showed any significant relationship to PGE(2). These results suggest that this parameter, measured non-invasively in the urine, could help in the differential diagnosis between obstructive vs non-obstructive dilatation and in monitoring renal function in presence of recurrent UTI episodes.  相似文献   

16.
Since one of the hypotensive mechanisms of angiotensin-converting enzyme inhibitor (ACEI) has been suggested to be mediated through the renal kinin-prostaglandin (PG) axis, the present study was designed to investigate the effect of captopril (C) or enalapril (E) on renal PGE2 excretion or synthesis. Wistar male rats (BW 200-250 g) were given orally captopril at 30 mg/kg/day or enalapril at 10 or 30 mg/kg for one week. Before and after ACEI, blood pressure (tail cuff method) as well as PRA and urinary PGE2 excretion was determined. Renopapillary slices were obtained from some of the rats including controls and incubated to determine PGE2 synthesis. C or E administration resulted in a blood pressure decrease of 21 to 36 mm Hg with an increase in PRA. Urine volume and sodium excretion increased after daily treatment with C or E at 30 mg/kg. Urinary PGE2 excretion increased 1.4-fold in response to C, but not to E. Papillary PGE2 synthesis demonstrated a marked decrease 2 h after in vivo administration of either ACEI compared to controls. However, when C or enalaprilat was added in vitro to renal slices obtained from controls, only C at 10(-5) M showed a significant 2-fold increase in renal PGE2 synthesis. These results suggest that (1) renal PGE2 synthesis may be dependent on circulating angiotensin II. (2) C, but not enalaprilat, has a direct stimulatory effect on renal PGE2 synthesis and (3) renal PGE2 may not be involved very much in the hypotensive effect of ACEI.  相似文献   

17.
Caveolin-2 (Cav-2) is expressed in a variety of cell tissue, and it has also been found in renal tissue. The expression of Cav-2 in proximal tubules is still unclear. The aim of this study was to carry out a complete evaluation of the expression pattern of Cav-2 in rat renal cortex to clarify and deepen the knowledge about the localization of Cav-2 in the proximal tubules and also to evaluate its presence in urine. Male Wistar rats were used to assess Cav-2 expression by Western blot analysis in homogenates, apical, and basolateral membranes from kidney cortex, in lysates and total plasma membranes from renal cortical cell suspensions, in urine, and in urinary exosomes. Cav-2 was clearly expressed in renal cortex homogenates and in both apical and basolateral membranes isolated from kidney cortex, with a greater expression on the former membranes. It was also observed in lysates and in plasma membranes from cortical cell suspensions. Moreover, Cav-2 was found in urine and in its exosomal fraction. These results confirmed the presence of Cav-2 in proximal tubule cells in the kidney of healthy rats, and showed for the first time its expression at the apical membrane of these cells and in urine. Besides, urinary exosomal pathway could be involved in Cav-2 urinary excretion under normal conditions. We observed an increase in the urinary abundance of Cav-2 in two models of acute kidney injury, and thus we proposed the urinary excretion of Cav-2 as a potential biomarker of kidney injury.  相似文献   

18.
We investigated the possible role of renal prostaglandin (PG) E2 in natriuresis associated with supraventricular tachycardia (SVT). In five female patients with paroxysmal tachycardia, SVT was artificially induced and then stopped 60 min later. Before, during, and after SVT, plasma levels of arginine vasopressin and atrial natriuretic peptide (ANP) and the urinary excretion of sodium and PGE2 were measured. Polyuria was observed during SVT. However, natriuresis did not occur until immediately after the termination of SVT. During SVT, the plasma levels of arginine vasopressin tended to decrease. When SVT was terminated, the vasopressin levels increased significantly (p less than 0.01). Urinary excretion of PGE2 tended to decrease during SVT and then increased significantly (p less than 0.01) after SVT ended. Urinary excretion of sodium was correlated (r = 0.699, p less than 0.001) with the urinary excretion of PGE2. Plasma ANP increased during SVT, but there was no correlation with urinary sodium excretion. These results suggest that renal PGE2, the biosynthesis of which may be stimulated by a increase in plasma vasopressin, is an important factor contributing to the natriuresis observed after the end of SVT.  相似文献   

19.
J W Fisher  M Hagiwara 《Blood cells》1984,10(2-3):241-260
A model has been presented for the role of the kidney in the physiologic and pathophysiologic control of erythropoiesis. It is postulated that an oxygen deficit created by anemia or hypobaric hypoxia results in the release of prostacyclin and its metabolite 6-keto PGE1, and the release of PGE2 with ischemic hypoxia. Prostacyclin, 6-keto-PGE1, or PGE2 activation of adenylate cyclase, an increase in cyclic AMP, activation of a protein kinase and the phosphorylation of hydrolases, which have been released from lysosomes by hypoxia, lead to increased biosynthesis of erythropoietin (Ep). The mechanism of labilization of lysosomes and the release of hydrolases from these cell organelles is postulated to be related to increases in cyclic GMP levels in a renal cell. An Ep-producing human renal carcinoma cell line grown in tissue culture has been demonstrated to produce significant amounts of PGE2. Meclofenamate, an inhibitor of prostaglandins synthesis, was found to inhibit in vitro production of PGE2, Ep, and dome formation in these renal carcinoma cells, giving support to our hypothesis that pathophysiologic production of Ep tumor cells depends upon prostaglandins production. An Ep-producing clone from this renal carcinoma cell line has been developed that contains low electron density (LED) cells after the cells reach confluency, which show a cytoplasm, with abundant and widely dilated endoplasmic reticulum, an oval nucleus, dispersed chromatin, and prominent nucleoli. These are the cells responsible for dome formation and Ep production. Non-EP-producing clones have also been produced from this renal carcinoma cell line, which did not produce domes even at high cell density and had a distinctly different cell type than the Ep-producing clone. Thus, it is postulated that prostacyclin (PGI2) and its metabolite 6-keto PGE1 play a significant role in hypoxic hypoxia stimulation of Ep production and PGE2 is involved in ischemic hypoxia and renal carcinoma cell production of Ep. A modulating effect of PGE2 and PGD2, the two primary bone marrow prostaglandins, has been proposed in Ep stimulation of the erythroid progenitor cell compartment (CFU-E and BFU-E).  相似文献   

20.
The effect of in vivo lipid peroxidation on the excretion of immunoreactive prostaglandin E2 (PGE2) in the urine of rats was studied. Weanling, male Sprague-Dawley rats were fed a vitamin E-deficient diet containing 10% tocopherol-stripped corn oil (CO) or 5% cod liver oil (CLO) with or without 40 mg dl-alpha-tocopheryl acetate/kg. To induce a high, sustained level of lipid peroxidation, some rats were injected intraperitoneally with 100 mg of iron as iron dextran after 10 days of feeding. Iron overload stimulated in vivo lipid peroxidation in rats, as measured by the increase in expired ethane and pentane. Dietary vitamin E reversed this effect. Rats fed the CLO diet excreted 9.5-fold more urinary thiobarbituric acid-reactive substances (TBARS) than did rats fed the CO diet. Iron overload increased the excretion of TBARS in the urine of rats fed the CO diet, but not in urine of rats fed the CLO diet. Dietary vitamin E decreased TBARS in the urine of rats fed either the CO or the CLO diet. Iron overload decreased by 40% the urinary excretion of PGE2 by rats fed the CO diet, and dietary vitamin E did not reverse this effect. Iron overload had no statistically significant effect on urinary excretion of PGE2 by rats fed the CLO diet. A high level of lipid peroxidation occurred in iron-treated rats, as evidenced by an increase in alkane production and in TBARS in urine in this study, and by an increase in alkane production by slices of kidney from iron-treated rats in a previous study [V. C. Gavino, C. J. Dillard, and A. L. Tappel (1984) Arch. Biochem. Biophys. 233, 741-747]. Since PGE2 excretion in urine was not correlated with these effects, lipid peroxidation appears not to be a major factor in renal PGE2 flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号