首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The actin binding protein α-actinin is a major component of focal adhesions found in vertebrate cells and of focal-adhesion-like structures found in the body wall muscle of the nematode Caenorhabditis elegans. To study its in vivo function in this genetic model system, we isolated a strain carrying a deletion of the single C. elegans α-actinin gene. We assessed the cytological organization of other C. elegans focal adhesion proteins and the ultrastructure of the mutant. The mutant does not have normal dense bodies, as observed by electron microscopy; however, these dense-body-like structures still contain the focal adhesion proteins integrin, talin, and vinculin, as observed by immunofluorescence microscopy. Actin is found in normal-appearing I-bands, but with abnormal accumulations near muscle cell membranes. Although swimming in water appeared grossly normal, use of automated methods for tracking the locomotion of individual worms revealed a defect in bending. We propose that the reduced motility of α-actinin null is due to abnormal dense bodies that are less able to transmit the forces generated by actin/myosin interactions.  相似文献   

2.
ABSTRACT. The close contact of Giardia lamblia trophozoites with mucosal surfaces produces surface indentations of epithelial cells, that progress to areas of microvilli depletion. This interaction is mediated by the lateral crest, a specialized contractile structure in the ventral disc of the parasite. We have analyzed the plasma membrane of the ventral disc using freeze fracture electron microscopy to study the distribution of large integral proteins, and freeze fracture cytochemistry with filipin to reveal sterol-containing sites. A previously undetected structural specialization was found at the lateral crest as a horseshoe-shaped membrane domain characterized by a near absence of intramembrane particles, in sharp contrast to the remainder of the ventral disc plasma membrane. In addition, the lateral crest showed a striking paucity of cholesterol-containing complexes in replicas of trophozoites treated with filipin. These observations demonstrate that the plasma membrane of G. lamblia displays a microheterogeneity in the planar distribution of cholesterol and intramembrane particles. Both membrane components are noticeably less abundant at the outer rim of the ventral disc where contraction takes place.  相似文献   

3.
N-RAP is a striated muscle-specific scaffolding protein that organizes α-actinin and actin into symmetrical I-Z-I structures in developing myofibrils. Here we determined the order of events during myofibril assembly through time-lapse confocal microscopy of cultured embryonic chick cardiomyocytes coexpressing fluorescently tagged N-RAP and either α-actinin or actin. During de novo myofibril assembly, N-RAP assembled in fibrillar structures within the cell, with dots of α-actinin subsequently organizing along these structures. The initial fibrillar structures were reminiscent of actin fibrils, and coassembly of N-RAP and actin into newly formed fibrils supported this. The α-actinin dots subsequently broadened to Z-lines that were wider than the underlying N-RAP fibril, and N-RAP fluorescence intensity decreased. FRAP experiments showed that most of the α-actinin dynamically exchanged during all stages of myofibril assembly. In contrast, less than 20% of the N-RAP in premyofibrils was exchanged during 10-20 min after photobleaching, but this value increased to 70% during myofibril maturation. The results show that N-RAP assembles into an actin containing scaffold before α-actinin recruitment; that the N-RAP scaffold is much more stable than the assembling structural components; that N-RAP dynamics increase as assembly progresses; and that N-RAP leaves the structure after assembly is complete.  相似文献   

4.
Giardia is an intestinal parasite that undergoes adaptation for survival outside the host. Different stages in the Giardia cyst formation include distinctive changes in the trophozoite shape and polarization, from the characteristic flattened dorsal–ventral axis found in motile trophozoites to a rounded appearance and also the appearance of a “tail-like” appendage in later stages of cyst formation. In addition, the flagella disappear and the cyst is oval or rounded and immotile. Since we found no clear information describing how the cells change shape and how the flagella disappear, we applied videomicroscopy, scanning and transmission electron microscopy to follow the gradual modifications that occur in the trophozoite, including alterations in the cell shape, the manner of flagella internalization and changes in disc behavior. Based on the data presented here, it was possible to construct a temporal sequence of changes during Giardia encystation. In this article we show how the membrane growth of the flange contributes to cell shape changes during encystment. In addition, an operculum and flagella internalization is shown. There is a video as a supplement showing these modifications. In other procedure, the plasma membrane was removed and the disc was seen by high resolution scanning electron microscopy where the modifications of the disc spiral can be followed.  相似文献   

5.
ABSTRACT. Giardia trophozoites and cysts, isolated from mammalian and avian hosts, were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and by fluorescent light microscopy for the presence of microbial symbionts. Mycoplasma-like organisms were observed on the surfaces of trophozoites isolated from the prairie vole, laboratory rat, and beaver. Intracellular bacteria were observed by TEM in the trophozoites and cysts of G. microti and by fluorescence microscopy in trophozoites and cysts of Giardia spp. isolated from beaver, muskrat, great-blue heron, and the green heron. Trophozoites of G. muris from rat small intestine contained viral-like particles measuring 60 nm in diameter. These observations suggest that biological associations between Giardia spp. and diverse microbes may be more common than formerly appreciated. It also raises the possibility of transmission of these apparent symbionts, via the Giardia cyst, to other mammalian hosts including man.  相似文献   

6.
The mutual effect of three actin-binding proteins (α-actinin, calponin and filamin) on the binding to actin was analyzed by means of differential centrifugation and electron microscopy. In the absence of actin α-actinin, calponin and filamin do not interact with each other. Calponin and filamin do not interfere with each other in the binding to actin bundles. Slight interference was observed in the binding of α-actinin and calponin to actin bundles. Higher ability of calponin to depress α-actinin binding can be due to the higher stoichiometry calponin/actin in the complexes formed. The largest interference was observed in the pair filamin–α-actinin. These proteins interfere with each other in the binding to the bundled actin filaments; however, neither of them completely displaced another protein from its complexes with actin. The structure of actin bundles formed in the presence of any one actin-binding protein was different from that observed in the presence of binary mixtures of two actin-binding proteins. In the case of calponin or its binary mixtures with α-actinin or filamin the total stoichiometry actin-binding protein/actin was larger than 0.5. This means that α-actinin, calponin and filamin may coexist on actin filaments and more than mol of any actin-binding protein is bound per two actin monomers. This may be important for formation of different elements of cytoskeleton.  相似文献   

7.
Mouse and quail embryo fibroblasts were extracted with Triton X-100 and the resulting cytoskeletons were treated with gelsolin-like actin-capping protein (the 90-kDa protein-actin complex isolated from bovine brain). Staining of cells with rhodamine-conjugated phalloin or an antibody to actin did not reveal any actin-containing structures after treatment with the 90-kDa protein-actin complex. Extraction of actin was confirmed by SDS-gel electrophoresis. Immunofluorescence microscopy showed that vinculin and α-actinin were released from the cytoskeletons together with actin. However, myosin remained associated with the cytoskeleton after treatment with the 90-kDa protein-actin complex. The distribution of myosin in treated cells showed no significant difference from that in control cells: in both cases myosin was localized mainly in the stress fibers. Double-fluorescence staining showed the absence of actin in myosin-containing stress fibers of treated cells. The ultrastructural organization of actin-depleted stress fibers was studied by transmission electron microscopy of platinum replicas. On electron micrographs these fibers appeared as bundles of filaments containing clusters of globular material. It is concluded that myosin localization in stress fibers does not depend on actin.  相似文献   

8.
Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP) with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.  相似文献   

9.
The flagellated protozoan, Giardia agilis, was isolated from tadpole small intestine and examined by scanning electron microscopy and interference reflexion microscopy. The general morphology of the G. agilis trophozoite is similar to G. muris and G. duodenalis, but with modifications that reflect its elongated form. Interference reflexion microscopic analysis of attachment of G. agilis reveals a pattern of focal contacts by the lateral crest of the ventral disc, the ventrolateral flange, the lateral shield, and by numerous microvillus-like appendages found along the lateral border of the trophozoite. The pattern of focal contacts was observed to be dynamic; trophozoites were observed to make and break the focal contacts in a relatively short time and to glide along the surface of the substratum without breaking focal contacts.  相似文献   

10.
The flagellated protozoan, Giardia agilis, was isolated from tadpole small intestine and examined by scanning electron microscopy and interference reflexion microscopy. The general morphology of the G. agilis trophozoite is similar to G. muris and G. duodenalis, but with modifications that reflect its elongated form. Interference reflexion microscopic analysis of attachment of G. agilis reveals a pattern of focal contacts by the lateral crest of the ventral disc, the ventrolateral flange, the lateral shield, and by numerous microvillus-like appendages found along the lateral border of the trophozoite. The pattern of focal contacts was observed to be dynamic; trophozoites were observed to make and break the focal contacts in a relatively short time and to glide along the surface of the substratum without breaking focal contacts.  相似文献   

11.
SEM evidence for a new species, Giardia psittaci   总被引:2,自引:0,他引:2  
The genus Giardia has been subdivided by Filice (1952) into 3 species, G. agilis, G. muris, and G. duodenalis, based on the morphology of the median body and subtle variations in the dimensions of trophozoites. Giardia trophozoites were isolated from the small intestine of budgerigars (parakeets) and examined morphologically with light and scanning electron microscopy. These trophozoites, like other Giardia spp., possessed a flattened dorso-ventral shape, 8 flagella, and an adhesive disc on the ventral surface. The presence of a claw hammer-shaped median body suggested classification of these trophozoites as G. duodenalis. However, unlike any known members of G. duodenalis, the Giardia trophozoites from budgerigars were morphologically distinct in that they lacked the ventrolateral flange and therefore did not have a marginal groove bordering the anterior and lateral border of the adhesive disc. This distinct morphology clearly indicated that trophozoites from budgerigars should be considered as a separate species, G. psittaci. Our evidence has demonstrated that median body shape cannot serve as a sole criterion for speciation of Giardia. In addition, if other avian species of Giardia also resemble G. psittaci, then this would suggest that evolutionary divergence has occurred in the genus Giardia.  相似文献   

12.

Background

Microfilaments play a determinant role in different cell processes such as: motility, cell division, phagocytosis and intracellular transport; however, these structures are poorly understood in the parasite Giardia lamblia.

Methodology and Principal Findings

By confocal microscopy using TRITC-phalloidin, we found structured actin distributed in the entire trophozoite, the label stand out at the ventral disc, median body, flagella and around the nuclei. During Giardia encystation, a sequence of morphological changes concurrent to modifications on the distribution of structured actin and in the expression of actin mRNA were observed. To elucidate whether actin participates actively on growth and encystation, cells were treated with Cytochalasin D, Latrunculin A and Jasplakinolide and analyzed by confocal and scanning electron microscopy. All drugs caused a growth reduction (27 to 45%) and changes on the distribution of actin. Besides, 60 to 80% of trophozoites treated with the drugs, exhibited damage at the caudal region, alterations in the flagella and wrinkles-like on the plasma membrane. The drugs also altered the cyst-yield and the morphology, scanning electron microscopy revealed diminished cytokinesis, cysts with damages in the wall and alterations in the size and on the intermembranal space. Furthermore, the drugs caused a significant reduction of the intensity of flourescence-labeled CWP1 on ESV and on cyst wall, this was coincident with a reduction of CWP1 gene expression (34%).

Conclusions and Significance

All our results, indicated an important role of actin in the morphology, growth and encystation and indirectly suggested an actin role in gene expression.  相似文献   

13.
We observed the localization of the contractile proteins myosin, filamentous actin, α-actinin, tropomyosin, and vinculin in surface-activated, spreading human platelets using a single fluorescence staining procedure and conventional fluorescence microscopy. Myosin was distributed in a speckled pattern that extended radially from the granulomere. F-actin demonstrated cable-networks. Tropomyosin and α-actinin occurred in a punctuate distribution, and vinculin was localized at adhesion sites. Although myosin, F-actin, α-actinin, tropomyosin, and vinculin were not studied in resting platelets, our data support the idea that these contractile proteins are reorganized and reassembled in activated platelets during platelet function.  相似文献   

14.
Actin and spectrin were isolated from washed red blood cell membranes. Spectrin bound and polymerized erythrocyte actin in the absence of potassium. Spectrin coated onto polystyrene latex particles bound 8–9 mol of erythrocyte actin per mol of spectrin when actin was in its depolymerized state. Spectrin enhanced the interaction of erythrocyte actin with muscle myosin as manifested by changes in Mg2+-ATPase activity. A similar enhancement also was observed with muscle α-actinin while muscle tropomyosin abolished these effects. The data suggest that spectrin may play the role of polymerizing factor as well as the anchoring site for erythrocyte actin just as α-actinin is the anchoring site for actin filaments in muscle and other non-muscle cells.  相似文献   

15.
Giardia lamblia is a flagellated, unicellular parasite of mammals infecting over one billion people worldwide. Giardia''s two-stage life cycle includes a motile trophozoite stage that colonizes the host small intestine and an infectious cyst form that can persist in the environment. Similar to many eukaryotic cells, Giardia contains several complex microtubule arrays that are involved in motility, chromosome segregation, organelle transport, maintenance of cell shape and transformation between the two life cycle stages. Giardia trophozoites also possess a unique spiral microtubule array, the ventral disc, made of approximately 50 parallel microtubules and associated microribbons, as well as a variety of associated proteins. The ventral disc maintains trophozoite attachment to the host intestinal epithelium. With the help of a combined SEM/microtome based slice and view method called 3View® (Gatan Inc., Pleasanton, CA), we present an entire trophozoite cell reconstruction and describe the arrangement of the major cytoskeletal elements. To aid in future analyses of disc-mediated attachment, we used electron-tomography of freeze-substituted, plastic-embedded trophozoites to explore the detailed architecture of ventral disc microtubules and their associated components. Lastly, we examined the disc microtubule array in three dimensions in unprecedented detail using cryo-electron tomography combined with internal sub-tomogram volume averaging of repetitive domains. We discovered details of protein complexes stabilizing microtubules by attachment to their inner and outer wall. A unique tri-laminar microribbon structure is attached vertically to the disc microtubules and is connected to neighboring microribbons via crossbridges. This work provides novel insight into the structure of the ventral disc microtubules, microribbons and associated proteins. Knowledge of the components comprising these structures and their three-dimensional organization is crucial toward understanding how attachment via the ventral disc occurs in vivo.  相似文献   

16.
Immunofluorescence and electron microscopy were used to study the organization of actin, myosin and α-actinin in the “sarcomeric” units of the stress fibers of a selected non-muscle cell type. The results of indirect immunofluorescence confirm that myosin and α-actinin are periodically distributed in discrete units along stress fibers and demonstrate that they are alternately spaced. This relationship is required by a sarcomere model of stress fiber construction. A comparison between immunofluorescent and EM images of stress fibers confirms that α-actinin is confined to Z line-like dense bodies, myosin to the spaces in between. The most intriguing result is that by immunofluorescence a periodic distribution of actin can be detected in some fibers. This may indicate that even actin is periodically distributed in non-muscle “sarcomeres”.  相似文献   

17.
As determined by analytical ultracentrifugation, purified α-actinin does not form stable complexes with G-actin, myosin, tropomyosin, or the tropomyosintroponin complex. However, α-actinin forms a stable complex with F-actin polymerized either in 100 mM KC1 or in 2mM MgCl2 without KCl. Viscosity studies confirm that α-actinin interacts as strongly with Mg2+-polymerized actin as it does with KCl-polymerized actin.  相似文献   

18.
The unicellular protozoa Giardia lamblia is a food‐ and waterborne parasite that causes giardiasis. This illness is manifested as acute and self‐limited diarrhea and can evolve to long‐term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin‐like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked‐down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti‐SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α‐tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites.  相似文献   

19.
Giardia lamblia is a parasite possessing a complex cytoskeleton and an unusual morphology of bearing two nuclei. Here, the interphasic nuclei of trophozoites, using field emission scanning electron microscopy, routine scanning and transmission electron microscopy, immunocytochemistry, and 3D reconstruction, are presented. An approach using plasma-membrane extraction allowed the observation of the two nuclei still attached in their original positions. The observations are as follows: (1) Giardia nuclei and cytoskeleton were studied in demembranated cells by routine scanning electron microscopy and field emission; (2) both nuclei are anchored to basal bodies of the anterior flagella and to the descending posterior-lateral and ventral flagella, at the right and left nuclei, respectively, in cells attached by its ventral disc; (3) this attachment occurs by proteinaceous links, which were labeled by anti-actin and anti-centrin but not by anti-dynein or anti-tubulin antibodies; (4) fibrilar connections between the nuclei and the disc were also observed; and (5) nuclei exhibited a pendular movement when living cells were treated with cytochalasin, although the nuclei were still connected by their anterior region. Our analysis indicated that the nuclei have a defined position, and fibrils perform an anchoring system. This raises the possibility of a mechanism for nuclei-fidelity migration during mitosis.  相似文献   

20.
THE FINE STRUCTURE OF GIARDIA MURIS   总被引:10,自引:1,他引:9       下载免费PDF全文
Giardia is a noninvasive intestinal zooflagellate. This electron microscope study demonstrates the fine structure of the trophozoite of Giardia muris in the lumen of the duodenum of the mouse as it appears after combined glutaraldehyde and acrolein fixation and osmium tetroxide postfixation. Giardia muris is of teardrop shape, rounded anteriorly, with a convex dorsal surface and a concave ventral one. The anterior two-thirds of the ventral surface is modified to form an adhesive disc. The adhesive disc is divided into 2 lobes whose medial surfaces form the median groove. The marginal grooves are the spaces between the lateral crests of the adhesive disc and a protruding portion of the peripheral cytoplasm. The organism has 2 nuclei, 1 dorsal to each lobe of the adhesive disc. Between the anterior poles of the nuclei, basal bodies give rise to 8 paired flagella. The median body, unique to Giardia, is situated between the posterior poles of the nuclei. The cytoplasm contains 300-A granules that resemble particulate glycogen, 150- to 200-A granules that resemble ribosomes, and fusiform clefts. The dorsal portion of the cell periphery is occupied by a linear array of flattened vacuoles, some of which contain clusters of dense particles. The ventrolateral cytoplasm is composed of regularly packed coarse and fine filaments which extend as a striated flange around the adhesive disc. The adhesive disc is composed of a layer of microtubules which are joined to the cytoplasm by regularly spaced fibrous ribbons. The plasma membrane covers the ventral and lateral surfaces of the disc. The median body consists of an oval aggregate of curved microtubules. Microtubules extend ventrally from the median body to lie alongside the caudal flagella. The intracytoplasmic portions of the caudal, lateral, and anterior flagella course considerable distances, accompanied by hollow filaments adjacent to their outer doublets. The intracytoplasmic portions of the anterior flagella are accompanied also by finely granular rodlike bodies. No structures identifiable as mitochondria, smooth endoplasmic reticulum, the Golgi complex, lysosomes, or axostyles are recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号