首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Plasmodium falciparum: assay of invasion of erythrocytes   总被引:2,自引:0,他引:2  
A method for quantitatively assaying Plasmodium falciparum merozoite invasion of particular erythrocytes is described. Erythrocytes were labeled with fluorescein isothiocyanate which did not affect parasite entry or growth, to distinguish them from uninfected erythrocytes in the original parasitized cell population. Parasites were detectable after staining with ethidium bromide. The time course of infection of the labeled cells was followed over 26 hr. The technique was used to determine the effect of serum from a patient with P. falciparum malaria on merozoite invasion of the labeled erythrocytes.  相似文献   

2.
Invasion of erythrocytes by malaria parasites is known to be blocked by proteolytic digestion of merozoite receptors allegedly present in red cell membranes. This information was used in the present work to develop a simple and convenient assay for parasite invasion into red blood cells and for evaluating the role played by red cell membrane components in this process. Synchronized in vitro cultures of Plasmodium falciparum containing only ring stages were subjected to either trypsin or pronase digestion, a treatment that neither affected ring development into schizonts nor mature merozoite release. Cells from this culture were not invaded by the released merozoites. However, upon addition of untreated human red blood cells, marked invasion was observed, either microscopically or as [3H]isoleucine incorporation. The new assay circumvents the need for separating schizonts from uninfected cells and provides a convenient means for assessing how chemical and biochemical manipulation of red blood cells affects their invasiveness by parasites. Using this assay, we verified that sheep and rabbit erythrocytes were resistant to invasion, as were human erythrocytes which had been treated with trypsin, pronase or neuraminidase. Chymotrypsin digestion of human erythrocytes was without effect on invasion. Human erythrocytes which were chemically modified with the impermeant amino reactive reagent H2DIDS, or with the crosslinker of spectrin, TCEA, were found to resist invasion. The results underscore the involvement of surface membrane components as well as of elements of the cytoskeleton in the process of parasite invasion into erythrocytes.  相似文献   

3.
The surface membrane glycoproteins of normal mouse erythrocytes can be labeled by oxidation with either periodate or galactose oxidase in the presence of neuraminidase, followed by reduction with NaB3H4. Without neuraminidase there is little galactose oxidase-catalyzed labeling of protein. Analysis of labeled proteins by SDS-polyacrylamide gel electrophoresis showed that both methods labeled the same set of glycoproteins. Plasmodium berghei infection dramatically reduced the sialoglycoprotein labeling of red blood cells from infected blood using the periodate/NaB3H4 method. Provided neuraminidase was present, labeling by the galactose oxidase method gave identical results to normal erythrocytes. We conclude that the glycoprotein sialic acid of uninfected as well as infected red cells is modified during infection such that it is refractory to periodate oxidation. Acylation of the exocyclic hydroxyls of sialic acid is suggested to account for this. Lectin binding and cell agglutination experiments using Limulin, soybean and wheatgerm lectins, and concanavalin A confirmed and extended these observations. The possible implications of these results with regard to anemia induced by malaria are briefly discussed.  相似文献   

4.
A photoaffinity probe, procaine azide, was employed to determine the sites of interaction of procaine in normal and sickle cell erythrocytes. Studies show that the number of binding sites and affinity of procaine to membranes derived from normal and sickled cell erythrocytes were similar, although procaine retards the in vitro formation of irreversibly sickled cells from cells. The results show that procaine azide, a photoaffinity analogue of procaine, is covalently incorporated into both protein (60–70%) and lipid (40–30%) components of the membrane. Sodium dodecyl sulfate-gel electrophoresis of the labeled ghosts show that procaine binds specifically to band 3 and periodic acid-Schiff staining bands in membranes derived from labeled erythrocytes. Binding of procaine or covalent incorporation of procaine azide into membrane proteins does not affect the phosphate transport. Moreover, pre-treatment of intact erythrocytes with 4,4′-diisothiocyano-2,2′-stilbene disulfonate, an anion transport inhibitor, did not affect either the binding or covalent incorporation of procaine azide into erythrocytes. These results indicate that the binding of procaine azide to Band 3 protein occurs at a locus different than that involved in anion translocation process.  相似文献   

5.
Flow cytometry is a powerful tool for analyzing the adhesion to and invasion of Staphylococcus aureus (S. aureus) to eukaryotic cells. Established techniques have used bacteria that have been genetically modified to express fluorescent proteins or directly labeled with fluorochromes prior to infection. Such approaches are appropriate in most cases; however, the use of genetically or chemically altered bacteria could introduce a bias when measuring fine differences in adhesion and invasiveness. Here, we describe a combined flow cytometry-based invasion and adhesion assay that does not require the processing of bacteria prior to internalization. This method was performed on osteoblastic MG-63 cells infected with S. aureus reference strain 8325-4 and its invasion-deficient isogenic mutant, which carries deletions in the genes encoding fibronectin-binding proteins A and B. The data from this assay were compared to those obtained using the standard gentamicin protection assay. The results obtained by the two methods were consistent. Moreover, quantification of internalized bacteria was more reproducible using the flow cytometry-based assay than the gentamicin protection assay, which allowed for the simultaneous quantification of host cell adhesion and invasion.  相似文献   

6.
The fine structure of invasion of human erythrocytes by merozoites of the malaria parasite Plasmodium falciparum was observed in vitro. The invasion process is similar to that described for P. knowlesi. Merozoites enter apical end first by invagination of the erythrocyte membrane. At the rim of the invagination, where merozoite and erythrocyte are in closest contact, the erythrocyte membrane is thickened. The brushy cell coat of the P. falciparum merozoite appears to be lost at this attachment zone. The part of the merozoite within the erythrocyte invagination has no visible coat. The coat on the portion outside is unaltered. Merozoites can successfully invade erythrocytes after 3 hr in the presence of a concentration of chloroquine harmful to feeding stages.  相似文献   

7.
The DNA of Babesia spp. parasites within host intact red blood cells was labeled using the fluorescent bisbenzimidazole dye 33258 Hoechst. The labeled cells were sorted on a fluorescence activated cell sorter on the basis of cell fluorescence (proportional to DNA content) and the intensity of light scattered from the cells at low angles (related to cell size). The optimal conditions for dye uptake were established for the murine parasite Babesia rodhaini and the bovine parasites B. bovis and B. bigemina. Uninfected cells were nonfluorescent after incubation with the dye and could be completely separated from infected fluorescent cells. The fluorescence of cells infected with B. rodhaini was proportional to the number of parasite nuclei per cell. With saturation levels of dye, samples infected with B. bovis or B. bigemina in which erythrocytes contained one or two parasites, both exhibited only one fluorescent cell peak. Cell sorting did not eliminate the infectivity of B. rodhaini. The method may be used to separate populations of uninfected blood cells and cells infected with Babesia spp. for biochemical and immunochemical experiments.  相似文献   

8.
Thiol status and growth in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes. Experimental Parasitology 57, 239-247. The relationship of the thiol status of the human erythrocyte to the in vitro growth of Plasmodium falciparum in normal and in glucose-6-phosphate dehydrogenase (G6PD)-deficient red cells was investigated. Pretreatment with the thiol-oxidizing agent diamide led to inhibition of growth of P. falciparum in G6PD-deficient cells, but did not affect parasite growth in normal cells. Diamide-treated normal erythrocytes quickly regenerated intracellular glutathione (GSH) and regained normal membrane thiol status, whereas G6PD-deficient cells did not. Parasite invasion and intracellular development were affected under conditions in which intracellular GSH was oxidized to glutathione disulfide and membrane intrachain and interchain disulfides were produced. An altered thiol status in the G6PD-deficient erythrocytes could underlie the selective advantage of G6PD deficiency in the presence of malaria.  相似文献   

9.
Streptococcus pneumoniae, a Gram-positive bacterium, is a major cause of invasive infection-related diseases such as pneumonia and sepsis. In blood, erythrocytes are considered to be an important factor for bacterial growth, as they contain abundant nutrients. However, the relationship between S. pneumoniae and erythrocytes remains unclear. We analyzed interactions between S. pneumoniae and erythrocytes, and found that iron ion present in human erythrocytes supported the growth of Staphylococcus aureus, another major Gram-positive sepsis pathogen, while it partially inhibited pneumococcal growth by generating free radicals. S. pneumoniae cells incubated with human erythrocytes or blood were subjected to scanning electron and confocal fluorescence microscopic analyses, which showed that the bacterial cells adhered to and invaded human erythrocytes. In addition, S. pneumoniae cells were found associated with human erythrocytes in cultures of blood from patients with an invasive pneumococcal infection. Erythrocyte invasion assays indicated that LPXTG motif-containing pneumococcal proteins, erythrocyte lipid rafts, and erythrocyte actin remodeling are all involved in the invasion mechanism. In a neutrophil killing assay, the viability of S. pneumoniae co-incubated with erythrocytes was higher than that without erythrocytes. Also, H2O2 killing of S. pneumoniae was nearly completely ineffective in the presence of erythrocytes. These results indicate that even when S. pneumoniae organisms are partially killed by iron ion-induced free radicals, they can still invade erythrocytes. Furthermore, in the presence of erythrocytes, S. pneumoniae can more effectively evade antibiotics, neutrophil phagocytosis, and H2O2 killing.  相似文献   

10.
BACKGROUND: Plasmodium falciparum merozoites bind to and invade human erythrocytes via specific erythrocyte receptors. This establishes the erythrocytic stage of the parasite life cycle that causes clinical disease resulting in 2-3 million deaths per year. We tested the hypothesis that a Plasmodium falciparum ligand, EBA-175 region II (RII), which binds its erythrocyte receptor glycophorin A during invasion, can be used as an immunogen to induce antibodies that block the binding of RII to erythrocytes and thereby inhibit parasite invasion of erythrocytes. Accordingly, we immunized mice, rabbits, and monkeys with DNA plasmids that encoded the 616 amino acid RII. MATERIALS AND METHODS: DNA vaccine plasmids that targeted the secretion of recombinant RII protein with and without the universal T-cell helper epitopes P2P30 were used to immunize mice, rabbits, and Aotus monkeys. RII specific antibodies were assessed by IFA, ELISA, blocking of native [35S] labeled EBA-175 binding to human erythrocytes, and growth inhibition assays, all in vitro. RESULTS: The RII DNA plasmids were highly immunogenic as measured by ELISA and IFA. The anti-RII antibodies blocked the binding of native EBA-175 to erythrocytes, and rosetting of erythrocytes on COS-7 cells expressing RII. Most important, murine and rabbit anti-RII antibodies inhibited the invasion of merozoites into erythrocytes. We immunized nonhuman primates and showed that the RII-DNA plasmids were immunogenic and well tolerated in these monkeys. Monkeys were challenged with parasitized erythrocytes; one of three monkeys that received RII DNA plasmid was protected from fulminant disease. After challenge with live parasites, anti-RII antibody titers were boosted in the immunized monkeys. CONCLUSIONS: By proving the hypothesis that anti-RII antibodies can block merozoite invasion of erythrocytes, these studies pave the way for the clinical evaluation of EBA-175 as a receptor-blockade vaccine.  相似文献   

11.
Plasmodium malaria parasites multiply within erythrocytes and possess a repertoire of proteins whose function is to recognize and invade these vertebrate host cells. One such protein involved in erythrocyte invasion is the micronemal protein, Erythrocyte Binding-Like (EBL), which has been studied as a potential target of vaccine development in Plasmodium vivax (PvDBP) and Plasmodium falciparum (EBA-175). In the rodent malaria parasite model Plasmodium yoelii, specific substitutions in the EBL regions responsible for intracellular trafficking (17XL parasite line) or receptor recognition (17X1.1pp. parasite line), paradoxically increase invasion ability and virulence rather than abolish EBL function. Attempts to disrupt the ebl gene locus in the 17XL and 17XNL lines were unsuccessful, suggesting EBL essentiality. To understand the mechanisms behind these potentially conflicting outcomes, we generated 17XL-based transfectants in which ebl expression is suppressed with anhydrotetracycline (ATc) and investigated merozoite behavior during erythrocyte invasion. In the absence of ATc, EBL was secreted to the merozoite surface, whereas following ATc administration parasitemia was negligible in vivo. Merozoites lacking EBL were unable to invade erythrocytes in vitro, indicating that EBL has a critical role for erythrocyte invasion. Quantitative time-lapse imaging revealed that with ATc administration a significant number of merozoites were detached from the erythrocyte after the erythrocyte deformation event and no echinocytosis was observed, indicating that EBL is required for merozoites to establish an irreversible connection with erythrocytes during invasion.  相似文献   

12.
In vitro glycolytic enzyme activities and in vivo glycolytic intermediate concentrations were assayed in Plasmodium knowlesi-infected rhesus monkey erythrocytes and control erythrocytes. The enzyme activities of infected erythrocytes were greater than controls indicating that P. knowlesi had its own glycolytic system and that parasite glycolysis was the source of the increased rate of glucose consumption by infected erythrocytes. The P. knowlesi glycolytic enzymes phosphofructokinase and hexokinase were less sensitive to acid inhibition than uninfected red cells.P. knowlesi-infected monkey erythrocytes and Plasmodium berghei-infected mouse erythrocytes had similar in vivo glycolytic profiles and in vitro enzyme activity increases.  相似文献   

13.
During blood stage infection, malaria parasites invade, mature, and replicate within red blood cells (RBCs). This results in a regular growth cycle and an exponential increase in the proportion of malaria infected RBCs, known as parasitemia. We describe a flow cytometry based protocol which utilizes a combination of the DNA dye Hoechst, and the mitochondrial membrane potential dye, JC-1, to identify RBCs which contain parasites and therefore the parasitemia, of in vivo blood samples from Plasmodium chabaudi adami DS infected mice. Using this approach, in combination with fluorescently conjugated antibodies, parasitized RBCs can be distinguished from leukocytes, RBC progenitors, and RBCs containing Howell-Jolly bodies (HJ-RBCs), with a limit of detection of 0.007% parasitemia. Additionally, we outline a method for the comparative assessment of merozoite invasion into two different RBC populations. In this assay RBCs, labeled with two distinct compounds identifiable by flow cytometry, are transfused into infected mice. The relative rate of invasion into the two populations can then be assessed by flow cytometry based on the proportion of parasitized RBCs in each population over time. This combined approach allows the accurate measurement of both parasitemia and merozoite invasion in an in vivo model of malaria infection.  相似文献   

14.
The erythrocytes and plasma of rats were not labeled equally with sterols even after feeding plant sterols for 2 months.

When erythrocytes and plasma were labeled in vivo with radioactive sterols, the in vitro exchange of cholesterol between cells and plasma was considerably greater than that of β-sitosterol. The dependence of the transfer on plasma lecithin : cholesterol acyltransferase was much less with β-sitosterol.

More labeled β-sitosterol existed in high density lipoprotein and less in very-low density and low density lipoproteins than cholesterol, when plasma was labeled in vivo. A similar distribution pattern was observed when plasma was incubated with labeled erythrocytes. These results suggest that an extra ethyl group in the side chain of the molecule substantially influences the metabolic behavior of the sterols.  相似文献   

15.
Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth.The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2'',7''-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal-spatial visualization of bacteria. Methods used in this study can be applied to any cultivable anaerobe and any eukaryotic cell type.  相似文献   

16.

Background

The malaria parasite Plasmodium falciparum EBA-175 binds its receptor sialic acids on glycophorin A when invading erythrocytes. The receptor-binding region (RII) contains two cysteine-rich domains with similar cysteine motifs (F1 and F2). Functional relationships between F1 and F2 domains and characterization of EBA-175 were studied using specific monoclonal antibodies (mAbs) against these domains.

Methods and Findings

Five mAbs specific for F1 or F2 were generated. Three mAbs specific for F2 potently blocked binding of EBA-175 to erythrocytes, and merozoite invasion of erythrocytes (IC50 10 to 100 µg/ml IgG in growth inhibition assays). A mAb specific for F1 blocked EBA-175 binding and merozoite invasion less effectively. The difference observed between the IC50 of F1 and F2 mAbs was not due to differing association and disassociation rates as determined by surface plasmon resonance. Four of the mAbs recognized conformation-dependent epitopes within F1 or F2. Used in combination, F1 and F2 mAbs blocked the binding of native EBA-175 to erythrocytes and inhibited parasite invasion synergistically in vitro. MAb R217, the most potent, did not recognize sporozoites, 3-day hepatocyte stage parasites, nor rings, trophozoites, gametocytes, retorts, ookinetes, and oocysts but recognized 6-day hepatocyte stage parasites, and schizonts. Even though efficient at blocking binding to erythrocytes and inhibiting invasion into erythrocytes, MAb R217 did not inhibit sporozoite invasion and development in hepatocytes in vitro.

Conclusions

The role of the F1 and F2 domains in erythrocyte invasion and binding was elucidated with mAbs. These mAbs interfere with native EBA-175 binding to erythrocyte in a synergistic fashion. The stage specific expression of EBA-175 showed that the primary focus of activity was the merozoite stage. A recombinant RII protein vaccine consisting of both F1 and F2 domains that could induce synergistic activity should be optimal for induction of antibody responses that interfere with merozoite invasion of erythrocytes.  相似文献   

17.
Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of erythrocyte invasion are incompletely understood. P. falciparum depends heavily on sialic acid present on glycophorins to invade erythrocytes. However, a significant proportion of laboratory and field isolates are also able to invade erythrocytes in a sialic acid-independent manner. The identity of the erythrocyte sialic acid-independent receptor has been a mystery for decades. We report here that the complement receptor 1 (CR1) is a sialic acid-independent receptor for the invasion of erythrocytes by P. falciparum. We show that soluble CR1 (sCR1) as well as polyclonal and monoclonal antibodies against CR1 inhibit sialic acid-independent invasion in a variety of laboratory strains and wild isolates, and that merozoites interact directly with CR1 on the erythrocyte surface and with sCR1-coated microspheres. Also, the invasion of neuraminidase-treated erythrocytes correlates with the level of CR1 expression. Finally, both sialic acid-independent and dependent strains invade CR1 transgenic mouse erythrocytes preferentially over wild-type erythrocytes but invasion by the latter is more sensitive to neuraminidase. These results suggest that both sialic acid-dependent and independent strains interact with CR1 in the normal red cell during the invasion process. However, only sialic acid-independent strains can do so without the presence of glycophorin sialic acid. Our results close a longstanding and important gap in the understanding of the mechanism of erythrocyte invasion by P. falciparum that will eventually make possible the development of an effective blood stage vaccine.  相似文献   

18.
Salmonella species are zoonotic pathogens and leading causes of food borne illnesses in humans and livestock1. Understanding the mechanisms underlying Salmonella-host interactions are important to elucidate the molecular pathogenesis of Salmonella infection. The Gentamicin protection assay to phenotype Salmonella association, invasion and replication in phagocytic cells was adapted to allow high-throughput screening to define the roles of deletion mutants of Salmonella enterica serotype Typhimurium in host interactions using RAW 264.7 murine macrophages. Under this protocol, the variance in measurements is significantly reduced compared to the standard protocol, because wild-type and multiple mutant strains can be tested in the same culture dish and at the same time. The use of multichannel pipettes increases the throughput and enhances precision. Furthermore, concerns related to using less host cells per well in 96-well culture dish were addressed. Here, the protocol of the modified in vitro Salmonella invasion assay using phagocytic cells was successfully employed to phenotype 38 individual Salmonella deletion mutants for association, invasion and intracellular replication. The in vitro phenotypes are presented, some of which were subsequently confirmed to have in vivo phenotypes in an animal model. Thus, the modified, standardized assay to phenotype Salmonella association, invasion and replication in macrophages with high-throughput capacity could be utilized more broadly to study bacterial-host interactions.  相似文献   

19.
20.
Membrane lipid rafts have been implicated in erythrocyte invasion process by Plasmodium falciparum. In this study, we examined the effect of lidocaine, a local anesthetic, which disrupts lipid rafts reversibly without affecting membrane cholesterol content on parasite invasion. In the presence of increasing concentrations of lidocaine in the culture medium, parasite invasion was progressively decreased with complete inhibition at 2 mM. Decreased invasion was also seen in erythrocytes pre-treated with lidocaine and cultured in the absence of lidocaine. This inhibitory effect on parasite invasion was reversed following removal of lidocaine from erythrocyte membranes. Our findings show that disruption of lipid rafts in the context of normal cholesterol content markedly inhibits parasite invasion and confirm an important role for lipid rafts in invasion of erythrocytes by P. falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号