首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
The nematode Trichinella spiralis is rejected from the intestine at a time that is characteristic for each inbred strain of mouse. Previous work (R. G. Bell et al. 1982a) had empirically identified strong, intermediate, and weak phenotypes (NFR, CHHe, and C5710 mice, respectively) in mice infected with 400 muscle larvae. It is shown that this classification applies to another eight inbred strains: SWR, DBA2, DBA1, LP, BubBn—all intermediate, and NZBBIN, C57L, A, and Mus molossinus—all weak. This phenotypic classification consistently applies with infections of 400–800 muscle larvae. Below doses of 300 muscle larvae, the strain designation of phenotype does not consistently apply. By this it is meant that the relative rejection rate changes for certain strains so that eventually some strains that were strong (NFR) or intermediate (AKR) responders to 400 muscle larvae become weak responders to 50 muscle larvae. Other strains increase their relative rejection time (B10 · BR, B10 · Q) while many do not change (NFS, C3HebFe, DBA2, DBA1). The phenomenon is most apparent in inbred parental strains rather than in F1 crosses, and it represents a phenotypic variation in rejection time that is dependent on dose. It is also demonstrated that time of rejection is directly proportional to dose in all inbred and F1 mouse strains that we have examined. Analysis of F1 crosses shows that most have the rejection time of the strongest responding parental line, suggesting simple genetic control of strong, intermediate, and weak responses. Two F1 crosses invalidated this theory. The DBA1 × C3HHe (intermediate × intermediate) showed a strong response. The additive effects of parental rejection phenotype indicated that these lines could not be genetically identical for intermediate responsiveness. Similarly, the NFR (strong) × B10 · BR (weak) F1 showed intermediate rejection, indicating partial dominance of C57B110 genes over the strong responder NFR strain. Neither the primary expulsion time phenotype, phenotypic variation to low doses, or the rejection characteristics of F1 crosses could be ascribed to genes linked to the major histocompatibility complex.  相似文献   

2.
Rats infected with Trichinella spiralis for the first week of the enteral infectious cycle displayed a strong rapid expulsion reaction during a challenge infection. The response was induced with equal facility in animals given low or high immunizing doses of infectious larvae (500 to 5000 larvae). Large challenge infections resulted in a 10–15% reduction in the efficiency of rejection as assessed 24 hr after challenge. Rats became primed to express rapid expulsion within the first week of primary infection whether the infection remained patent or not. However, maximum effectiveness was not realized until the second week after the initial infection. Once induced, the capacity to express rapid expulsion persisted for 6 weeks after the primary infection. Immunized hosts were capable of resisting two challenge infections spaced by periods of from 12 to 72 hr. This finding suggests that a mediator is not consumed by the initial response.  相似文献   

3.
The effects of concurrent primary infection of the rat with Eimeria nieschulzi and Trichinella spiralis on the number of oocysts of E. nieschulzi shed by the host and on the number, distribution, and fecundity of adult T. spiralis were analyzed. When rats were initially infected with E. nieschulzi followed 9 days later by infection with T. spiralis there occurred a significant decrease in the total numbers of adult worms in the small intestine, a significant shift in the position of these worms along the length of the small gut, a decrease in the fecundity of adult female worms, and a decrease in muscle parasitism when compared with rats infected with T. spiralis alone. When rats were initially infected with T. spiralis, followed 9 days later by infection with E. nieschulzi, there occurred a significant decrease in the numbers of oocysts shed over 24 hr on Days 7, 9, and 11 postinfection below that seen with rats infected only with Eimeria. These changes are discussed in terms of the enteropathophysiologic lesions and enteric inflammation known to occur during infections with these two parasites.  相似文献   

4.
Trichinella spiralis whole muscle larval extract was fractionated by gel filtration and anion-exchange chromatography, and the protein fractions were assayed for allergenicity by a footpad-swelling test in mice; IgE antibody levels in rats immunized with the fractions were determined by passive cutaneous anaphylaxis test in rats. By these methods, an allergenic fraction from T. spiralis was isolated. The fraction, F1-b, was shown to be monodisperse by analysis with SDS-PAGE, IEP, and isoelectric focusing, indicating that it is a single protein moiety with a molecular weight of approximately 45,000 and a pI of approximately 5.1. The Schiff-periodate test showed Fl-b to be a glycoprotein. Rats immunized with Fl-b had significantly fewer intestinal worms than did nonimmunized controls at 24 hr and 7 days after oral challenge with T. spiralis larvae.  相似文献   

5.
The muscle phase of Trichinella spiralis and of Trichinella sp. isolated in the Arctic was compared in experimental and wild animals. Reproductive capacity indices (RCI) of the Trichinella sp. isolate were significantly lower in laboratory rodents but were similar to T. spiralis in wild rodents. Sprague-Dawley rats were the most refractory to the Trichinella sp. isolate of all laboratory rodents. Outbred strains of mice were more susceptible to both T. spiralis and the Trichinella sp. isolate than inbred strains of mice. T. spiralis muscle larvae survived longer in mice and the survival of both T. spiralis and the Trichinella sp. isolate larvae was higher in female mice. While single pair interbreeding experiments showed reproductive isolation between T. spiralis and the Trichinella sp. isolate, multiple pair and transplant breeding experiments showed reproductive compatibility. Male and female infective larvae of T. spiralis and the Trichinella sp. isolate differed morphometrically, but a convergence in size of worms was observed after prolonged passages of the parasites in mice. Passaging history of the isolate and host species was found to have a significant effect on Trichinella morphology. It is proposed that the Trichinella sp. isolate is a physiological variant of T. spiralis and not a distinct species.  相似文献   

6.
The capacity of different phases of the life cycle of Trichinella spiralis to induce rapid expulsion was examined. The phases examined included enteral preadults, enteral adults, and parenteral larvae. All had the ability to induce rapid expulsion although there were significant quantitative differences in their inductive capacity and in the kinetics of expression. Immunization with preadults required only a 48-hr enteral exposure to 2000 worms to induce strong rapid expulsion. In contrast rats required a 14-day exposure to adult worms to elicit a comparable response. After immunization with adults the reaction was demonstrable for only 2 weeks. Parenteral larvae produced only a weak rapid expulsion reaction by themselves and this response did not develop until some 8 weeks after challenge. When immunization with the enteral phases (preadult and adult) was combined with exposure to parenteral larvae a strong and enduring rapid expulsion reaction was observed. Phase specificity was also observed in the susceptibility of worms to the rapid expulsion response. The preadult phases, from infectious larvae to worms of up to 2 days of age were highly susceptible. Older worms, from 3 to 4 days old were not susceptible to rapid expulsion and could invade and establish themselves in the primed intestine for at least a 48-hr period without apparent adverse effects.  相似文献   

7.
The immune response of mice to the nematode Trichinella spiral's was markedly altered when the infection was superimposed upon an existing infection with Nematospiroides dubius. The expulsion of a primary infection of T. spiralis was delayed in such mice, and the worms persisted for at least 4 weeks longer than they did in control mice. The degree to which expulsion was suppressed was related to the number of N. dubius present. It would appear that both adult and larval stages of N. dubius can exert a suppressive effect, since the expulsion of T. spiralis was affected within days of a super-imposed (i.e., larval) N. dubius infection. When adult N. dubius were removed from mice 4 days before infection with T. spiralis, the mice expelled the latter parasite within the normal time, indicating that recovery from the suppressive effects of concurrent infection occurred rapidly. Concurrent infection with N. dubius appeared to affect both the afferent and efferent arms of the immune response to T. spiralis, since sensitization by, and memory of, prior infection were impaired and the expression of acquired immunity was inferior to that of controls.  相似文献   

8.
The precise immunological mechanisms associated with expulsion of the gastrointestinal nematode Nippostrongylus brasiliensis remain controversial. In order to investigate the effects of drug-induced immunosuppression on parasite burdens and expulsion, various regimens of cyclophosphamide were administered to parasitized Wistar rats. It was observed that both the number of worms established from an infective dose of 3000 larvae and the time of expulsion were markedly increased with higher doses of cyclophosphamide. Thus, at the highest sublethal level of treatment (100 mg/kg), 82% of the infective dose was recovered at Day 9 postinfection compared with 51% in nontreated controls. Furthermore, in such treated rats expulsion was delayed in 6 days beyond that of nontreated animals. As cyclophosphamide, at the levels used in the present study, is known to primarily effect B-cell function, the results support the view that antibody-mediated responses play an essential role in worm expulsion.  相似文献   

9.
Chemotaxis of rat peritoneal cells, of which the eosinophil was the predominant migratory cell type, toward incubates of Trichinella spiralis was studied using a modified Boyden chamber. Excysted muscle larvae, preadults, and adults were incubated in a buffered medium for 20 hr at 37 C. Worms were incubated alone or with serum or spleen cells, or both, from immune and nonimmune rats. Incubates of worm stages alone possessed no chemotactic activity as compared with incubation medium as a negative control and zymosan-activated serum as a positive control. Both normal and immune sera tested alone stimulated cell migration to the same degree. Incubates of spleen cells from either normal or immunized hosts did not show chemotactic activity. Chemotaxis caused by normal and immune sera were not altered by incubation with homologous spleen cells. Addition of larva, preadults, and adult worms to sera, however, enhanced chemotactic activity over sera alone. Chemotaxis caused by larvae plus immune sera was significantly greater than that stimulated by larvae plus normal sera. This difference decreased when preadults were substituted for larvae and was not observed when adult worms were used. Reversal of the chemical gradients showed that active cell migration caused by various incubates was due to Chemotaxis.  相似文献   

10.
Analysis of the early stages of a challenge infection with Strongyloides ratti has shown that protection is expressed against the developing third-stage larval worms (L3) and prevents the maturation to adulthood of most larvae. Challenge after an immunizing infection that was restricted to the parenteral L3 migratory phase showed that some 10–40% of overall protection could be ascribed to systemic antilarval immunity. Some larvae were trapped in the skin at the site of injection whereas others failed to migrate to the head and lung of immune rats. Larvae arriving in the intestine at Days 3, 4, and 5 did not persist beyond Day 7 and 8. Studies using [75Se]methionine-labeled L3 showed a significant increase in fecal label in rats immunized by a complete infection. This loss did not occur to the same extent in rats immunized only with parenteral larvae. Significant rejection of worms transplanted to the intestine also indicated intestinal protection. The possible existence of large numbers of worms in a state of “arrested development” was excluded by their failure to appear after cortisone treatment and the absence of worm accumulation in radiolabeling studies. It is concluded that at least two responses operate against larval S. ratti, one is systemic and the other operates in the intestine against larvae in a manner that resembles the “rapid expulsion” rejection of Trichinella spiralis in immune rats.  相似文献   

11.
The implantation and development of intravenously injected Trichinella spiralis newborn larvae were examined in different strains of inbred mice by determining muscle larvae burden. This was compared to the numbers of muscle larvae that established after a natural infection during which a quantitative assessment of intestinal newborn larvae production was made. In most inbred strains of mice, newborn larvae do not all successfully implant in muscle. Mice of the DBA/1 strain are the most resistant to successful implantation, and C3H mice are the most permissive. This pattern is evident in the strains studied whether newborn larvae are injected intravenously or are produced by intestinal adults. Thus, after a natural infection, 100% of intestinally produced newborn larvae implanted in C3H mice, whereas in NFR 68% and DBA/1 mice 62% successfully matured in muscle. Immunity to newborn larvae could be demonstrated as early as 10 days after exposure to this stage of the life cycle. This immunity was protective against a complete challenge infection given 9 days after newborn larvae had been injected intravenously. Protection against newborn larvae was identical in male and female mice or in mice from 1 to 9 months of age. We conclude that there are two mechanisms by which mice impair newborn larvae establishment or development in muscle. The first appears to be nonimmunological (non-specific resistance), and the second is immunological. Genetically determined variation in strain-specific expression is apparent with both mechanisms. In strains displaying high intrinsic "resistance" (DBA/1), this process is likely to account for most of the 38% reduction in newborn larvae establishment in a primary infection. However, immunity against newborn larvae develops quickly enough to have a significant effect on migratory larvae in primary infections where adults persist in the intestine (e.g., the B10 congenic mice), or when high adult worm burdens delay adult worm rejection. Muscle larvae burden, therefore, reflects systemic nonspecific resistance to newborn larvae as well as immunological processes that occur in the intestine and systemically.  相似文献   

12.
The technique of implanting adult Trichinella spiralis into the intestines of mice has been used to assess the contributions of direct, anti-worm immunity and of intestinal inflammation to worm expulsion. The survival after transfer of worms exposed to an effective adoptive immunity in donors was no different from that of worms taken from control donors. Worms taken from donors 8 days after infection, i.e., shortly before the onset of expulsion, showed no increased susceptibility to an immunity adoptively transferred to the recipient mice. When worms were implanted into mice responding to a prior, oral infection they were expelled rapidly. This expulsion was independent of the age of the worms transferred and took place at the same time as the expulsion of the existing infection.  相似文献   

13.
Trypanosoma musculi infections were given to mice of different strains before, at the same time, and after an infection with 400 Trichinella spiralis. Examined parameters of the host response to T. spiralis were worm rejection, antifecundity responses, development of immunological memory, and muscle larvae burden. After dual infection, each mouse strain showed characteristic effects on resistance to T. spiralis. This was due to a dynamic interaction between the genes controlling rejection of T. spiralis and those influencing T. musculi growth. C3H mice develop high trypanosome parasitemias. This impairs worm expulsion and the development of memory to T. spiralis when Trypanosoma infections take place on the same day or 7 days before. The C57B1/6 mouse develops low parasitemias and T. musculi infections on the same day, or 7 days before T. spiralis, delaying worm rejection only slightly despite the overall weak capacity of B6 mice to expel worms. NFR-strain mice are strong responders to T. spiralis and also develop low parasitemias. Trypanosome infections on the same day, or after T. spiralis, produce a delay in worm rejection; the former is comparable to C3H mice. However, NFR mice alone showed enhanced rejection of worm when T. musculi infections preceded T. spiralis by 7 days. An unusual feature of C3H mice was that T. musculi infections 7 days before T. spiralis increased antifecundity responses at the same time that worm expulsion was inhibited. Trypanosome infections can therefore modulate distinct antihelminth immune responses in different directions simultaneously. The different outcomes of dual infections compared with single infections provides another selective mechanism by which genetic polymorphisms can be established and maintained in the vertebrate host.  相似文献   

14.
Responsiveness of mouse strains after phase-specific immunization with Trichinella spiralis is compared. Two strains (NFRN, NFS/N) showed strong overall responsiveness. The response type could be characterized in phase-specific terms as: strongly anti-adult, weakly to moderately anti-preadult, and strongly antifecundity. By comparison, congenic mice of the C57B1 10Sn background (B10·A, B10·D2, B10·S, B10·Q) displayed poor total responses that could be characterized as: weakly anti-adult, very weakly anti-preadult, weakly anti-fecundity after preadult immunization, and mixed (weak and strong) after adult immunization. The C3HHeJ mouse appeared to be intermediate between the B10·BR and the NFRN strains in overall responsiveness. Genetic determinants of anti-preadult or anti-adult responses of NFRN strain mice were dominant over their B10 congenic counterparts as shown in F1, crosses of NFRN × B1O·BR mice. Since the NFRN (predominantly H-2q) and the NFSN (H-2S) are both strong responders, while the B10·Q(H-2q) and B10·S (H-2S) are weak, it is suggested that the major genes controlling anti-preadult and anti-adult responses are not linked to the major histocompatibility complex. However, variations in anti-adult immunity and anti-fecundity in the B10 congenic mice (B10·Q and B10·S are the strongest responders) suggest that minor genes linked to the MHC exert some control over these responses. Some evidence was obtained for gene complementation as the F1 cross of NFRN and NFSN mice responded more vigorously than the parental lines. We conclude that multiple genes determine anti-T. spiralis intestinal responses in mice. The major genes are unlinked to the major histocompatibility complex whereas several minor genes are linked.  相似文献   

15.
Alizadeh H. and Wakelin D. 1982. Comparison of rapid expulsion of Trichinella spiralis in mice and rats. International Journal for Parasitology12: 65–73. Primary infections of Tricliinella spiralis in both NIH mice and Wistar rats resulted in increased levels of mucosal mast cells and goblet cells. In mice the numbers of both cell types rose sharply before worm expulsion (days 8–10), remained at an increased level for a short time and declined quickly, reaching control levels on day 14 for goblet cells and between days 28 and 35 for mast cells. In contrast, in rats, the numbers of goblet cells and mast cells increased during worm expulsion and remained above control levels for a prolonged period. Challenge infections given shortly after expulsion of a primary infection (day 14) were expelled rapidly, worm loss being virtually complete with 24 h. In mice this response to challenge was short-lived and persisted only until day 16 after primary infection. After this time, challenge worms were expelled more slowly after infection. In rats the rapid expulsion response was expressed for at least 7 weeks after primary infection. Mice and rats showed differences in the conditions of infection necessary to prime for rapid expulsion, mice requiring larger and longer duration primary infections, but the expression of the response appeared to be similar in both species. In mice it was shown that rapid expulsion of T. spiralis was a response evoked specifically by prior infection with this species; infections with other intestinal nematodes had no effect. Similarly, the effect upon challenge infection was also specific to T. spiralis. The rapidity with which challenge infections are expelled suggests that either the specific inflammatory changes generated during primary infection result in an environment that is unsuitable for establishment of subsequent infections or that challenge infections provide a stimulus that can provoke an almost instantaneous response in the primed intestine. The relationship of the observed cellular changes to such mechanisms is discussed.  相似文献   

16.
Epithelium of isolated small intestinal segments were studied in Ussing-type chambers to detect physiological changes associated with rapid, immune rejection of Trichinella spiralis infective larvae. Electrophysiological parameters associated with Na+-coupled hexose transport were measured. Changes in transepithelial electrical potential difference (PD), resistance, and short circuit current (Isc) due to the addition of actively absorbed β-methyl-d-glucoside (BMG) to the mucosal solution were determined. Measurements were made prior to and 30 min after primary and secondary infections. Animals were infected by intraduodenal inoculation. As the infective larval dose in primarily infected (nonimmunized) rats increased from 50 to 2000 larvae the magnitude of the rise in Isc elicited by BMG decreased in a dose-dependent fashion, with 50 larvae per rat having no effect. In previously infected (immunized) rats challenged with a secondary inoculum, all doses, ranging from 50 to 2000 larvae per rat, decreased the BMG-stimulated change in Isc by approximately 50%. The effect of 50 worms per rat in immunized hosts was equivalent to that produced by ~1600 worms in nonimmunized animals. Measurements of 14C-BMG mucosa-to-serosa flux confirmed that Na+-BMG cotransport was responsible for observed changes in Isc. Results support the conclusion that changes in intestinal epithelial function are associated with larval challenge of immune rats.  相似文献   

17.
Alterations in host blood chemistry during mouse trichinosis were studied. Mice infected with Trichinella spiralis showed depressions in serum glucose, serum pyruvate, serum total cholesterol, serum bilirubin, serum alkaline phosphatase, serum total proteins, serum total globulin, uric acid, albumin, and A/G ratio below levels found in uninfected animals. The concentrations of serum lactic dehydrogenase, serum glutamic-oxaloacetic transaminase, and serum creatine phosphokinase in infected mice were above that of uninfected mice. Hemoglobin, packed-cell volume (Hematocrit), creatinine, and calcium were at similar levels in infected and uninfected mice. These changes are discussed in terms of primary pathophysiologic lesions occurring in the gut and muscles of the trichinous host.  相似文献   

18.
Trichinella spiralis: selective intestinal immune deviation in the rat   总被引:1,自引:0,他引:1  
In rats, infections with 100-2000 Trichinella spiralis muscle larvae lead to a prompt immunity that is expressed in parasite expulsion within 14 days. Rats infected with more than 2000 larvae display impaired immunity with rejection delayed by 50% (7 days) or more. Suppression is selective for expulsive immunity as the antifecundity response of rats is directly proportional to dose and is expressed sooner in heavily infected subjects. Suppression of intestinal expulsive immunity was suggested by the fact that, with low doses (2000 larvae or less), worm rejection was inhibited by cortisone, whereas cortisone inhibited antifecundity but had no discernable effect on worm rejection in high-dose infections. Evidence for local immune deviation as opposed to systemic immunosuppression was obtained in experiments using parabiotic rats. When one partner was infected with 6000 worms and the other with 200, the rat infected with 200 parasites showed earlier rejection than was seen in single controls infected with 200 worms. The prolonged survival of high-dose adults was not accompanied by a change in the site of worm residence in the gut. Immunological parameters such as serum antibody levels, the number of activated cells or specific anti-T. spiralis lymphocytes in thoracic duct lymph were all increased in a dose-dependent manner. These experiments therefore demonstrate a novel autoprotective mechanism by which adult T. spiralis selectively reduce the expression of expulsive immunity in the gut.  相似文献   

19.
Proteins and antigens derived from a large-particle fraction of muscle larvae of Trichinella spiralis (i.e., the S3 fraction) were characterized in terms of their molecular weights, isoelectric points, carbohydrate contents, electrophoretic mobilities, antigenicity, and their ability to induce protection in mice. Gel filtration on Sephacryl S-200 yielded 5 major peaks of material while electrophoresis in polyacrylamide gel with sodium dodecyl sulfate revealed a minimum of 28 proteins ranging in MW from 11,000 to 200,000. Analytical isoelectric focusing on acrylamide gel yielded 37 bands of protein, while the periodic acid-Schiff reaction performed on a similar gel revealed 22 glycoproteins. Most proteins were within a pI range of 4.0–7.0, while all of the glycoproteins had pI ranging from 4.0 to 6.5. Immunoelectrophoresis of the S3 fraction using hyperimmune rabbit serum demonstrated a minimum of 19 precipitin arcs, while crossed immunoelectrophoresis yielded 16 peaks. These determinations were made on several batches of material isolated in the same fashion and gave the same results. Preparative isoelectric focusing yielded 30 fractions. These fractions were assayed for the presence of antigens, then pooled and tested for their ability to induce protection in mice against an oral challenge infection. Fused rocket immunoelectrophoresis of all 30 fractions revealed the presence of a minimum of 18 antigens with pI ranging from 4.0 to 9.0. The pooled fractions (i.e., 1–9; 10–20; 21–30) all protected mice against oral challenge infection, while fraction 5 (pI = 4.3) protected best.  相似文献   

20.
Mice infected orally with third-stage larvae of Heligmosomoides polygyrus were killed at various times after infection. Their small intestines were removed, tied at each end and incubated at 37 C in dilute culture medium. When intestines were taken from mice infected for a period of between 1 and 7 days, a number of developing larvae comprising up to 20% of the infective dose emerged within 60 min through the intestinal wall into the medium. The recovery of emergent larvae was highest using intestines from mice infected 36 to 120 hr previously. The proportion of parasites emerging from the intestines of 48-hr-infected mice was similar for doses of 100 to 2400 larvae. Significantly fewer larvae emerged from the intestines of mice resistant to reinfection and challenged with third-stage larvae 36–72 hr before necropsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号