首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemotherapy of rodent malaria: transfer of resistance vs mutation   总被引:1,自引:0,他引:1  
Pyrimethamine-resistant strains of Plasmodium berghei and P. vinckei were produced by exposing populations of erythrocytic parasites to the selection pressure of increasing doses of drug as well as by single-step mutations. Pyrimethamine-sensitive parasites of both rodent plasmodia were found to mutate at a rate of 1–2 × 10?11 when exposed to a single course of drug therapy, consisting of 15 mg/kg/day for 4 consecutive days, given subcutaneously. Resistance obtained by either method, was found to be stabile for at least 40 passages in the absence of drug pressure, the longest number of passages tested. Parasites exposed to 15 mg/ kg/day were also found to be resistant to 160 mg/kg/day, the maximum dose of pyrimethamine tolerated by the rodent host.Plasmodium berghei chloroquine-sensitive parasites were found to have a mutation rate of 1.5 × 10?10, when exposed to a single course of chloroquine therapy, consisting of 30 mg/kg/day chloroquine base given for 4 consecutive days, subcutaneously. These parasites were also found to be resistant to 60 mg/kg/day the highest dose of chloroquine tolerated by the rodent host. Chloroquine-resistant strains of P. vinckei could not be developed by a single-step mutation nor by selection by slow increases in drug pressure.Pyrimethamine-resistant strains of P. berghei, whether, the resistance was developed by single-step mutation, or by slowly increasing the pyrimethamine doses over extended periods of time, demonstrated dihydrofolate reductases which were similar in activity, Michaelis constants, and inability to be stimulated by increased concentrations of KCl. The same was found to be true for the dihydrofolate reductases (EC 1.5.1.3) isolated from pyrimethamine-resistant P. vinckei strains. The enzymes isolated from the resistant strains differed in all respects from their sensitive counterparts.Attempts at drug resistance-transfer, using both a biological filter system, and a dual drug resistant system, were both unsuccessful. The origin of all drug resistant strains studied and reported in this paper, can best be explained by the occurrence of mutation, most probably involving the change of a single nucleotide base in the DNA.  相似文献   

2.
Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed—in contrast to viable parasites—that apoptotic-like parasites enter an LC3+, autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4+ T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells´ autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.  相似文献   

3.
Drug resistant strains of the malaria parasite, Plasmodium falciparum, have rendered chloroquine ineffective throughout much of the world. In parts of Africa and Asia, the coordinated shift from chloroquine to other drugs has resulted in the near disappearance of chloroquine-resistant (CQR) parasites from the population. Currently, there is no molecular explanation for this phenomenon. Herein, we employ metabolic quantitative trait locus mapping (mQTL) to analyze progeny from a genetic cross between chloroquine-susceptible (CQS) and CQR parasites. We identify a family of hemoglobin-derived peptides that are elevated in CQR parasites and show that peptide accumulation, drug resistance, and reduced parasite fitness are all linked in vitro to CQR alleles of the P. falciparum chloroquine resistance transporter (pfcrt). These findings suggest that CQR parasites are less fit because mutations in pfcrt interfere with hemoglobin digestion by the parasite. Moreover, our findings may provide a molecular explanation for the reemergence of CQS parasites in wild populations.  相似文献   

4.
Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein confer resistance to the antimalarial drug chloroquine. PfCRT localizes to the parasite digestive vacuole, the site of chloroquine action, where it mediates resistance by transporting chloroquine out of the digestive vacuole. PfCRT belongs to a family of transporter proteins called the chloroquine resistance transporter family. CRT family proteins are found throughout the Apicomplexa, in some protists, and in plants. Despite the importance of PfCRT in drug resistance, little is known about the evolution or native function of CRT proteins. The apicomplexan parasite Toxoplasma gondii contains one CRT family protein. We demonstrate that T. gondii CRT (TgCRT) colocalizes with markers for the vacuolar (VAC) compartment in these parasites. The TgCRT-containing VAC is a highly dynamic organelle, changing its morphology and protein composition between intracellular and extracellular forms of the parasite. Regulated knockdown of TgCRT expression resulted in modest reduction in parasite fitness and swelling of the VAC, indicating that TgCRT contributes to parasite growth and VAC physiology. Together, our findings provide new information on the role of CRT family proteins in apicomplexan parasites.  相似文献   

5.
Pronase treatment of mouse red cells in the presence of chloroquine leads to greatly enhanced accumulation of the drug, which after freeze-thaw or hypotonic lysis is found to be located mainly in the membrane fraction. Much lower proportions of the drug are found in the membrane fraction prepared from Plasmodium berghei-infected red cells, which also have a high capacity for chloroquine accumulation. Pronase treatment of infected cells result only in a slight enhancement of total accumulation. The membrane-bound fraction of the drug is, however, increased while the fraction in the lysate is decreased. Membranes prepared from hypotonic lysis of normal or P. berghei-infected cells have similar capacities for chloroquine binding. These results show that the distribution of chloroquine in pronase-treated and malaria-infected cells are different and that pronase treatment of both normal and infected cells followed by lysis leads to availability of potential membrane binding sites.  相似文献   

6.
Intracellular eukaryotic parasites and their host cells constitute complex, coevolved cellular interaction systems that frequently cause disease. Among them, Plasmodium parasites cause a significant health burden in humans, killing up to one million people annually. To succeed in the mammalian host after transmission by mosquitoes, Plasmodium parasites must complete intracellular replication within hepatocytes and then release new infectious forms into the blood. Using Plasmodium yoelii rodent malaria parasites, we show that some liver stage (LS)-infected hepatocytes undergo apoptosis without external triggers, but the majority of infected cells do not, and can also resist Fas-mediated apoptosis. In contrast, apoptosis is dramatically increased in hepatocytes infected with attenuated parasites. Furthermore, we find that blocking total or mitochondria-initiated host cell apoptosis increases LS parasite burden in mice, suggesting that an anti-apoptotic host environment fosters parasite survival. Strikingly, although LS infection confers strong resistance to extrinsic host hepatocyte apoptosis, infected hepatocytes lose their ability to resist apoptosis when anti-apoptotic mitochondrial proteins are inhibited. This is demonstrated by our finding that B-cell lymphoma 2 family inhibitors preferentially induce apoptosis in LS-infected hepatocytes and significantly reduce LS parasite burden in mice. Thus, targeting critical points of susceptibility in the LS-infected host cell might provide new avenues for malaria prophylaxis.  相似文献   

7.

Background

Malaria remains one of the most important tropical diseases of human with 1–2 million deaths annually especially caused by P. falciparum. During malarial life cycle, they exposed to many environmentally stresses including wide temperature fluctuation and pharmacological active molecules. These trigger malarial evolutionarily adaptive responses. The effect of febrile temperature on malarial growth, development and drug susceptibility by mimicking patient in treatment failure before and after drug uptake was examined.

Methods

Sensitivities of P. falciparum to antimalarial drug (chloroquine, mefloquine, quinine and artesunate) were investigated based on the incorporation of [3H] hypoxanthine into parasite nucleic acids or radioisotopic technique. The number of parasites was examined under microscope following Giemsa staining and the parasite development at the end of each phase was counted and comparison of parasite number was made. The proteome was separated, blotted and hybridized with anti-Hsp70s primary antibody. The hybridized proteins were separately digested with trypsin and identified by MALDI-TOF peptide mass fingerprint.

Results

The results show that febrile temperature is capable of markedly inhibiting the growth of field isolate P. falciparum but not to K1 and 3D7 standard strains. K1 and 3D7 grown under heat shock developed greater and the reinfection rate was increased up to 2-folds when compared to that of non-heat shock group. The IC50 value of K1 toward chloroquine, mefloquine and quinine under heat shock was higher than that of K1 under non-heat shock which is opposite to that of 3D7. Heat shock caused death in field isolated parasite. It was also found that the febrile temperature coped with chloroquine uptake had no effect to the development, drug sensitivity and the parasite number of K1 strain. In the opposite way, heat shock and chloroquine shows extremely effect toward 3D7 and field isolate PF91 as shown by higher number of dead parasites compared to that of control group. After culture under high temperature with artesunate, the total parasite number of all strains including K1, 3D7 and PF91 was extremely decreased and the parasite was not found at the end. Additionally, the expression of pfHsp70s was found in all strains and conditions as shown in 120 kDa hybridized band. However, the proteome extracted from K1 grown under heat shock with chloroquine, anti-pfHsp70 interacted with additional three bands identified by MALDI-TOF as elongation factor-1α (83 kDa), pfHsp86 (60 kDa) and phosphoethanolamine N-methyltransferase (43 kDa).

Conclusion

In conclusion, febrile temperature was capable of markedly inhibiting the growth of field isolate P. falciparum while the development, reinfection rate and drug (chloroquine, mefloquine and quinine) resistant level of standard strain K1 was enhanced. However, the febrile temperature coped with chloroquine had no effect to the development, drug sensitivity and the parasite number of K1 strain. In the opposite way, heat shock and chloroquine showed extremely effect toward 3D7 and field isolate PF91 as shown by some died parasites. Heat shock protein 70 (pfHSP70) of strain K1 under heat shock with chloroquine might involved in many pathways in order to sustain the parasite.  相似文献   

8.
Three clones (H7, D7, and C5) were established from single cells of a bovine lymphoblastoid cell line (IR.TPM.1) infected with macroschizonts of the protozoan parasite Theileria parva. The cloning efficiency using feeder layers was 0.3–0.4. The mean parasite size (the number of parasite nuclei per cell) was different in each clone and was correlated to the growth rate. The fast growing clone, C5 (population doubling time 24 hr), contained smaller (mean parasite nuclear number, 12) parasites than a slow growing clone, D7 (population doubling time, 73 hr; mean number of parasite nuclei per cell, 35.3). The third clone, H7, had an intermediate growth rate (population doubling time, 49 hr) and parasite size (mean nuclei number, 18.1). There was variation in the incidence of microschizonts among the clones but microschizont-free clones were not isolated. When the clones were subjected to 4.3 × 10?7M aminopterin, 20–25% of the cell population of clones H7 and C5 and the uncloned parent line lost their parasites in 4 days, while it took 7 days to reach a similar result (31% parasite-free cells) in clone D7. We were unable to isolate parasite-free clones from cells treated with aminopterin. Hydroxyurea (4 × 10?4M) inhibited the growth of clone C5, but the macroschizonts continued to proliferate, and the incidence of cells with microschizonts increased. The size profile analysis showed that most of the aminopterin-treated cells were 9.0 μm, the hydroxyurea-treated cells 14.7 μm, and the untreated cells 10.8 μm in diameter.  相似文献   

9.
Here we describe the identification and characterization of a physiological marker that is associated with the chloroquine-resistant (CQR) phenotype in the human malarial parasite Plasmodium falciparum. Single cell in vivo pH measurements revealed that CQR parasites consistently have an elevated cytoplasmic pH compared to that of chloroquine-sensitive (CQS) parasites because of a constitutively activated Na+/H+ exchanger (NHE). Together, biochemical and physiological data suggest that chloroquine activates the plasmodial NHE of CQS parasites, resulting in a transitory phase of rapid sodium/hydrogen ion exchange during which chloroquine is taken up by this protein. The constitutively stimulated NHE of CQR parasites are capable of little or no further activation by chloroquine. We propose that the inability of chloroquine to stimulate its own uptake through the constitutively activated NHE of resistant parasites constitutes a minimal and necessary event in the generation of the chloroquine-resistant phenotype.  相似文献   

10.
The clinical and morphologic effects of clindamycin and N-demethyl-4′-pentyl clindamycin were evaluated using Plasmodium knowlesi in rhesus monkeys. Both compounds cured blood-induced infections when administered daily for five consecutive days. When the rapidity of action of these antibiotics was compared with chloroquine it was evident that although they were able to control fulminating infections in all treated monkeys their effect was about 2 days slower than chloroquine in decreasing parasitemias and 3 to 4 days slower in clearing parasites from the blood. Morphologic changes within the parasite associated with drug action were studied in time sequences by light and electron microscopy. Changes were observed in the parasite ribosomes 24 hr after drug administration. Affected ribosomes showed electron-lucent zones measuring ~50 Å in the center. During the following 24 hr these changes became more prominent with foci in which disintegrated ribosomes were replaced by fine fibrillar material and the cisternae of the endoplasmic reticulum became dilated. By 72 hr this dilation was more apparent and resulted in abundant coalescence of vacuoles in the cytoplasm. Mitochondria became dilated with fibrils in the matrix, although the degree of swelling was not a conspicuous and constant feature. The nucleus presented a fine fibrillar appearance and fewer granules were seen than in normal parasites. The latter two observed changes appear to be secondary to changes in the ribosomes and probably are not directly related to the action of the antibiotics. These studies indicate that clindamycin and its analog affect primarily the ribosomes and their mode of action is different from that of the commonly used antimalarials.  相似文献   

11.
Leishmaniasis is a neglected disease produced by the intracellular protozoan parasite Leishmania. In the present study, we show that LABCG2, a new ATP-binding cassette half-transporter (ABCG subfamily) from Leishmania, is involved in parasite virulence. Down-regulation of LABCG2 function upon expression of an inactive mutant version of this half-transporter (LABCG2K/M) is shown to reduce the translocation of short-chain analogues of phosphatidylserine (PS). This dominant-negative phenotype is specific for the headgroup of the phospholipid, as the movement of phospholipid analogues of phosphatidylcholine, phosphatidylethanolamine or sphingomyelin is not affected. In addition, promastigotes expressing LABCG2K/M expose less endogenous PS in the stationary phase than control parasites. Transient exposure of PS at the outer leaflet of the plasma membrane is known to be one of the mechanisms used by Leishmania to infect macrophages and to silence their immune response. Stationary phase/metacyclic promastigotes expressing LABCG2K/M are less infective for macrophages and show decreased pathogenesis in a mouse model of cutaneous leishmaniasis. Thus, mice infected with parasites expressing LABCG2K/M did not develop any lesion and showed significantly lower inflammation and parasite burden than mice infected with control parasites. Our results indicate that LABCG2 function is required for the externalization of PS in Leishmania promastigotes, a process that is involved in the virulence of the parasite.  相似文献   

12.
Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.  相似文献   

13.
In the study of multi-host parasites, it is often found that host species contribute asymmetrically to parasite transmission. Yet in natural populations, identifying which hosts contribute to parasite transmission and maintenance is a recurring challenge. Here, we approach this issue by taking advantage of natural variation in the composition of a host community. We studied the brine shrimps Artemia franciscana and Artemia parthenogenetica and their microsporidian parasites Anostracospora rigaudi and Enterocytospora artemiae. Previous laboratory experiments had shown that each host can transmit both parasites, but could not predict their actual contributions to the parasites’ maintenance in the field. To resolve this, we gathered long-term prevalence data from a metacommunity of these species. Metacommunity patches could contain either or both of the Artemia host species, so that the presence of the hosts could be linked directly to the persistence of the parasites. First, we show that the microsporidian A. rigaudi is a spillover parasite: it was unable to persist in the absence of its maintenance host A. parthenogenetica. This result was particularly striking, as A. rigaudi displayed both high prevalence (in the field) and high infectivity (when tested in the laboratory) in both hosts. Moreover, the seasonal presence of A. parthenogenetica imposed seasonality on the rate of spillover, causing cyclical pseudo-endemics in the spillover host A. franciscana. Second, while our prevalence data was sufficient to identify E. artemiae as either a spillover or a facultative multi-host parasite, we could not distinguish between the two possibilities. This study supports the importance of studying the community context of multi-host parasites, and demonstrates that in appropriate multi-host systems, sampling across a range of conditions and host communities can lead to clear conclusions about the drivers of parasite persistence.  相似文献   

14.
Malaria is a devastating illness caused by multiple species of the Plasmodium genus. The parasite’s falcipain proteases have been extensively studied as potential drug targets. Here we report the testing of two established cysteine protease inhibitor scaffolds against both chloroquine sensitive and chloroquine resistant parasites. A subset of purine derived nitriles killed the parasite with moderate potency, and these inhibitors do not seem to exert their antiproliferative effects as cysteine protease inhibitors. Compound potency was determined to be similar against both parasite strains, indicating a low probability of cross resistance with chloroquine. These compounds represent a novel antimalarial scaffold, and a potential starting point for the development new inhibitors.  相似文献   

15.
The most critical bottleneck in the generation of recombinant Plasmodium berghei parasites is the mandatory in vivo cloning step following successful genetic manipulation. This study describes a new technique for rapid selection of recombinant P. berghei parasites. The method is based on flow cytometry to isolate isogenic parasite lines and represents a major advance for the field, in that it will speed the generation of recombinant parasites as well as cut down on animal use significantly. High expression of GFP during blood infection, a prerequisite for robust separation of transgenic lines by flow cytometry, was achieved. Isogenic recombinant parasite populations were isolated even in the presence of a 100-fold excess of wild-type (WT) parasites. Aquaglyceroporin (AQP) loss-of-function mutants and parasites expressing a tagged AQP were generated to validate this approach. aqp? parasites grow normally within the WT phenotypic range during blood infection of NMRI mice. Similarly, colonization of the insect vector and establishment of an infection after mosquito transmission were unaffected, indicating that AQP is dispensable for life cycle progression in vivo under physiological conditions, refuting its use as a suitable drug target. Tagged AQP localized to perinuclear structures and not the parasite plasma membrane. We suggest that flow-cytometric isolation of isogenic parasites overcomes the major roadblock towards a genome-scale repository of mutant and transgenic malaria parasite lines.  相似文献   

16.
Ant social parasites evolve adaptive relationships with their hosts. Theoretically, coevolution predicts strong selection to maximize fitness of the parasite that minimizes costs to its host, which potentially leads to the evolution of benign interactions. We studied the demographic and behavioral traits of the ant social parasite Megalomyrmex symmetochus (Solenopsidini), an agro-predator that feeds on larvae and fungal garden products of their host, Sericomyrmex amabilis (Attini). Based on demographic data from 15 parasitized colonies, the proportion of parasitic workers to those of the host is 1:2. Moreover, defensive prophylactic behaviors observed during infections with Metarhizium brunneum, a generalist entomopathogen, and Escovopsis, a specialized fungal garden parasite, showed that S. amabilis works extensively to remove and control fungal infections, in contrast to M. symmetochus. M. symmetochus, however, performed intraspecific allogrooming during infections with Escovopsis and M. brunneum, suggesting that they may recognize fungal pathogens and indirectly limit dispersion of spores. Our results indicate that M. symmetochus did not have a strong role in maintaining a hygienic nest.  相似文献   

17.
Within-host competition between parasites is frequently invoked as a major force for parasite evolution, yet quantitative studies on its extent in an organismal group are lacking. Temperate bacteriophages are diverse and abundant parasites of bacteria, distinguished by their ability to enter a facultative dormant state in their host. Bacteria can accumulate multiple phages that may eventually abandon dormancy in response to host stress. Host resources are then converted into phage particles, whose release requires cell death. To study within-host competition between phages, I used the bacterium Escherichia coli and 11 lambdoid phages to construct single and double lysogens. Lysogenic bacterial cultures were then induced and time to host cell lysis and productivity of phages was measured. In double lysogens, this revealed strong competitive interactions as in all cases productivity of at least one phage declined. The outcome of within-host competition was often asymmetrical, and phages were found to vary hierarchically in within-host competitive ability. In double infections, the phage with the shorter lysis time determined the timing of cell lysis, which was associated with a competitive advantage when time differences were large. The results emphasize that within-host competition greatly affects phage fitness and that multiple infections should be considered an integral part of bacteriophage ecology.  相似文献   

18.
Information on the growth rate and metabolism of microbial pathogens that cause long-term chronic infections is limited, reflecting the absence of suitable tools for measuring these parameters in vivo. Here, we have measured the replication and physiological state of Leishmania mexicana parasites in murine inflammatory lesions using 2H2O labeling. Infected BALB/c mice were labeled with 2H2O for up to 4 months, and the turnover of parasite DNA, RNA, protein and membrane lipids estimated from the rate of deuterium enrichment in constituent pentose sugars, amino acids, and fatty acids, respectively. We show that the replication rate of parasite stages in these tissues is very slow (doubling time of ~12 days), but remarkably constant throughout lesion development. Lesion parasites also exhibit markedly lower rates of RNA synthesis, protein turnover and membrane lipid synthesis than parasite stages isolated from ex vivo infected macrophages or cultured in vitro, suggesting that formation of lesions induces parasites to enter a semi-quiescent physiological state. Significantly, the determined parasite growth rate accounts for the overall increase in parasite burden indicating that parasite death and turnover of infected host cells in these lesions is minimal. We propose that the Leishmania response to lesion formation is an important adaptive strategy that minimizes macrophage activation, providing a permissive environment that supports progressive expansion of parasite burden. This labeling approach can be used to measure the dynamics of other host-microbe interactions in situ.  相似文献   

19.
Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host''s nest defence, host colonies should resort to flight as the more beneficial resistance strategy. We show that under low parasite pressure, host colonies more likely responded to an intruding Protomognathus americanus slavemaker with collective aggression, which prevented the slavemaker from escaping and potentially recruiting nest-mates. However, as parasite pressure increased, ant colonies of both host species became more likely to flee rather than to fight. We conclude that host defence portfolios shift consistently with social parasite pressure, which is in accordance with the degeneration of frontline defences and the evolution of subsequent anti-parasite strategies often invoked in hosts of brood parasites.  相似文献   

20.
Several recent discoveries of the hallmark features of programmed cell death (PCD) in Plasmodium falciparum have presented the possibility of revealing novel targets for antimalarial therapy. Using a combination of cell-based assays, flow cytometry and fluorescence microscopy, we detected features including mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in parasites induced with chloroquine (CQ) and staurosporine (ST). The use of the pan-caspase inhibitor, z-Val-Ala-Asp-fmk (zVAD), and the mitochondria outer membrane permeabilization (MOMP) inhibitor, 4-hydroxy-tamoxifen, enabled the characterization of a novel CQ-induced pathway linking cysteine protease activation to downstream mitochondrial dysregulation, amplified protease activity and DNA fragmentation. The PCD features were observed only at high (μM) concentrations of CQ. The use of a new synthetic coumarin-labeled chloroquine (CM-CQ) showed that these features may be associated with concentration-dependent differences in drug localization. By further using cysteine protease inhibitors z-Asp-Glu-Val-Asp-fmk (zDEVD), z-Phe-Ala-fmk (zFA), z-Phe-Phe-fmk (zFF), z-Leu-Leu-Leu-fmk (zLLL), E64d and CA-074, we were able to implicate clan CA cysteine proteases in CQ-mediated PCD. Finally, CQ induction of two CQ-resistant parasite strains, 7G8 and K1, reveals the existence of PCD features in these parasites, the extent of which was less than 3D7. The use of the chemoreversal agent verapamil implicates the parasite digestive vacuole in mediating CQ-induced PCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号