首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal cell carcinoma (RCC) originates in the lining of the proximal convoluted tubule and accounts for approximately 3% of adult malignancies. The RCC incidence rate increases annually and is twofold higher in males than in females. Female hormones such as estrogen may play important roles during RCC carcinogenesis and result in significantly different incidence rates between males and females. In this study, we found that estrogen receptor β (ERβ) was more highly expressed in RCC cell lines (A498, RCC-1, 786-O, ACHN, and Caki-1) than in breast cancer cell lines (MCF-7 and HBL-100); however, no androgen receptor (AR) or estrogen receptor α (ERα) could be detected by western blot. In addition, proliferation of RCC cell lines was significantly decreased after estrogen (17-β-estradiol, E2) treatment. Since ERβ had been documented to be a potential tumor suppressor gene, we hypothesized that estrogen activates ERβ tumor suppressive function, which leads to different RCC incidence rates between males and females. We found that estrogen treatment inhibited cell proliferation, migration, invasion, and increased apoptosis of 786-O (high endogenous ERβ), and ERβ siRNA-induced silencing attenuated the estrogen-induced effects. Otherwise, ectopic ERβ expression in A498 (low endogenous ERβ) increased estrogen sensitivity and thus inhibited cell proliferation, migration, invasion, and increased apoptosis. Analysis of the molecular mechanisms revealed that estrogen-activated ERβ not only remarkably reduced growth hormone downstream signaling activation of the AKT, ERK, and JAK signaling pathways but also increased apoptotic cascade activation. In conclusion, this study found that estrogen-activated ERβ acts as a tumor suppressor. It may explain the different RCC incidence rates between males and females. Furthermore, it implies that ERβ may be a useful prognostic marker for RCC progression and a novel developmental direction for RCC treatment improvement.  相似文献   

2.

Background

Several studies demonstrate that estrogen treatment improves cerebral blood flow in ischemic brain regions of young ovariectomized (OVX) rats. Estrogen receptor-α (ER-α) may mediate estrogen’s beneficial actions via its effects on the cerebral microvasculature. However, estrogen-derived benefit may be attenuated in aged, reproductively senescent (RS) rats. Our goal was to determine the effects of aging, estrogen deprivation and estrogen repletion with oral conjugated estrogens (CE) on postischemic cerebral microvascular protein expression of ER-α and ER-β.

Methods

Fisher-344 (n = 37) female rats were randomly divided into the following groups: OVX, OVX CE-treated, RS untreated, and RS CE-treated. After 30 days pretreatment with CE (0.01 mg/kg) rats were subjected to15 min. transient global cerebral ischemia. Non-ischemic naïve, OVX and RS rats were used as controls. Expression of ER-α and ER-β in isolated cortical cerebral microvessels (20 to 100 µm in diameter) was assessed using Western blot and immunohistochemistry techniques.

Results

Age and reproductive status blunted nonischemic ER-α expression in microvessels of OVX rats (0.31±0.05) and RS rats (0.33±0.06) compared to naïve rats (0.45±0.02). Postischemic microvascular expression of ER-α in OVX rats (0.01±0.0) was increased by CE treatment (0.04±0.01). Expression of ER-α in microvessels of RS rats (0.03±0.02) was unaffected by CE treatment (0.01±0.02). Western blot data are presented as a ratio of ER-α or ER-β proteins to β-actin and. Oral CE treatment had no effect on ER-β expression in postischemic microvessels of OVX and RS rats. Statistical analysis was performed by One-Way ANOVA and a Newman-Keuls or Student’s post-hoc test.

Conclusion

Chronic treatment with CE increases ER-α but not ER-β expression in cerebral microvessels of OVX rats. Aging appears to reduce the normal ability of estrogen to increase ER-α expression in postischemic cerebral microvessels.  相似文献   

3.
Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66) and the truncated isoforms, estrogen receptor-α46 (ER46) and estrogen receptor-α36 (ER36). However, the binding affinities of the membrane estrogen receptors (mERs) remain unknown due to the difficulty of developing of stable mER-transfected cell lines with sufficient mER density, which has largely hampered biochemical binding studies. The present study utilized cell-free expression systems to determine the binding affinities of 17β-estradiol to mERs, and the relationship among palmitoylation, membrane insertion and binding affinities. Saturation binding assays of human mERs revealed that [3H]-17β-estradiol bound ER66 and ER46 with Kd values of 68.81 and 60.72 pM, respectively, whereas ER36 displayed no specific binding within the tested concentration range. Inhibition of palmitoylation or removal of the nanolipoprotein particles, used as membrane substitute, reduced the binding affinities of ER66 and ER46 to 17β-estradiol. Moreover, ER66 and ER46 bound differentially with some estrogen receptor agonists and antagonists, and phytoestrogens. In particular, the classical estrogen receptor antagonist, ICI 182,780, had a higher affinity for ER66 than ER46. In summary, the present study defines the binding affinities for human estrogen receptor-α isoforms, and demonstrates that ER66 and ER46 show characteristics of mERs. The present data also indicates that palmitoylation and membrane insertion of mERs are important for proper receptor conformation allowing 17β-estradiol binding. The differential binding of ER66 and ER46 with certain compounds substantiates the prospect of developing mER-selective drugs.  相似文献   

4.
5.
6.
Dehydroepiandrosterone (DHEAS) was given the name “fountain of youth” in reference to its beneficial properties in memory, cognition and aging. Cultured cell studies showed that DHEAS may mediate its action by counteracting aging-associated inflammation via PPAR-α activation. In the present study, we demonstrated an age-dependent increase in IL-1β and TNF-α expression in the brain and the spleen of aging rats, while PPAR-α expression was decreased in the spleen of 18 month-old rats. Oral treatment with DHEAS increased PPAR-α mRNA in 3 month-old rats and decreased PPAR-α protein expression in 18 month-old rats in the spleen. In contrast, DHEAS did not alter cytokine expression in spleen and brain of the three age groups. These findings underline a differential role for DHEAS in PPAR-α expression that is age-dependent, and also, that beneficial effects of DHEAS on cognitive function are unlikely mediated by a decrease in cytokine expression.  相似文献   

7.
CD8+ T cells play important roles in anti-tumor immunity but distribution profile or functional characteristics of effector memory subsets during tumor progression are unclear. We found that, in oral squamous carcinoma patients, circulating CD8+ T cell pools skewed toward effector memory subsets with the distribution frequency of CCR7CD45RACD8+ T cells and CCR7 CD45RA+CD8+ T cells negatively correlated with each other. A significantly higher frequency of CD127lo CCR7CD45RACD8+ T cells or CCR7CD45RA+CD8+ T cells among total CD8+ T cells was found in peripheral blood or tumor infiltrating lymphocytes, but not in regional lymph nodes. The CD127hi CCR7CD45RACD8+ T cells or CCR7CD45RA+CD8+ T cells maintained significantly higher IFN-γ, IL-2 productivity and ex vivo proliferative capacity, while the CD127lo CCR7CD45RACD8+ T cells or CCR7CD45RA+CD8+ T cells exhibited higher granzyme B productivity and susceptibility to activation induced cell death. A higher ratio of CCR7CD45RA+CD8+ T cells to CCR7CD45RACD8+ T cells was associated with advanced cancer staging and poor differentiation of tumor cells. Therefore, the CD127lo CCR7CD45RACD8+ T cells and CCR7CD45RA+CD8+ T cells are functionally similar CD8+ T cell subsets which exhibit late differentiated effector phenotypes and the shift of peripheral CD8+ effector memory balance toward CCR7CD45RA+CD8+ T cells is associated with OSCC progression.  相似文献   

8.

Context

Increased Anti-Mullerian Hormone in polycystic ovary syndrome, may be due to overactive follicles rather than reflect antral follicle count.

Objective

Does Anti-Mullerian Hormone reflect antral follicle count similarly in women with or without polycystic ovary syndrome or polycystic ovarian morphology?

Design

Cross-sectional, case-control.

Setting

Women who delivered preterm in 1999–2006. For each index woman, a woman with a term delivery was identified.

Patients

Participation rate was 69%. Between 2006–2008, 262 women were included, and diagnosed to have polycystic ovary syndrome, polycystic ovarian morphology or to be normal controls.

Intervention(s)

Blood tests, a clinical examination and vaginal ultrasound.

Main Outcome Measure(s)

Anti-Mullerian Hormone / antral follicle count -ratio, SHBG, androstenedione and insulin, to test potential influence on the Anti-Mullerian Hormone / antral follicle count -ratio.

Results

Mean Anti-Mullerian Hormone / antral follicle count ratio in women with polycystic ovary syndrome or polycystic ovarian morphology was similar to that of the controls (polycystic ovary syndrome: 1,2 p = 0,10 polycystic ovarian morphology: 1,2, p = 0,27 Controls 1,3). Anti-Mullerian Hormone showed a positive linear correlation to antral follicle count in all groups. Multivariate analysis did not change the results.

Conclusions

We confirmed the positive correlation between AMH and follicle count. Anti-Mullerian Hormone seems to be a reliable predictor of antral follicle count, independent of polycystic ovary syndrome diagnosis or ovarian morphology.  相似文献   

9.
Estrogen receptor alpha (ERα) typically masculinizes male behavior, while low levels of ERα in the medial amygdala (MeA) and the bed nucleus of the stria terminalis (BST) are associated with high levels of male prosocial behavior. In the males of the highly social prairie vole (Microtus ochrogaster), increasing ERα in the MeA inhibited the expression of spontaneous alloparental behavior and produced a preference for novel females. To test for the effects of increased ERα in the BST, a viral vector was used to enhance ERα expression in the BST of adult male prairie voles. Following treatment, adult males were tested for alloparental behavior with 1–3-day-old pups, and for heterosexual social preference and affiliation. Treatment did not affect alloparental behavior as 73% of ERα-BST males and 62.5% of control males were alloparental. Increasing ERα in the BST affected heterosexual affiliation, with ERα-BST males spending significantly less total time in side-by-side contact with females relative to time spent with control males. ERα-BST males did not show a preference for either the familiar or novel female. These findings differed significantly from those reported in ERα-MeA enhanced males, where ERα inhibited alloparental behavior and produced a preference for a novel female. The findings from this study suggest two things: first, that increased ERα in the BST decreases social affiliation and second, that altering ERα in different regions of the social neural circuit differentially impacts the expression of social behavior.  相似文献   

10.
Obesity is an epidemic problem affecting millions of people in the Western hemisphere and costs the United States economy more than $200 billion annually. Currently, there are no effective treatments to combat obesity. Recent studies have implicated the constitutive activity of estrogen receptor (ER) β as an important regulator of metabolic diseases. However, the potential of ER-β-selective ligands to offset obesity is not clear. We evaluated the pharmacological effect of ER-β-selective ligands (β-LGNDs) in animal models of high-fat diet- and ovariectomy-induced obesity. Ligand binding, transactivation, and uterotrophic studies with β-LGNDs demonstrated selectivity for ER-β over ER-α. Animals fed a high-fat diet showed a significant increase in body weight, and this weight gain was attenuated by β-LGNDs. High-fat diet-mediated increases in serum cholesterol, leptin, glucose, and fat accumulation in organs were also reduced by β-LGNDs. In addition, MRI scanning indicated that β-LGNDs altered body composition by reducing fat mass and increasing lean body mass. Organ weights and gene expression analyses demonstrated that adipose tissue is the center of action for β-LGNDs, and the reduction in body weight is likely due to increased energy expenditure. In vitro and in vivo mechanistic studies indicated that the anti-obesity effects of β-LGNDs were due to indirect peroxisome proliferator-activated receptor γ antagonistic actions requiring the ligand binding domain of ER-β and through abrogation of the ability of PGC-1 to coactivate peroxisome proliferator-activated receptor γ. In conclusion, these studies indicate that ligand-activated ER-β is a potential therapeutic target to combat obesity and obesity-related metabolic diseases.  相似文献   

11.
12.
13.
Renal cell carcinoma (RCC) is the most lethal of all genitourinary malignancies. Distant metastasis represents the major cause of death in patients with RCC. Recent studies have implicated the AAA+ ATPase pontin in many cellular activities that are highly relevant to carcinogenesis. In this study, we demonstrate for the first time that pontin was up-regulated in RCC, and plays a previously unknown pro-invasive role in the metastatic progression of RCC through epithelial-to-mesenchymal transition (EMT) pathway. 28 pairs of freshly frozen clear cell RCC samples and the matched normal renal tissues analyzed by quantitative RT-PCR and western blotting demonstrated that pontin was up-regulated in clear cell RCC tissues than in normal renal tissues. In addition, immunohistochemistry was used to evaluate subcellular pontin expression in 95 RCC patients, and found that overexpression of pontin in cytoplasm positively correlated with the metastatic features, predicting unfavorable outcomes of RCC patients. Furthermore, in vitro experiments show pontin was predominantly expressed in cytoplasm of RCC cell lines, and a significant suppression of cell migration and invasion in pontin siRNA treated RCC cell lines was observed. Mechanistic studies show that pontin depletion up-regulated the E-cadherin protein and down-regulated vimentin protein, and decreased nuclear β-catenin expression, suggesting the involvement of EMT in pontin induced metastatic progression. Together, our data suggest pontin as a potential prognostic biomarker in RCC, and provide new promising therapeutic targets for clinical intervention of kidney cancers.  相似文献   

14.
Pterostilbene (trans-3,5-dimethoxy-4′-hudroxystilbene) is an antioxidant primarily found in blueberries. It also inhibits breast cancer regardless of conventional estrogen receptor (ER-α66) status by inducing both caspase-dependent and caspase-independent apoptosis. However, the pterostilbene-induced apoptosis rate in ER-α66-negative breast cancer cells is much higher than that in ER-α66-positive breast cancer cells. ER-α36, a variant of ER-α66, is widely expressed in ER-α66-negative breast cancer, and its high expression mediates the resistance of ER-α66-positive breast cancer patients to tamoxifen therapy. The aim of the present study is to determine the relationship between the antiproliferation activity of pterostilbene and ER-α36 expression in breast cancer cells. Methyl-thiazolyl-tetrazolium (MTT) assay, apoptosis analysis, and an orthotropic xenograft mouse model were used to examine the effects of pterostilbene on breast cancer cells. The expressions of ER-α36 and caspase 3, the activation of ERK and Akt were also studied through RT-PCR, western blot analysis, and immunohistochemical (IHC) staining. ER-α36 knockdown was found to desensitize ER-α66-negative breast cancer cells to pterostilbene treatment both in vitro and in vivo, and high ER-α36 expression promotes pterostilbene-induced apoptosis in breast cancer cells. Western blot analysis data indicate that MAPK/ERK and PI3K/Akt signaling in breast cancer cells with high ER-α36 expression are mediated by ER-α36, and are inhibited by pterostilbene. These results suggest that ER-α36 is a therapeutic target in ER-α36-positive breast cancer, and pterostilbene is an inhibitor that targets ER-α36 in the personalized therapy against ER-α36-positive breast cancer.  相似文献   

15.
16.
Folate receptor alpha (FOLR1) has been identified as a potential prognostic and therapeutic target in a number of cancers. A correlation has been shown between intense overexpression of FOLR1 in breast tumors and poor prognosis, yet there is limited examination of the distribution of FOLR1 across clinically relevant breast cancer subtypes. To explore this further, we used RNA-seq data from multiple patient cohorts to analyze the distribution of FOLR1 mRNA across breast cancer subtypes comprised of estrogen receptor positive (ER+), human epidermal growth factor receptor positive (HER2+), and triple negative (TNBC) tumors. FOLR1 expression varied within breast tumor subtypes; triple negative/basal tumors were significantly associated with increased expression of FOLR1 mRNA, compared to ER+ and HER2+ tumors. However, subsets of high level FOLR1 expressing tumors were observed in all clinical subtypes. These observations were supported by immunohistochemical analysis of tissue microarrays, with the largest number of 3+ positive tumors and highest H-scores of any subtype represented by triple negatives, and lowest by ER+ tumors. FOLR1 expression did not correlate to common clinicopathological parameters such as tumor stage and nodal status. To delineate the importance of FOLR1 overexpression in triple negative cancers, RNA-interference was used to deplete FOLR1 in overexpressing triple negative cell breast lines. Loss of FOLR1 resulted in growth inhibition, whereas FOLR1 overexpression promoted folate uptake and growth advantage in low folate conditions. Taken together, our data suggests patients with triple negative cancers expressing high FOLR1 expression represent an important population of patients that may benefit from targeted anti-FOLR1 therapy. This may prove particularly helpful for a large number of patients who would typically be classified as triple negative and who to this point have been left without any targeted treatment options.  相似文献   

17.
Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI). Wild-type (ERβ+/+) and knockout (ERβ−/−) female mice were generated (aged 6–8 weeks, n = 6) and urethral function and protein expression were measured. Leak point pressures (LPP) and maximum urethral closure pressure (MUCP) were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography–mass spectrometry (LC-MS/MS) analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ+/+ group, the LPP and MUCP values of the ERβ−/− group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ−/− female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ−/− mice. This study is the first study to estimate protein expression changes in urethras from ERβ−/− female mice. These changes could be related to the molecular mechanism of ERβ in SUI.  相似文献   

18.
19.
20.
Anti-bone resorptive drugs such as bisphosphonates, the anti-RANKL antibody (denosumab), or selective estrogen receptor modulators (SERMs) have been developed to treat osteoporosis. Mechanisms underlying activity of bisphosphonates or denosumab in this context are understood, while it is less clear how SERMs like tamoxifen, raloxifene, or bazedoxifene inhibit bone resorption. Recently, accumulation of hypoxia inducible factor 1 alpha (Hif1α) in osteoclasts was shown to be suppressed by estrogen in normal cells. In addition, osteoclast activation and decreased bone mass seen in estrogen-deficient conditions was found to require Hif1α. Here, we used western blot analysis of cultured osteoclast precursor cells to show that tamoxifen, raloxifene, or bazedoxifene all suppress Hif1α protein accumulation. The effects of each SERM on osteoclast differentiation differed in vitro. Our results suggest that interventions such as the SERMs evaluated here could be useful to inhibit Hif1α and osteoclast activity under estrogen-deficient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号