首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cheng M  Li Y  Wu J  Nie Y  Li L  Liu X  Charoude HN  Chen H 《Cytokine》2008,41(1):9-15
Interleukin-8 (IL-8), a member of the CXC chemokine family, plays an important role in the modulation of multiple biological functions in endothelial cells containing the receptors CXCR1 and CXCR2. It has previously been shown that IL-8 directly enhances endothelial cell survival, and stimulates the production of matrix metalloproteinases, which in turn regulates angiogenesis. However, its role in the regulation of the production of vasoactive substances in endothelial cells is less well defined. In this study, we investigate the effects of IL-8 on the proliferation of human umbilical vein endothelial cells (HUVECs). In addition, we also study the effects of IL-8 on the production of vasodilator, vasoconstrictor and fibrinolytic factors in these cells. The results show that recombinant IL-8 (50-200ng/ml) induces neither HUVEC proliferation nor nitric oxide (NO) release. However, it significantly increases the production of endothelin-1 (ET-1) in a concentration-dependent manner. Furthermore, incubation of endothelial cells with IL-8 (200ng/ml) up-regulates the plasminogen activator inhibitor-1 (PAI-1) in HUVECs, while it down-regulates the tissue plasminogen activator (t-PA). These findings suggest that IL-8 offsets the balance between endothelial vasoconstrictors and vasodilators. Furthermore, IL-8 also leads to an imbalance between PAI-1 and t-PA, which causes the ECs to become procoagulative and hypofibrinolytic.  相似文献   

2.
The kinetics of inhibition of tissue-type plasminogen activator (t-PA) by the fast-acting plasminogen activator inhibitor-1 (PAI-1) was investigated in homogeneous (plasma) and heterogeneous (solid-phase fibrin) systems by using radioisotopic and spectrophotometric analysis. It is demonstrated that fibrin-bound t-PA is protected from inhibition by PAI-1, whereas t-PA in soluble phase is rapidly inhibited (K1 = 10(7) M-1.s-1) even in the presence of 2 microM-plasminogen. The inhibitor interferes with the binding of t-PA to fibrin in a competitive manner. As a consequence the Kd of t-PA for fibrin (1.2 +/- 0.4 nM) increases and the maximal velocity of plasminogen activation by fibrin-bound t-PA is not modified. From the plot of the apparent Kd versus the concentration of PAI-1 a Ki value of 1.3 +/- 0.3 nM was calculated. The quasi-similar values for the dissociation constants between fibrin and t-PA (Kd) and between PAI-1 and t-PA (Ki), as well as the competitive type of inhibition observed, indicate that the fibrinolytic activity of human plasma may be the result of an equilibrium distribution of t-PA between both the amount of fibrin generated and the concentration of circulating inhibitor.  相似文献   

3.
The reaction between plasminogen activators and plasminogen activator inhibitor-1 is characterized by an initial rapid formation of an inactive reversible complex. The second-order association rate constant (k1) of complex formation of recombinant two-chain tissue-type plasminogen activator (rt-PA) or recombinant two-chain urokinase-type plasminogen activator (rtcu-PA) by recombinant plasminogen activator inhibitor-1 (rPAI-1) is 2.9 +/- 0.4 x 10(7) M-1 s-1 (mean +/- S.D., n = 30) and 2.0 +/- 0.6 x 10(7) M-1 s-1 (n = 12), respectively. Different molecular forms of tissue- or urokinase-type plasminogen activator which do not form covalent complexes with rPAI-1, including rt-PA-Ala478 (rt-PA with the active-site Ser478 mutagenized to Ala) and anhydro-urokinase (rtcu-PA with the active-site Ser356 converted to dehydroalanine) reduced k1 in a concentration-dependent manner, compatible with 1:1 stoichiometric complex formation between rPAI-1 and these ligands. The apparent dissociation constant (KD) of the complex between rPAI-1 and rt-PA-Ala478, determined as the concentration of rt-PA-Ala478 which reduced k1 to 50% of its control value, was 3-5 nM. Corresponding concentrations of active-site-blocked two-chain rt-PA were 150-250-fold higher. The concentration of anhydro-urokinase which reduced k1 to 50% was 4-6 nM, whereas that of active-site-blocked rtcu-PA was 100-250-fold higher. Recombinant single-chain urokinase-type plasminogen activator had an apparent KD of about 2 microM. These results suggest that inhibition of rt-PA or rtcu-PA by rPAI-1 proceeds via a reversible high affinity interaction which does not require a functional active site but which is markedly reduced following inactivation of the enzymes with active-site titrants.  相似文献   

4.
5.
The synthesis of plasminogen activators and inhibitors in endothelial cells is highly regulated by hormones, drugs and growth factors. The present study evaluates the effect of retinoic acid on the synthesis of tissue-type plasminogen activator (t-PA) and of plasminogen activator inhibitor-1 (PAI-1) by cultured human umbilical vein endothelial cells (HUVEC). Retinoic acid produced a time- and concentration-dependent increase in the secretion of t-PA-related antigen but not of PAI-1 related antigen into the culture medium. A maximal sevenfold increase of t-PA antigen after 24 h was observed with 10 microM and a half-maximal increase with 0.1 microM retinoic acid. Retinoic acid induced a time-dependent increase of the t-PA mRNA, with a maximum at 8 h and returning to normal at 24 h. The protein kinase inhibitor H7 decreased the t-PA antigen induced by both retinoic acid and phorbol 12-myristate 13-acetate. These results suggest that treatment of HUVEC with retinoic acid increases t-PA production by a pathway which, at some level, involves protein kinases. Thus, retinoic acid induces t-PA synthesis in the absence of altered PAI-1 synthesis, which may enhance the fibrinolytic potential of the endothelium.  相似文献   

6.
We have shown that synthetic peptides containing the amino acid sequence Asn-Arg-Arg-Leu, derived from the amino acid sequence of the inner loop of the kringle-2 domain of tissue-type plasminogen activator (tPA), inhibited complex formation between two chain tPA and plasminogen activator inhibitor-1 (PAI-1) by binding to PAI-1. This binding was reversible and was inhibited by not only tPA but also by enzymatically inactive tPA. Quantitative analyses of the interaction of PAI-1 with the peptide containing the Asn-Arg-Arg-Leu sequence indicated that the PAI-1 binding site residues in the inner loop of the kringle-2 domain and is preferentially expressed in two chain tPA.  相似文献   

7.
To define determinants of interactions of tissue-type plasminogen activator (t-PA) with plasminogen activator inhibitor type-1 (PAI-1), we utilized site-directed mutagenesis to substitute either threonine or glycine for the active-site serine of tissue-type plasminogen activator. Assays of conditioned media of transfected cells demonstrated that the threonine substitution markedly decreased but did not entirely abolish plasminogen activating activity. In contrast, the glycine substitution yielded a mutant with absolutely no detectable plasminogen activating activity. Wild-type t-PA formed stable complexes with PAI-1. However, even when exogenous inhibitor was present in the medium or purified mutant was added to plasma that had been rendered PAI-1-rich in vivo, the mutants were present in the free form exclusively judging from results of fibrin autography and Western blot analysis. Thus, despite maintenance of some residual plasminogen-activating activity associated with preservation of the hydroxyl group at the active site, the threonine mutant did not form stable complexes with inhibitor. The glycine mutant, developed so that steric hindrance or other unfavorable interactions at the modified active site would be minimal, was similarly incapable of forming complexes with PAI-1. These results show that the presence of an active site serine residue is necessary for formation of stable complexes between t-PA and PAI-1.  相似文献   

8.
9.
We have shown that plasminogen activator inhibitor-1 (PAI-1) inhibits the fibrin binding of both the single chain and two chain forms of tissue-type plasminogen activator (tPA) through two different mechanisms. PAI-1 inhibits the finger domain-dependent fibrin binding of diisopropylfluorophosphate-inactivated single chain tPA and the kringle-2 domain-dependent fibrin binding of diisopropylfluorophosphate-inactivated two chain tPA. In accordance with the data, preformed complexes of single chain tPA/PAI-1 and of two chain tPA/PAI-1 lost the fibrin binding abilities mediated by the finger and kringle-2 domains, respectively. These effects of PAI-1 appear to be mediated by steric hindrance of the fibrin binding sites after PAI-1 binding to adjacent regions in the functional domains of tPA. We thus propose a model in which a PAI-1 binding site resides in the finger domain of a single chain, and plays a role in the reversible association of single chain tPA and PAI-1. Conformational changes may take place during the conversion of single chain tPA to two chain tPA, resulting in burying of the original PAI-1 binding site and exposure of an alternate PAI-1 binding site on the surface of the kringle-2 domain.  相似文献   

10.
Plaminogen activator inhibitor-1 (PAI-1), the key physiological inhibitor of the plasmin fibrinolytic system, plays important roles in the pathogenesis of asthma. Mast cells (MCs) are crucial effector cells and a major source of PAI-1 for asthma. Cyclic adenosine monophosphate (cAMP) is the important regulator of MCs; however, its effects on PAI-1 expression in MCs remain unknown. We reported cAMP/protein kinase A pathway positively regulates PAI-1 expression through cAMP-response element binding protein binding to hypoxia response element-1 at −158 to −153 bp of human PAI-1 promoter in human MCs. Moreover, cAMP synergistically augments PAI-1 expression with ionomycin- or IgE receptor cross-linking-mediated stimulation.  相似文献   

11.
12.
In order to identify the regions of recombinant (r) tissue plasminogen activator (tPA) that mediate its kinetically relevant interaction with r-plasminogen activator inhibitor-1 (rPAI-1), we have determined the second-order association rate (k1) constants of domain-altered variants of tPA with rPAI-1, at 10 degrees C. With two-chain, wild-type recombinant tPA (tcwt-rtPA), obtained by expression of the human cDNA for tPA in five different cell systems (viz. insect cells, human kidney 293 cells, Chinese hamster ovary cells, human melanoma cells, and mouse C127 cells), the average k1 was 1.45 x 10(7) M-1 s-1 (range, 1.34 10(7) M-1 s-1-1.68 x 10(7) M-1 s-1). Since this value was not significantly different for the different tcwt-rtPA preparations, it appears as though the nature of the glycosylation of tPA plays little role in its initial interaction with PAI-1. The k1 determined for tcwt-rtPA was slightly higher than that of 0.87 x 10(7) M-1 s-1, obtained for a similar inhibition of human urokinase by rPAI-1. The k1 value obtained for single-chain (sc) wt-rtPA was approximately 6-fold lower than that of the two-chain molecules, results consistent with previous conclusions on this matter. The k1 value for tcwt-rtPA was not influenced by the presence of epsilon-aminocaproic acid, suggesting that the lysine-binding site associated with the kringle 2 (K2) region of tPA does not modulate the rate of its initial interaction with rPAI-1. Removal of the K2 domain from tPA, by recombinant DNA technology, results in a protein, F-E-K1-P (tc-r delta K2-tPA), containing only the finger (F), growth factor (E), kringle 1 (K1), and serine protease (P) domains. This variant protein was more rapidly inhibited by rPAI-1 (k1 = 3.00 x 10(7) M-1 s-1) than its wild-type counterparts. Deletion of both the K1 and K2 domains resulted in a variant molecule, F-E-P (tc-r delta K1 delta K2-tPA), that was slightly more rapidly inhibited by rPAI-1 (k1 = 2.01 x 10(7) M-1 s-1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Plasminogen activator inhibitor-1 (PAI-1) accumulates within thrombi and forming whole blood clots. To explore this phenomenon at the molecular level, PAI-1 binding to fibrin was examined. The experiments were performed by adding 125I-PAI-1, which retains its complete tissue-type plasminogen (t-PA) inhibitory activity, to fibrin matrices formed in 2-cm2 tissue culture wells. Guanidine HCl-activated PAI-1 binding was reversible and was inhibited in the presence of excess, unlabeled PAI-1. Activated 125I-PAI-1 recognized 2 sites on fibrin: a very small number of high affinity sites (Kd less than 1 nM) and principally a large number of low affinity sites with an approximate Kd of 3.8 microM. Latent PAI-1 bound to fibrin at a site indistinguishable from the lower affinity site recognized by activated PAI-1. Fibrin, pretreated with activated PAI-1, was protected from t-PA-mediated plasmin degradation in a PAI-1 dose-responsive manner (IC50 = 12.3 nM). Clot protection correlated with partial occupancy of the low affinity PAI-1 binding site on fibrin and was due to the formation of sodium dodecyl sulfate-stable, PAI-1.t-PA complexes. Latent PAI-1 (27 nM) did not protect the fibrin from dissolution. The localization of PAI-1 to a thrombus by virtue of its fibrin binding potential could result in significant protection of the thrombus from the degradative effects of the fibrinolytic system.  相似文献   

14.
The activity of the serine proteinase inhibitor (serpin) plasminogen activator inhibitor-1 (PAI-1) is controlled by the intramolecular incorporation of the reactive loop into beta-sheet A with the generation of an inactive latent species. Other members of the serpin superfamily can be pathologically inactivated by intermolecular linkage between the reactive loop of one molecule and beta-sheet A of a second to form chains of polymers associated with diverse diseases. It has long been believed that PAI-1 is unique among active serpins in that it does not form polymers. We show here that recombinant native and latent PAI-1 spontaneously form polymers in vitro at low pH although with distinctly different electrophoretic patterns of polymerization. The polymers of both the native and latent species differ from the typical loop-A-sheet polymers of other serpins in that they readily dissociate back to their original monomeric form. The findings with PAI-1 are compatible with different mechanisms of linkage, each involving beta-strand addition of the reactive loop to s7A in native PAI-1 and to s1C in latent PAI-1. Glycosylated native and latent PAI-1 can also form polymers under similar conditions, which may be of in vivo importance in the low pH environment of the platelet.  相似文献   

15.
The site of the reaction between plasminogen activators and plasminogen activator inhibitor 1 (PAI-1) was investigated in cultures of human umbilical vein endothelial cells. In conditioned medium from endothelial cells, two forms of a plasminogen activator-specific inhibitor can be demonstrated: an active form that readily binds to and inhibits plasminogen activators and an immunologically related quiescent form which has no anti-activator activity but which can be activated by denaturation. In conditioned medium, only a few percent of PAI-1 is the active form. However, the addition of increasing concentrations of tissue-type plasminogen activator (t-PA) or urokinase to confluent endothelial cells produced a saturable (3.0 pmol/5 x 10(5) cells), dose-dependent increase of the activator-PAI-1 complex in the conditioned medium even in the presence of actinomycin D or cycloheximide. This resulted also in a dose-dependent decrease of the residual PAI activity measured by reverse fibrin autography both in the conditioned medium and cell extracts. Short-time exposure of endothelial cells to a large amount of t-PA caused almost complete depletion of all cell-associated PAI activity. Although there was no detectable PAI activity even after activation of PAI by denaturants or antigen in the culture medium at 4 degrees C without the addition of t-PA, the addition of t-PA at 4 degrees C not only resulted in the formation of 70% of the amount of the t-PA.PAI complex in conditioned medium at 37 degrees C, but also induced PAI-1 antigen in a time and dose-dependent manner in the conditioned medium. Moreover, 125I-labeled t-PA immobilized on Sepharose added directly to endothelial cells formed a complex with PAI-1 in a dose-dependent manner. On the other hand, no detectable complex was formed with PAI-1 when Sepharose-immobilized 125I-labeled t-PA was added to endothelial cells under conditions in which the added t-PA could not contact the cells directly but other proteins could pass freely by the use of a Transwell. All these results suggest that a "storage pool" on the surface of endothelial cells or the extracellular matrix produced by endothelial cells contains almost all the active PAI-1, and reaction between PA and PAI-1 mainly occurs on the endothelial cell membranes, resulting in a decrease of the conversion of active PAI-1 to the quiescent form.  相似文献   

16.
Cell proliferation, an event associated with angiogenesis, involves coordinated activities of a number of proteins. The role of plasminogen activator inhibitor-1 (PAI-1) in angiogenesis remains controversial. Utilizing proliferating PAI-1-/- endothelial cells (EC), the impact of a host PAI-1 deficiency on Akt activation was evaluated. Hyperactivation of Akt(Ser(P)473) was observed in PAI-1-/- EC, and this was probably due to enhanced inactivation of tumor suppressor PTEN, thus rendering the cells resistant to apoptotic signals. Higher levels of inactivated caspase-9 in PAI-1-/- EC led to lower levels of procaspase-3 and cleaved caspase-3, thereby promoting survival. These effects were reversed when recombinant PAI-1 was added to PAI-1-/- EC. Additional studies demonstrated that regulation of proliferation is dependent on its interaction with low density lipoprotein receptor-related protein. Thus, PAI-1 is a negative regulator of cell growth, exerting its effect on the phosphatidylinositol 3-kinase/Akt pathway and allowing controlled cell proliferation.  相似文献   

17.
New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to  相似文献   

18.
Extracellular proteolysis is believed to be an essential component of the angiogenic process. The effects of VEGF, a recently described angiogenic factor, were assessed on PA activity and PA and PAI-1 mRNA levels in microvascular endothelial cells. u-PA and t-PA activity were increased by VEGF in a dose-dependent manner, with maximal induction at 30 ng/ml. u-PA and t-PA mRNAs were increased 7.5- and 8-fold respectively after 15 hours, and PAI-1 mRNA 4.5-fold after 4 hours exposure to VEGF. At equimolar concentrations (0.5 nM), VEGF was a more potent inducer of t-PA mRNA than bFGF, while bFGF was a more potent inducer of u-PA and PAI-1 mRNAs. In addition, VEGF induced u-PA and PAI-1 mRNAs with kinetics similar to those previously demonstrated for bFGF. These results demonstrate the regulation of PA and PAI-1 production by VEGF in microvascular endothelial cells and are in accord with the hypothesis that extracellular proteolysis, appropriately balanced by protease inhibitors, is required for normal capillary morphogenesis.  相似文献   

19.
Cytokine regulation of synovial cell function has been considered to be involved in the pathogenesis of rheumatoid arthritis. Synoviocyte urokinase-type plasminogen activator (u-PA) expression may be relevant to the tissue remodelling, as well as to the cell migration and transformation occurring in rheumatoid joints. We report here that purified recombinant human oncostatin M (greater than or equal to approximately 0.2 U/ml = 1 pM) stimulated within six hr the u-PA activity of non-rheumatoid synovial fibroblast-like cells and raised their u-PA mRNA levels. Oncostatin M could augment PGE2 production and DNA synthesis in these cells; however, the increase in PGE2 was small compared with that caused by IL-1. Since oncostatin M is produced by immune cells, it may have a role in immune and inflammatory reactions by interacting with fibroblast populations, such as synoviocytes, in the manner described.  相似文献   

20.
Plasminogen activator inhibitor-1 (PAI-1) is a typical member of the serpin family that kinetically traps its target proteinase as a covalent complex by distortion of the proteinase domain. Incorporation of the fluorescently silent 4-fluorotryptophan analog into PAI-1 permitted us to observe changes in the intrinsic tryptophan fluorescence of two-chain tissue-type plasminogen activator (tPA) and the proteinase domain of tPA during the inhibition reaction. We demonstrated three distinct conformational changes of the proteinase that occur during complex formation and distortion. A conformational change occurred during the initial formation of the non-covalent Michaelis complex followed by a large conformational change associated with the distortion of the proteinase catalytic domain that occurs concurrently with the formation of stable proteinase-inhibitor complexes. Following distortion, a very slow structural change occurs that may be involved in the stabilization or regulation of the trapped complex. Furthermore, by comparing the inhibition rates of two-chain tPA and the proteinase domain of tPA by PAI-1, we demonstrate that the accessory domains of tPA play a prominent role in the initial formation of the non-covalent Michaelis complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号