首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Pleurotus ostreatus showed atypical laccase production in submerged vs. solid-state fermentation. Cultures grown in submerged fermentation produced laccase at 13,000 U l−1, with a biomass production of 5.6 g l−1 and four laccase isoforms. However, cultures grown in solid-state fermentation had a much lower laccase activity of 2,430 U l−1, biomass production of 4.5 g l−1, and three laccase isoforms. These results show that P. ostreatus performs much better in submerged fermentation than in solid-state fermentation. This is the first report that shows such atypical behavior in the production of extracellular laccases by fungi.  相似文献   

2.
The production of lignocellulolytic enzymes by eleven basidiomycetes species isolated from two ecosystems of Georgia was investigated for the first time under submerged (SF) and solid-state fermentation (SSF) of lignocellulosic by-products. Notable intergeneric and intrageneric differences were revealed with regard to the extent of hydrolase and oxidase activity. Several fungi produced laccase along with hydrolases in parallel with growth during the trophophase, showing that the synthesis of this enzyme is not connected with secondary metabolism. The lignocellulosic substrate type had the greatest impact on enzyme secretion. Some of the substrates significantly stimulated lignocellulolytic enzyme synthesis without supplementation of the culture medium with specific inducers. Exceptionally high carboxymethyl cellulase (CMCase, 122 U ml−1) and xylanase (195 U ml−1) activities were revealed in SF of mandarin peelings by Pseudotremella gibbosa IBB 22 and of residue after ethanol production (REP) by Fomes fomentarius IBB 38, respectively. The SSF of REP by T. pubescens IBB 11 ensured the highest level of laccase activity (24,690 U l−1), whereas the SSF of wheat bran and SF of mandarin peels provided the highest manganese peroxidase activity (570–620 U l−1) of Trichaptum biforme IBB 117. Moreover, the variation of lignocellulosic growth substrate provides an opportunity to obtain enzyme preparations containing different ratios of individual enzymes.  相似文献   

3.
The agaric basidiomycete Clitocybula dusenii was used for the production of the extracellular ligninolytic enzyme, manganese (Mn) peroxidase. An immobilization technique is described using cellulose and polypropylene as carrier for the fungal mycelium. High amounts of Mn peroxidase were obtained with agitated cultures of immobilized fungus (up to 3,000 U l−1) while the biomass was recovered and used for further production cycles. Purification of Mn peroxidase revealed the existence of two forms: MnP1 (molecular mass 43 kDa, pI 4.5) and MnP2 (42 kDa, pI 3.8). Received: 30 July 1999 / Received revision: 1 December 1999 / Accepted: 3 December 1999  相似文献   

4.
A bacterial consortium that can degrade chloro- and nitrophenols has been isolated from the rhizosphere of Phragmitis communis. Degradation of 4-chlorophenol (4-CP) by a consortium attached to granular activated carbon (GAC) in a biofilm reactor was evaluated during both open and closed modes of operation. During the operation of the biofilm reactor, 4-CP was not detected in the column effluent, being either adsorbed to the GAC or biodegraded by the consortium. When 4-CP at 100 mg l−1 was fed to the column in open mode operation (20 mg g−1 GAC total supply), up to 27% was immediately available for biodegradation, the rest being adsorbed to the GAC. Biodegradation continued after the system was returned to closed mode operation, indicating that GAC bound 4-CP became available to the consortium. Biofilm batch cultures supplied with 10–216 mg 4-CP g−1 GAC suggested that a residual fraction of GAC-bound 4-CP was biologically unavailable. The consortium was able to metabolise 4-CP after perturbations by the addition of chromium (Cr VI) at 1–5 mg l−1 and nitrate at concentrations up to 400 mg l−1. The development of the biofilm structure was analysed by scanning electron microscopy and confocal laser scanning microscopy (CLSM) techniques. CLSM revealed a heterogeneous structure with a network of channels throughout the biofilm, partially occupied by microbial exopolymer structures. Received: 17 March 1999 / Received revision: 27 May 1999 / Accepted: 28 May 1999  相似文献   

5.
Fungi producing high xylanase levels have attracted considerable attention because of their potential industrial applications. Batch cultivations of Aspergillus terricola fungus were evaluated in stirred tank and airlift bioreactors, by using wheat bran particles suspended in the cultivation medium as substrate for xylanase and β-xylosidase production. In the stirred tank bioreactor, in physical conditions of 30°C, 300 rpm, and aeration of 1 vvm (1 l min−1), with direct inoculation of fungal spores, 7,475 U l−1 xylanase was obtained after 36 h of operation, remaining constant after 24 h. In the absence of air injection in the stirred tank reactor, limited xylanase production was observed (final concentration 740 U l−1). When the fermentation process was realized in the airlift bioreactor, xylanase production was higher than that observed in the stirred tank bioreactor, being 9,265 U l−1 at 0.07 vvm (0.4 l min−1) and 12,845 U l−1 at 0.17 vvm (1 l min−1) aeration rate.  相似文献   

6.
The exploration of seven physiologically different white rot fungi potential to produce cellulase, xylanase, laccase, and manganese peroxidase (MnP) showed that the enzyme yield and their ratio in enzyme preparations significantly depends on the fungus species, lignocellulosic growth substrate, and cultivation method. The fruit residues were appropriate growth substrates for the production of hydrolytic enzymes and laccase. The highest endoglucanase (111 U ml−1) and xylanase (135 U ml−1) activities were revealed in submerged fermentation (SF) of banana peels by Pycnoporus coccineus. In the same cultivation conditions Cerrena maxima accumulated the highest level of laccase activity (7,620 U l−1). The lignified materials (wheat straw and tree leaves) appeared to be appropriate for the MnP secretion by majority basidiomycetes. With few exceptions, SF favored to hydrolases and laccase production by fungi tested whereas SSF was appropriate for the MnP accumulation. Thus, the Coriolopsis polyzona hydrolases activity increased more than threefold, while laccase yield increased 15-fold when tree leaves were undergone to SF instead SSF. The supplementation of nitrogen to the control medium seemed to have a negative effect on all enzyme production in SSF of wheat straw and tree leaves by Pleurotus ostreatus. In SF peptone and ammonium containing salts significantly increased C. polyzona and Trametes versicolor hydrolases and laccase yields. However, in most cases the supplementation of media with additional nitrogen lowered the fungi specific enzyme activities. Especially strong repression of T. versicolor MnP production was revealed.  相似文献   

7.
Streptomyces rimosus CN08 isolated from Tunisian soil produced 8.6 mg l−1 of oxytetracycline (OTC) under submerged fermentation (SmF). Attempts were made for enhancing OTC production after irradiation-induced mutagenesis of Streptomyces rimosus CN08 with Co60-γ rays. 125 OTC-producing colonies were obtained after screening on kanamycin containing medium. One mutant called Streptomyces rimosus γ-45 whose OTC production increased 19-fold (165 mg l−1) versus wild-type strain was selected. γ-45 mutant was used for OTC production under solid-state fermentation (SSF). Wheat bran (WB) was used as solid substrate and process parameters influencing OTC production were optimized. Solid-state fermentation increased the yield of antibiotic production (257 mg g−1) when compared with submerged fermentation. Ammonium sulphate as additional nitrogen source enhanced OTC level to 298 mg g−1. Interestingly, OTC production by γ-45 mutant was insensitive to phosphate which opens the way to high OTC production even in medium containing phosphate necessary for optimal mycelia growth.  相似文献   

8.
Escherichia coli strains with foreign genes under the isopropyl-β-d-thiogalactopyranoside-inducible promoters such as lac, tac, and trc were engineered and considered as the promising succinic acid-producing bacteria in many reports. The promoters mentioned above could also be induced by lactose, which had not been attempted for succinic acid production before. Here, the efficient utilization of lactose as inducer was demonstrated in cultures of the ptsG, ldhA, and pflB mutant strain DC1515 with ppc overexpression. A fermentative process for succinic acid production at high level by this strain was developed. In flask anaerobic culture, 14.86 g l−1 succinic acid was produced from 15 g l−1 glucose with a yield of 1.51 mol mol−1 glucose. In two-stage culture carried out in a 3-l bioreactor, the overall yield and concentration of succinic acid reached to 1.67 mol mol−1 glucose and 99.7 g l−1, respectively, with a productivity of 1.7 g l−1 h−1 in the anaerobic stage. The efficient utilization of lactose as inducer made recombinant E. coli a more capable strain for succinic acid production at large scale.  相似文献   

9.
1,3-Propanediol inhibition during glycerol fermentation to 1,3-propanediol by Clostridium butyricum CNCM 1211 has been studied. The initial concentration of the 1,3-propanediol affected the growth of the bacterium more than the glycerol fermentation. μ max was inversely proportional to the initial concentration of 1,3-propanediol (0–65 g l−1). For glycerol at 20 g l−1, the growth and fermentation were completely stopped at an initial 1,3-propanediol concentration of 65 g l−1. However, for an initial 1,3-propanediol concentration of 50 g l−1 and glycerol at 70 g l−1, the final concentration (initial and produced) of 1,3-propanediol reached 83.7 g l−1(1.1 M), with complete consumption of the glycerol. Therefore, during the fermentation, the strain tolerated a 1,3-propanediol concentration higher than the initial inhibitory concentration (65 g l−1). The addition of 1,2-propanediol or 2,3-butanediol (50 g l−1) in the presence of glycerol (50–100 g l−1), showed that 2-diols reduced the μ max in a similar way to 1,3-propanediol. The measurement of the osmotic pressure of glycerol solutions, diols and diol/glycerol mixtures did not indicate any differences between these compounds. The hypothesis of diol inhibition was discussed. Taking into account the strain tolerance of highly concentrated 1,3-propanediol during fermentation, the fermentation processes for optimising production were considered. Received: 15 November 1999 / Revision received: 1 February 2000 / Accepted: 4 February 2000  相似文献   

10.
Recombinant Escherichia coli strain GCSC 6576, harboring a high-copy-number plasmid containing the Ralstonia eutropha genes for polyhydroxyalkanoate (PHA) synthesis and the E. coli ftsZ gene, was employed to produce poly-(3-hydroxybutyrate) (PHB) from whey. pH-stat fed-batch fermentation, using whey powder as the nutrient feed, produced cellular dry weight and PHB concentrations of 109 g l−1 and 50 g l−1 respectively in 47 h. When concentrated whey solution containing 210 g l−1 lactose was used as the nutrient feed, cellular dry weight and PHB concentrations of 87 g l−1 and 69 g l−1 respectively could be obtained in 49 h by pH-stat fed-batch culture. The PHB content was as high as 80% of the cellular dry weight. These results suggest that cost-effective production of PHB is possible by fed-batch culture of recombinant E. coli using concentrated whey solution as a substrate. Received: 19 December 1997 / Received revision: 17 March 1998 / Accepted: 20 March 1998  相似文献   

11.
Batch and continuous cultivation of Anaerobiospirillum succiniciproducens were systematically studied for the production of succinic acid from whey. Addition of 2.5 g l−1 yeast extract and 2.5 g l−1 polypeptone per 10 g l−1 whey was most effective for succinic acid production from both treated and nontreated whey. When 20 g l−1 nontreated whey and 7 g l−1 glucose were used as cosubstrates, the yield and productivity of succinic acid reached at the end of fermentation were 95% and 0.46 g (l h)−1, respectively. These values were higher than those obtained using nontreated whey alone [93% and 0.24 g (l h)−1 for 20 g l−1 whey]. Continuous fermentation of A. succiniciproducens at an optimal dilution rate resulted in the production of succinic acid with high productivity [1.35 g (l h)−1], high conversion yield (93%), and higher ratio of succinic acid to acetic acid (5.1:1) from nontreated whey. Received: 23 July 1999 / Received revision: 17 November 1999 / Accepted: 24 December 1999  相似文献   

12.
Several fungal endophytes of the Egyptian marine sponge Latrunculia corticata were isolated, including strains Trichoderma sp. Merv6, Penicillium sp. Merv2 and Aspergillus sp. Merv70. These fungi exhibited high cellulase activity using different lignocellulosic substrates in solid state fermentations (SSF). By applying mutagenesis and intergeneric protoplast fusion, we have obtained a recombinant strain (Tahrir-25) that overproduced cellulases (exo-β-1,4-glucanase, endo-β-1,4-glucanase and β-1,4-glucosidase) that facilitated complete cellulolysis of agricultural residues. The process parameters for cellulase production by strain Tahrir-25 were optimized in SSF. The highest cellulase recovery from fermentation slurries was achieved with 0.2% Tween 80 as leaching agent. Enzyme production was optimized under the following conditions: initial moisture content of 60% (v/w), inoculum size of 106 spores ml−1, average substrate particle size of 1.0 mm, mixture of sugarcane bagasse and corncob (2:1) as the carbon source supplemented with carboxymethyl cellulose (CMC) and corn steep solids, fermentation time of 7 days, medium pH of 5.5 at 30°C. These optimized conditions yielded 450, 191, and 225 units/gram dry substrate (U gds−1) of carboxylmethyl cellulase, filter-paperase (FPase), and β-glucosidase, respectively. Subsequent fermentation by the yeast, Saccharomyces cerevisiae NRC2, using lignocellulose hydrolysates obtained from the optimized cellulase process produced the highest amount of ethanol (58 g l−1). This study has revealed the potential of exploiting marine fungi for cost-effective production of cellulases for second generation bioethanol processes.  相似文献   

13.
Cui  Fengjie  Li  Yin  Liu  Zhiqiang  Zhao  Hui  Ping  Lifeng  Ping  Liying  Yang  Yinan  Xue  Yaping  Yan  Lijiao 《World journal of microbiology & biotechnology》2009,25(4):721-725
The objective of this study was to maximize production of xylanase by a newly isolated strain Penicillium thiersii ZH-19. Response surface methodology was employed to study the effects of significant factors such as pH, temperature, xylan concentration, and cultivation time, on the production of xylanase by Penicillium thiersii ZH-19. The optimal fermentation parameters for enhanced xylanase production were found to be pH 7.72, temperature 24.8°C, xylan 13.2 g l−1 and the fermentation time 125.8 h. The model predicted a xylanase activity of 75.24 U ml−1. Verification of the optimization showed that the maximum xylanase production reached 73.50 U mL−1 in the flask experiments and 80.23 U mL−1 in the scale of 15-L fermenter under the optimal condition.  相似文献   

14.
α-Amylase activities of Aspergillus oryzae grown on dextrin or indigestible dextrin were 7·8 and 27·7 U ml−1, respectively. Glucoamylase activities of the cultures grown on dextrin or indigestible dextrin were 5·4 and 301 mU ml−1, respectively. The specific glucoamylase production rate in indigestible dextrin batch culture reached 1·35 U g DW−1 h−1. In contrast, biomass concentration of A. oryzae in indigestible dextrin culture was 35% of that in dextrin culture. Thus, the culture method using indigestible dextrin has the potential to improve amylolytic enzyme production and fungal fermentation broth rheology.  相似文献   

15.
A thermostable β-galactosidase was produced extracellularly by a thermophilic Rhizomucor sp, with maximum enzyme activity (0.21 U mg−1) after 4 days under submerged fermentation condition (SmF). Solid state fermentation (SSF) resulted in a nine-fold increase in enzyme activity (2.04 U mg−1). The temperature range for production of the enzyme was 38–55°C with maximum activity at 45°C. The optimum pH and temperature for the partially purified enzyme was 4.5 and 60°C, respectively. The enzyme retained its original activity on incubation at 60°C up to 1 h. Divalent cations like Co2+, Mn2+, Fe2+ and Zn2+ had strong inhibitory effects on the enzyme activity. The K m and V max for p-nitrophenyl-β- D-galactopyranoside and o-nitrophenyl-β - D-galactopyranoside were 0.39 mM, 0.785 mM and 232.1 mmol min−1 mg−1 respectively. The K m and V max for the natural substrate lactose were 66.66 μM and 0.20 μ mol min−1 mg−1. Received 10 March 1997/ Accepted in revised form 17 July 1997  相似文献   

16.
The aim of this work was to optimize the fermentation parameters in the shake-flask culture of marine bacterium Wangia sp. C52 to increase cold-adapted amylase production using two statistical experimental methods including Plackett–Burman design, which was applied to find the key ingredients for the best medium composition, and response surface methodology, which was used to determine the optimal concentrations of these components. The results showed starch, tryptone, and initial pH had significant effects on the cold-adapted amylase production. A central composite design was then employed to further optimize these three factors. The experimental results indicated that the optimized composition of medium was 6.38 g L−1 starch, 33.84 g L−1 tryptone, 3.00 g L−1 yeast extract, 30 g L−1 NaCl, 0.60 g L−1 MgSO4 and 0.56 g L−1 CaCl2. The optimized cultivation conditions for amylase production were pH 7.18, a temperature of 20°C, and a shaking speed of 180 rpm. Under the proposed optimized conditions, the amylase experimental yield (676.63 U mL−1) closely matched the yield (685.60 U mL−1) predicted by the statistical model. The optimization of the medium contributed to tenfold higher amylase production than that of the control in shake-flask experiments.  相似文献   

17.
The purpose of the present research is to study the production of thermophilic alkaline protease by a local isolate, Streptomyces sp. CN902, under solid state fermentation (SSF). Optimum SSF parameters for enzyme production have been determined. Various locally available agro-industrial residues have been screened individually or as mixtures for alkaline protease production in SSF. The combination of wheat bran (WB) with chopped date stones (CDS) (5:5) proved to be an efficient mixture for protease production as it gave the highest enzyme activity (90.50 U g−1) when compared to individual WB (74.50 U g−1) or CDS (69.50 U g−1) substrates. This mixed solid substrate was used for the production of protease from Streptomyces sp. CN902 under SSF. Maximal protease production (220.50 U g−1) was obtained with an initial moisture content of 60%, an inoculum level of 1 × 108 (spore g−1 substrate) when incubated at 45°C for 5 days. Supplementation of WB and CDS mixtures with yeast extract as a nitrogen source further increased protease production to 245.50 U g−1 under SSF. Our data demonstrated the usefulness of solid-state fermentation in the production of alkaline protease using WB and CDS mixtures as substrate. Moreover, this approach offered significant benefits due to abundant agro-industrial substrate availability and cheaper cost.  相似文献   

18.
A comparative study was carried out in anaerobic batch cultures on 20 g/l of either glycerol or glucose using two propionibacteria strains, Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. In all cases, fermentation end-products were the same and consisted of propionic acid as the major product, acetic acid as the main by-product and two minor metabolites, n-propanol and succinic acid. Evidence was provided that greater production of propionic acid by propionibacteria was obtained with glycerol as carbon and energy sources. P. acidipropionici showed higher efficiency in glycerol conversion to propionic acid with a faster substrate consumption (0.64 g l−1 h−1) and a higher propionic acid production (0.42 g l−1 h−1 and 0.79 mol/mol). The almost exclusive production of propionic acid from glycerol by this bacterium suggested an homopropionic tendency of this fermentation. Acetic acid final concentration was two times lower on glycerol (2 g/l) than on glucose (4 g/l) for both micro-organisms. P. freudenreichii ssp. shermanii exhibited a glycerol fermentation pattern typical of non-associated glycerol-consumption-product formation. This could indicate a particular metabolism for P. freudenreichii ssp. shermanii oriented towards the production of other specific components. These results tend to show that glycerol could be an excellent alternative to conventional carbon sources such as carbohydrates for propionic acid production. Received: 21 May 1999 / Accepted: 1 November 1999  相似文献   

19.
The culture-medium composition was optimised, on a shake-flask scale, for simultaneous production of high activities of endoglucanase and β-glucosidase by Thermoascus aurantiacus using statistical factorial designs. The optimised medium containing 40.2 g l−1 Solka Floc as the carbon source and 9 g l−1 soymeal as the organic nitrogen source yielded 1130 nkat ml−1 endoglucanase and 116 nkat ml−1β-glucosidase activities after 264 h as shake cultures. In addition, good levels of β-xylanase (3479 nkat ml−1) and low levels of filter-paper cellulase, β-xylosidase, α-l-arabinofuranosidase, β-mannanase, β-mannosidase, α-galactosidase and β-galactosidase were detected. Batch fermentation in a 5-l laboratory fermentor using the optimised medium allowed the production of 940 nkat ml−1 endoglucanase and 102 nkat ml−1β-glucosidase in 192 h. Endoglucanase and β-glucosidase showed optimum activity at pH 4.5 and pH 5, respectively, and they displayed optimum activity at 75 °C. Endoglucanase and β-glucosidase showed good stability at pH values 4–8 and 4–7, respectively, after a prolonged incubation (48 h at 50 °C). Endoglucanase had half-lives of 98 h at 70 °C and 4.1 h at 75 °C, while β-glucosidase had half-lives of 23.5 h at 70 °C and 1.7 h at 75 °C. Alkali-treated bagasse, steam-treated wheat straw, Solka floc and Sigmacell 50 were 66, 48.5, 33.5 and 14.4% hydrolysed by a crude enzyme complex of T. aurantiacus in 50 h. Received: 12 November 1999 / Accepted: 14 November 1999  相似文献   

20.
The influence of ammonia on the anaerobic degradation of peptone by mesophilic and thermophilic populations of biowaste was investigated. For peptone concentrations from 5 g l−1 to 20 g l−1 the mesophilic population revealed a higher rate of deamination than the thermophilic population, e.g. 552 mg l−1 day−1 compared to 320 mg l−1 day−1 at 10 g l−1 peptone. The final degree of deamination of the thermophilic population was, however, higher: 102 compared to 87 mg NH3/g peptone in the mesophilic cultures. If 0.5–6.5 g l−1 ammonia was added to the mesophilic biowaste cultures, deamination of peptone, degradation of its chemical oxygen demand (COD) and formation of biogas were increasingly inhibited, but no hydrogen was formed. The thermophilic biowaste cultures were most active if around 1 g ammonia l−1 was present. Deamination, COD degradation and biogas production decreased at lower and higher ammonia concentrations and hydrogen was formed in addition to methane. Studies of the inhibition by ammonia of peptone deamination, COD degradation and methane formation revealed a K i (50%) for NH3 of 92, 95 and 88 mg l−1 at 37 °C and 251, 274 and 297 mg l−1 at 55 °C respectively. This indicated that the thermophilic flora tolerated significantly more NH3 than the mesophilic flora. In the mesophilic reactor effluent 4.6 × 108 peptone-degrading colony-forming units (cfu)/ml were culturable, whereas in the thermophilic reactor effluent growth of only 5.6 × 107 cfu/ml was observed. Received: 24 April 1998 / Received revision: 26 June 1998 / Accepted: 27 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号