首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The intestinal transport of three actively transported sugars has been studied in order to determine mechanistic features that, (a) can be attributed to stereo-specific affinity and (b) are common. The apparent affinity constants at the brush-border indicate that sugars are selected in the order, beta-methyl glucose greater than D-galactose greater than 3-O-methyl glucose, (the Km values are 1.23, 5.0 and 18.1 mM, respectively.) At low substrate concentrations the Kt values for Na+ activation of sugar entry across the brush-border are: 27, 25, and 140 mequiv. for beta-methyl glucose, galactose and 3-O-methyl glucose, respectively. These kinetic parameters suggest that Na+, water, sugar and membrane-binding groups are all factors which determine selective affinity. In spite of these differences in operational affinity, all three sugars show a reciprocal change in brush-border entry and exit permeability as Ringer (Na) or (sugar) is increased. Estimates of the changes in convective velocity and in the diffusive velocity when the sugar concentration in the Ringer is raised reveal that with all three sugars, the fractional reduction in convective velocity is approximately equal to the (reduction of diffusive velocity)2. This is consistent with the view that the sugars move via pores in the brush-border by convective diffusion. Theophylline reduces the serosal border permeability to beta-methyl glucose and to 3-O-methyl glucose relatively by the same extent and consequently, increase the intracellular accumulation of these sugars. The permeability of the serosal border to beta-methyl glucose entry is lower than permeability of the serosal border to beta-methyl glucose exit, which suggested that beta-methyl glucose may be convected out of the cell across the lateral serosal border.  相似文献   

2.
Various hexoses and amino acids were tested as potential inhibitors of the active mucosal to serosal transport of uracil across the everted rat jejunum. Uracil transport displayed Michaelis-Menten type kinetics with a Vmax of 10.4 +/- 0.2 mumol X g-1 X h-1 and an apparent Km of 0.047 +/- 0.002 mM (means +/- S.D.). Scilliroside, an inhibitor of the basolateral (Na+ + K+)-ATPase, dose-dependently inhibited the transport of uracil consistent with the Na+ dependency of uracil transport. Thymine was a full competitive inhibitor (Ki = 0.021 +/- 0.002 mM) of uracil transport. All actively transported substances tested including L-phenylalanine, L-leucine, D-galactose, D-glucose, and 3-O-methylglucose inhibited the transport of uracil. In contrast, L-glucose and fructose, substances which are not actively transported, were without effect on uracil transport. Further studies with D-galactose indicated that it acts as a partial noncompetitive inhibitor (Ki = 6.0 +/- 1.4 mM) of uracil transport. This Ki is in good agreement with the apparent Kt (5.8 +/- 1.1 mM) for D-galactose transport. Phlorizin (0.1 mM), an inhibitor of galactose transport, blocked the inhibitory effect of galactose on uracil transport. In the ileum D-galactose had no effect on uracil transport but thymine caused the same degree of inhibition as in the jejunum. The results demonstrate that heterologous inhibition is a more general phenomenon than had previously been realized.  相似文献   

3.
1. Time courses for the uptake of L-lactate, D-lactate and pyruvate into isolated cardiac ventricular myocytes from guinea pig were determined at 11 degrees C or 0 degrees C (for pyruvate) in a citrate-based buffer by using a silicone-oil-filtration technique. These conditions enabled initial rates of transport to be measured without interference from metabolism of the substrates. 2. At a concentration of 0.5 mM, transport of all these substrates was inhibited by approx. 90% by 5 mM-alpha-cyano-4-hydroxycinnamate; at 10 mM-L-lactate a considerable portion of transport could not be inhibited. 3. Initial rates of L-lactate and pyruvate uptake in the presence of 5 mM-alpha-cyano-4-hydroxycinnamate were linearly related to the concentration of the monocarboxylate and probably represented diffusion of the free acid. The inhibitor-sensitive component of uptake obeyed Michaelis-Menten kinetics, with Km values for L-lactate and pyruvate of 2.3 and 0.066 mM respectively. 4. Pyruvate and D-lactate inhibited the transport of L-lactate, with Ki values (competitive) of 0.077 and 6.6 mM respectively; the Ki for pyruvate was very similar to its Km for transport. The Ki for alpha-cyano-4-hydroxycinnamate as a non-competitive inhibitor was 0.042 mM. 5. These results indicate that L-lactate, D-lactate and pyruvate share a common carrier in guinea-pig cardiac myocytes; the low stereoselectivity for L-lactate over D-lactate and the high affinity for pyruvate distinguish it from the carrier in erythrocytes and hepatocytes. The metabolic roles for this novel carrier in heart are discussed.  相似文献   

4.
3-O-Methyl-D-glucose transport across the plasma membrane of cultured human lymphocytes of the IM-9 line was followed for net entry into sugar-free cells (zero trans entry), net exit into sugar-free medium (zero trans exit) and for equilibration of labelled sugar in cells with the same sugar concentration in the intracellular water as in the medium (equilibrium exchange). The measurements were performed at 37 degrees C (pH 7.4). Equilibrium exchange of 1 mM 3-O-methylglucose (t 1/2 about 7 S) was exponential, suggesting a homogeneous cell suspension. Initial rates of transport showed a Michaelis-Menten dependency on the sugar concentration. The transport system was found to be asymmetric with the following kinetic parameters. Zero trans entry: Km = 2.8 mM, Vmax = 10.7 mM X min-1. Zero trans exit: Km = 9.5 mM, Vmax = 37.9 mM X min-1. Equilibrium exchange: Km = 9.9 mM, Vmax = 44.0 mM X min-1. Finally, the affinity constant for the internal site was measured as approx. 1.2 mM using the infinite cis protocol.  相似文献   

5.
beta-Galactoside transport by Escherichia coli occurs with the concomitant uptake of a proton. The kinetics of beta-galactoside uptake at various values of external pH are interpreted in terms of a model in which both the galactoside and the proton are substrates of the transport reaction. The values of some of the kinetic constants for this two-substrate reaction were determined. The observed effects of the protonmotive force on the apparent Michaelis constant for galactoside can be explained in terms of the proton being a substrate of the transport reaction.  相似文献   

6.
Sugar transport in Mycoplasma gallisepticum   总被引:5,自引:3,他引:2       下载免费PDF全文
Mycoplasma gallisepticum cells were found to contain two different sugar transport systems, one for d-glucose and alpha-methyl-d-glucoside (alpha-MG) and the other for d-mannose and d-fructose. Both systems were noninducible, stereospecific, dependent on temperature and pH, and sensitive to sulfhydryl-blocking reagents. The rate of sugar uptake depended on its external concentration, obeying Michaelis-Menten kinetics. The sugar accumulated in the cells against a concentration gradient, and an energy requirement for accumulation was demonstrated with alpha-MG. Both transport systems thus meet the criteria of active transport. The exit of alpha-MG from the cells, like its entry, depended on temperature and was accelerated by energy supplied by the oxidizable d-mannose. d-Glucose accelerated alpha-MG exit, apparently by an exchange reaction. A method for measuring the intercellular space and intracellular free-water volume of Mycoplasma was devised, and several of its applications are described.  相似文献   

7.
The biochemical and physiological aspects of hexuronate transport in Erwinia carotovora were studied to approach the genetic regulation of the hexuronate degradative pathway in this bacterial species. An active transport system for glucuronate and galacturonate uptake exists in E. carotovora. The glucuronate entry reaction displayed saturation kinetics with an apparent Km of 0.05 mM (at 25 degrees C; pH 7). Galacturonate appeared to be a competitive inhibitor of glucuronate uptake with a Ki of 0.1 mM. Glucuronate permeation was not induced by glucuronate itself in wild-type strains. Galacturonate induced the uptake of glucuronate (about fivefold). The induced synthesis of the transport system was sensitive to catabolite repression by glucose. Mutants able to grow on glucuronate as the sole carbon source showed constitutive synthesis of the hexuronate transport system.  相似文献   

8.
1. The Michaelis-Menten parameters of labelled D-glucose exit from human erythrocytes at 2 degrees C into external solution containing 50 mM D-galactose were obtained. The Km is 3.4 +/0 0.4 mM, V 17.3 +/- 1.4 MMOL . 1(-1) cell water . min-1 for this infinite-trans exit procedure. 2. The kinetic parameters of equilibrium exchange of D-glucose at 2 degrees C are Km = 25 +/- 3.4 mM, V 30 +/- 4.1 mmol . 1(-1) cell water . min-1. 3. The Km for net exit of D-glucose into solutions containing zero sugar is 15.8 +/- 1.7 mM, V 9.3 +/- 3.3 mmol . 1(-1) cell water . min-1. 4. This experimental evidence corroborates the previous finding of Hankin, B.L., Lieb, W.R. and Stein, W.D. [(1972) Biochim. Biophys. Acta 255, 126--132] that there are sites with both high and low operational affinities for D-glucose at the inner surface of the human erythrocyte membrane. This result is inconsistent with current asymmetric carrier models of sugar transport.  相似文献   

9.
The kinetic mechanism of homoserine kinase, purified to homogeneity from Escherichia coli, was examined by initial velocity techniques at pH 7.6. Whereas ATP displayed normal Michaelis-Menten saturation kinetics (Km = 0.2 mM), L-homoserine showed hyperbolic saturation kinetics only up to a concentration of 0.75 mM (Km = 0.15 mM). Above this concentration, L-homoserine caused marked but partial inhibition (Ki approximately 2 mM). The kinetic data indicated that the addition of substrates to homoserine kinase occurs by a preferred order random mechanism, with ATP preferentially binding before L-homoserine. When the ATP concentration was varied at several fixed inhibitory concentrations of L-homoserine, the resulting inhibition pattern indicated hyperbolic mixed inhibition. This suggested a second binding site for L-homoserine. L-Aspartate semialdehyde, an amino acid analog of L-homoserine, proved to be an alternative substrate of homoserine kinase (Km = 0.68 mM), and was subsequently used as a probe of its kinetic mechanism. In aqueous solution, at pH 7.5, this analog was found to exist predominantly (ca 85%) as its hydrated species. When examined as an inhibitor of the physiological reaction, L-aspartate semialdehyde showed mixed inhibition versus both L-homoserine and ATP. Although the pH profiles for the binding of L-homoserine as a substrate (Km) and as an inhibitor (Ki) were identical, the kinetic data were best fit to a two-site model, with separate catalytic and inhibitory sites for L-homoserine.  相似文献   

10.
The 2-oxoglutarate dehydrogenase complex was isolated from the cellular slime mould, Dictyostelium discoideum, and purified 113-fold. The enzyme exhibited Michaelis-Menten kinetics and the Km values for 2-oxoglutarate, CoA, and NAD were 1.0 mM, 0.002 mM, and 0.07 mM, respectively. The Ki value for succinyl-CoA was determined to be 0.004 mM and the Ki for NADH was 0.018 mM. AMP had positive effects whereas ATP had negative effects on the enzyme activity. The kinetic constants determined in this study and the reaction mechanism suggested can now be incorporated into a transition model of the tricarboxylic acid cycle during differentiation of D. discoideum.  相似文献   

11.
We investigated in the present study the transport characteristics of N-acetyl-L-aspartate in primary cultures of astrocytes from rat cerebral cortex and the involvement of NA+-coupled high-affinity carboxylate transporter NaC3 (formerly known as NaDC3) responsible for N-acetyl-L-aspartate transport. N-acetyl-L-aspartate transport was NA+-dependent and saturable with a Michaelis-Menten constant (Km) of approximately 110 microm. NA+-activation kinetics revealed that the NA+ to-N-acetyl-L-aspartate stoichiometry was 3 : 1 and concentration of Na+ necessary for half-maximal transport (KNA m) was 70 mm. NA+-dependent N-acetyl-L-aspartate transport was competitively inhibited by succinate with an inhibitory constant (Ki) of 14.7 microm, which was comparable to the Km value of NA+-dependent succinate transport (29.4 microm). L-aspartate also inhibited NA+-dependent [14C]N-acetyl-L-aspartate transport with relatively low affinity (Ki = 2.2 mm), whereas N-acetyl-L-aspartate was not able to inhibit NA+-dependent aspartate transport in astrocytes. In addition, Li+ was found to have a significant inhibitory effect on the NA+-dependent N-acetyl-L-aspartate transport in a concentration-dependent manner. Furthermore, RT-PCR and western blot analyses revealed that NaC3 is expressed in primary cultures of astrocytes. Taken collectively, these results indicate that NaC3 expressed in rat cerebrocortical astrocytes is responsible for NA+-dependent N-acetyl-L-aspartate transport. This transporter is likely to be an essential prerequisite for the metabolic role of N-acetyl-L-aspartate in the process of myelination.  相似文献   

12.
Comparison of 18O exchange and pH stop-flow assays for carbonic anhydrase   总被引:1,自引:0,他引:1  
The hydration velocity of CO2 (0.002 M) catalyzed by bovine carbonic anhydrase (BCA) was measured at 25 degrees C and pH 7.4 by three different techniques: two initial-rate (steady-state) stop-flow methods, one using a glass pH electrode (in Hannover, method 1) and one using spectrophotometric measurements of a pH indicator (in Philadelphia, method 2), and an exchange method in which the disappearance of C18O16O from a bicarbonate solution was determined at equilibrium (in Philadelphia, method 3). The Michaelis-Menten constant (Km) and the inhibition constants for chloride (Ki,Cl) and ethoxzolamide (Ki,ez) were the same for methods 1, 2, and 3. The turnover numbers were 270,000, 400,000, and 555,000 s-1 by methods 1, 2, and 3, respectively. Values for CO2 hydration velocity measured by methods 2 and 3 on the same solution of BCA at the same time were the same. Km, maximal reaction velocity (Vmax), Ki,ez, and Ki,Cl obtained from normal human hemolysate at 37 degrees C and pH 7.2 by methods 2 and 3 were the same. Km and Vmax of the carbonic anhydrase isozyme CA III of homogenate from rabbit soleus were also identical by methods 1 and 3. According to Michaelis-Menten theory, the values of Km and Vmax obtained by method 3 should have been significantly smaller than those obtained by methods 1 and 2. We conclude that the catalytic step itself is apparently not rate limiting under physiological conditions and that method 3 can be used to obtain Michaelis-Menten characteristics of carbonic anhydrase.  相似文献   

13.
3-O-Methyl-D-glucose transport across the plasma membrane of isolated rat hepatocytes was followed for net entry of the sugar into sugar-free cells (zero trans entry), net exit of sugar into sugar-free medium (zero trans exit) and for unidirectional entry and exit fluxes when cells had been equilibrated with sugar in the extracellular medium (equilibrium exchange entry and exit). These measurements were performed at 20 degrees C and pH 7.4 by the use of simple manual methods. Initial rates of transport showed a Michaelis--Menten dependency on the sugar concentration at the cis side of the membrane over the range of concentrations tested (100 microM to 100 mM). Transport was found to be symmetrical with no evidence of substrate stimulation of transport from the trans side of the membrane. Parameters (mean values +/- S.E.M.) of transport were estimated as Vmax. 86.2 +/- 9.7 mmol/litre of cell water per min and Km 18.1 +/- 5.9 mM for exchange entry, Vmax. 78.8 +/- 5.3 mmol/litre of cell water per min and Km 17.6 +/- 3.5 mM for exchange exit, Vmax. 84.1 +/- 8.4 mmol/litre of cell water per min and Km 16.8 +/- 4.6 mM for zero trans exit.  相似文献   

14.
Neither methyl-alpha-maltoside nor 5-thiomaltose is utilized by Escherichia coli as a sole carbon source. Both are, however, effective competitive inhibitors of maltose transport into the bacterium (Km for maltose, 0.8 microM, Ki for methyl-alpha-maltoside, 5.5 microM; Ki for 5-thiomaltose, 0.2 microM). Both analogs are bound by the periplasmic maltose-binding protein. Methyl-alpha-[14C]maltoside and 5-[3H]thiomaltose were both accumulated inside E. coli. Methyl-alpha-maltoside was unchanged after accumulation, but 5-thiomaltose was converted to an unidentified compound that could exit from the bacterium. Both analogs were inhibitory to the growth of E. coli, but only when the bacteria were previously induced for the maltose transport system. The analogs are substrates for but poor inducers of the maltose transport system.  相似文献   

15.
In crustaceans, the hepatopancreas is the major organ system responsible for heavy metal detoxification, and within this structure the lysosomes and the endoplasmic reticulum are two organelles that regulate cytoplasmic metal concentrations by selective sequestration processes. This study characterized the transport processes responsible for zinc uptake into hepatopancreatic lysosomal membrane vesicles (LMV) and the interactions between the transport of this metal and those of calcium, copper, and cadmium in the same preparation. Standard centrifugation methods were used to prepare purified hepatopancreatic LMV and a rapid filtration procedure, to quantify 65Zn2+ transfer across this organellar membrane. LMV were osmotically reactive and exhibited a time course of uptake that was linear for 15-30 sec and approached equilibrium by 300 sec. 65Zn2+ influx was a hyperbolic function of external zinc concentration and followed Michaelis-Menten kinetics for carrier transport (Km = 32.3 +/- 10.8 microM; Jmax = 20.7 +/- 2.6 pmol/mg protein x sec). This carrier transport was stimulated by the addition of 1 mM ATP (Km = 35.89 +/- 10.58 microM; Jmax = 31.94+/-3.72 pmol/mg protein/sec) and replaced by an apparent slow diffusional process by the simultaneous presence of 1 mM ATP+250 microM vanadate. Thapsigargin (10 microM) was also a significant inhibitor of zinc influx (Km = 72.87 +/- 42.75 microM; Jmax =22.86 +/- 4.03 pmol/mg protein/sec), but not as effective in this regard as was vanadate. Using Dixon analysis, cadmium and copper were shown to be competitive inhibitors of lysosomal membrane vesicle 65Zn2+ influx by the ATP-dependent transport process (cadmium Ki = 68.1 +/- 3.2 microM; copper Ki = 32.7 +/- 1.9 microM). In the absence of ATP, an outwardly directed H+ gradient stimulated 65Zn2+ uptake, while a proton gradient in the opposite direction inhibited metal influx. The present investigation showed that 65Zn2+ was transported by hepatopancreatic lysosomal vesicles by ATP-dependent, vanadate-, thapsigargin-, and divalent cation-inhibited, carrier processes that illustrated Michaelis-Menten influx kinetics and was stimulated by an outwardly directed proton gradient. These transport properties as a whole suggest that this transporter may be a lysosomal isoform of the ER Sarco-Endoplasmic Reticulum Calcium ATPase.  相似文献   

16.
A quenched-flow apparatus is described and applied to measurements of the hydrolysis of 2,4-dinitrophenyl acetate by sodium hydroxide and the entry of D-[U-14C]glucose into human red blood cells at 37 degrees C. Glucose influx into red cells was a saturable process obeying Michaelis-Menten kinetics with a Km for glucose of 6.6 +/- 0.61 mM and a maximum rate for glucose entry under "zero trans" conditions of 20.7 +/- 0.76 mmol (L cell water)-1 s-1. The technique used requires only readily available laboratory equipment and should be easily adaptable to the study of other rapid transport processes.  相似文献   

17.
myo-Inositol transport by retinal capillary pericytes in culture was characterized. The major myo-inositol transport process was sodium-dependent, ouabain-sensitive, and saturable at 40 mM, indicating a carrier-mediated process. The sodium ion concentration required to produce one-half the maximal rate of myo-inositol uptake ([Na+]0.5) did not show dependence on the external myo-inositol concentration (22.3 mM sodium for 0.005 mM myo-inositol; 18.2 mM sodium for 0.05 mM myo-inositol). myo-Inositol transport was an energy-dependent, active process functioning against a myo-inositol concentration gradient. The kinetics of the sodium-dependent system fitted a 'velocity type' co-transport model where binding of sodium ion to the carrier increased the velocity (Vmax 28 to 313 pmol myo-inositol/micrograms DNA per 20 min when [Na+] varied from 9 to 150 mM) but not the affinity for myo-inositol (Km 0.92 to 0.83 mM when [Na+] varied from 9 to 150 mM). Metabolizable hexoses (D-glucose or D-galactose; greater than 5 mM) inhibited myo-inositol uptake. Dixon-plot analysis indicated that the inhibition was non-competitive with a Ki of 22.7 mM for D-glucose and 72.6 mM for D-galactose. The inhibition was significantly reversed by Sorbinil (0.1 mM), an aldose reductase inhibitor. In contrast, high concentrations of non-metabolizable hexoses (L-glucose, 3-O-methyl-D-glucose), or partially metabolizable 2-deoxy-D-glucose, did not significantly inhibit myo-inositol uptake. The inhibitory effect of D-glucose or D-galactose on myo-inositol transport appeared to be related to glucose or galactose metabolism via the polyol pathway.  相似文献   

18.
Transport of methionine in sea-urchin sperm by a neutral amino-acid carrier   总被引:1,自引:0,他引:1  
A carrier-mediated transport for L-methionine and other neutral amino acids exists in sperm of the sea urchin Lytechinus pictus. The initial rate of L-methionine entry is a Michaelis-Menten function of the methionine concentration in the external medium. The maximum velocity is low [V = 250 pmol h-1 (10(9) sperm)-1 at 22 degrees C] and the affinity is high (Km = 6-10 microM). The initial rate of transport under steady-state exchange conditions is also a Michaelis-Menten function of the external concentration of methionine. The Km determined by this method is about 14 microM. Neutral amino acids compete with L-methionine transport as shown by initial velocity measurements. These results indicate that L-methionine transport is a carrier-mediated process. The temperature dependence of the process is approximately 84 kJ (20 kcal) mol-1 K-1, which is not compatible with a simple diffusion mechanism, but in the range of values usually found for a mediated transport. The transport is largely Na+-independent and does not depend on Ca2+, K+ or H+ gradients. It is only partially sensitive to KCN, showing it is mainly independent of oxidative phosphorylation. The steady-state internal methionine concentration is not a linear function of the external amino acid concentration. This suggests that an exit by diffusion competes with a carrier-mediated concentrative transport in a cellular compartment. This mediated transport is compared to those of higher animal cells.  相似文献   

19.
皮状丝孢酵母( Trichosporon cutaneum)能够同步利用葡萄糖和木糖生产油脂。以2脱氧葡萄糖(2 DOG)为底物,考察皮状丝孢酵母糖跨膜运输的转运动力学。结果表明:2 DOG转运符合米氏方程,表观米氏常数Km为0.19 mmol/L,最大转运速率Vmax为14.1 nmol/( min·mg)。葡萄糖和木糖均竞争性抑制2 DOG转运,葡萄糖表观抑制常数Ki远低于木糖,表明存在一个共用转运体系,且该转运体系对葡萄糖亲和力更高。大量木糖与2 DOG同时转运到胞内,进一步说明木糖与葡萄糖共运输。代谢抑制剂和pH对糖转运有明显影响,说明质子/底物同向运输系统是该酵母的主要糖转运系统。  相似文献   

20.
Amperometric methods were used to study the kinetics of intracellular reduction of 2,6-dichlorophenolindophenol (DCIP) in normal and transformed hepatocytes with glucose and succinate as substrates. The curves showing the formation of DCIPred as a function of time were biphasic, the first part obeying the equation of a pseudo-first-order reaction, the final part corresponding to Michaelis-Menten kinetics. A statistical method was used to estimate pseudo-first-order rate constants k as well as Km and Vmax values. At saturating glucose concentrations k, Km and Vmax values were higher in normal compared to transformed cells. Decreasing glucose concentrations revealed lowered saturation concentrations in tumour cells compared to normal cells. With succinate as substrate for hepatocytes, k values were higher than with glucose, while Km and Vmax were about the same. Hepatoma cells did not metabolize succinate. K values could be attributed to intracellular dehydrogenase activities including cytosolic and mitochondrial processes. Differences in pseudo-first-order rate constants between normal and tumour cells may therefore represent characteristic alterations associated with transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号