首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propagation of low-frequency electromagnetic waves along the magnetic field in weakly ionized plasma with an admixture of dust is studied in the framework of the Hall magnetohydrodynamics. Explicit expressions for the coefficients of magnetic field diffusion in plasma are derived. The resonance of the refractive index is found to occur for either right- or left-hand polarized waves. A quantitative criterion is obtained that allows one to determine the polarization of waves that experience resonance at given plasma parameters. The physical mechanism of the resonance is discussed, and the obtained results are compared with the available literature data.  相似文献   

2.
The properties of magnetosonic waves that propagate perpendicularly to the external magnetic field in a polydisperse dusty plasma and the frequencies of which are about the dust cyclotron frequency are analyzed. A dispersion relation containing integrals of functions of the dust grain radius is derived and investigated as a function of the parameters characterizing the polydisperse properties of dust. It is found that, in a polydisperse dusty plasma, the low-frequency magnetosonic mode splits into two branches. The first, lower frequency branch has a cutoff, while the higher frequency branch has a resonance. Between the two branches, there is a forbidden frequency range within which electromagnetic waves cannot propagate perpendicular to the magnetic field. The width of the forbidden frequency range is determined as a function of the slope of the distribution function of dust grains over radii and the interval within which the dust grain radii lie.  相似文献   

3.
Magnetorotational instability of a weakly ionized accretion disk with an admixture of charged dust grains in a magnetic field with the axial and toroidal components is analyzed. The dispersion relation for perturbations perpendicular to the disk plane is derived with allowance for both the Hall current and the finite transverse plasma conductivity. It is shown that dust grains play an important role in the disk magnetic dynamics. Due to the effect of dust grains, the Hall current can reverse its direction as compared to the case of electron-ion plasma. As a result, the instability threshold shifts toward the short-wavelength range. Under certain conditions, electromagnetic fluctuations of any length can become unstable. It is established that the instability criterion for waves of any scale length is satisfied within a finite interval of the density ratio between the dust and electron plasma components. The width of this interval and the instability growth rate as functions of the plasma parameters and the configuration of the magnetic field in the disk are analyzed.  相似文献   

4.
Low-frequency electromagnetic waves propagating perpendicular to the gradients of the density and magnetic field in an inhomogeneous dusty plasma whose mass density is determined primarily by the dust component are analyzed. It is shown that, in analyzing the dispersion properties of inhomogeneous plasma, it is important to take into account the dynamic properties of ions in the vicinity of the dust-ion hybrid resonance. The conditions for the onset of instability of a magnetic drift wave are investigated for different relations between parameters of the inhomogeneity and the value of the Alfvén velocity. The differences from the previous results, as well as possible astrophysical applications, are discussed.  相似文献   

5.
Thermodynamic properties of a Yukawa system consisting of dust particles in plasma are studied in the presence of an external magnetic field. It is assumed that dust particles interact with each other by a modified potential in the presence of a magnetic field. A molecular dynamics code is developed to calculate this internal energy for the entire system. Based on the values of the internal energy given by the code, the Helmholtz free energy and pressure are calculated for the system.  相似文献   

6.
The interaction of charged dust grains with nonlinear vortical structures in the Earth’s atmosphere is analyzed. Certain aspects of the atmosphere?ionosphere interaction, in particular, mechanisms for the appearance of dust grains at ionospheric altitudes, are discussed. It is shown that, at certain altitudes, there are regions in the wavenumber space in which conditions leading to the excitation of acoustic?gravity waves are satisfied. The interaction of nonlinear acoustic?gravity waves with dust grains of meteoric origin at ionospheric altitudes, which leads to the mixing and redistribution of dust grains over the region where vortices exist, is investigated. The possibility of formation of vertical and horizontal dust flows in dusty ionospheric plasma as a result of modulational instability is analyzed. The dynamics of dust grains in dust devils frequently arising in the atmosphere above well-heated surfaces is modeled. The vortical structure of such a dust devil is characterized by a reduced pressure in the center, which facilitates the lifting of small dust grains from the surface. The formulated model is used to calculate the trajectories of dust grains in dust devils with allowance for the influence of the electric field generated in the vortex by colliding dust grains. The calculations show that dust devils play an important role in the transport of dust grains.  相似文献   

7.
The oblique propagation of nonlinear periodic ion-acoustic waves in magnetized dusty plasma is investigated. The equations describing the dynamics of the wave potential in the first and second orders of the perturbation theory are derived, and their nonsecular periodic solutions are found. The average nonlinear ion flux caused by the propagation of a cnoidal wave is estimated. The magnitude and direction of the ion flux are analyzed as functions of the dust charge density and the angle between the wave propagation direction and the magnetic field.  相似文献   

8.
The geometry and dynamics of plasma?dust structures in a longitudinal magnetic field is studied experimentally. The structures are formed in a glow-discharge trap created in the double electric layer produced as a result of discharge narrowing by means of a dielectric insert introduced in the discharge tube. Studies of structures formed in the new type of glow-discharge trap are of interest from the standpoint of future experiments with complex plasmas in superstrong magnetic fields in which the dust component is magnetized. Different types of dielectric inserts were used: conical and plane ones with symmetric and asymmetric apertures. Conditions for the existence of stable dust structures are determined for dust grains of different density and different dispersity. According to the experimental results, the angular velocity of dust rotation is ≥10 s–1, which is the fastest type of dust motion for all types of discharges in a magnetic field. The rotation is interpreted by analyzing the dynamics of individual dust grains.  相似文献   

9.
10.
A general method is developed for a numerical analysis of the frequency spectra of internal, internal-surface, and surface slow waves in a waveguide with transverse plasma density variations. For waveguides with a piecewise constant plasma filling, the spectra of slow waves are thoroughly examined in the limits of an infinitely weak and an infinitely strong external magnetic field. For a smooth plasma density profile, the frequency spectrum of long-wavelength surface waves remains unchanged, but a slow damping rate appears that is caused by the conversion of the surface waves into internal plasma waves at the plasma resonance point. As for short-wavelength internal waves, they are strongly damped by this effect. It is pointed out that, for annular plasma geometry, which is of interest from the experimental point of view, the spectrum of the surface waves depends weakly on the magnetic field strength in the waveguide.  相似文献   

11.
Effective boundary conditions for the electromagnetic field of the slow surface waves of a thinwalled annular plasma in a metal waveguide are derived and justified. With the boundary conditions obtained, there is no need to solve field equations in the plasma region of the waveguide, so that the dispersion properties of plasma waveguides can be investigated analytically for an arbitrary strength of the external magnetic field. Examples are given that show how to use the effective boundary conditions in order to describe surface waves with a normal and an anomalous dispersion. The boundary conditions are then employed to construct a theory of the radiative Cherenkov instabilities of a thin-walled annular electron beam in a waveguide with a thinwalled annular plasma. The single-particle and collective Cherenkov effects associated with low-and high-frequency surface waves in an arbitrary external magnetic field are studied analytically. The method of the effective boundary conditions is justified in the context of application to the problems of plasma relativistic microwave electronics.  相似文献   

12.
The propagation of MHD plasma waves in a sheared magnetic field is investigated. The problem is solved using a simplified model: a cold plasma is inhomogeneous in one direction, and the magnetic field lines are straight. The waves are assumed to travel in the plane perpendicular to the radial coordinate (i.e., the coordinate along which the plasma and magnetic field are inhomogeneous). It is shown that the character of the singularity at the resonance surface is the same as that in a homogeneous magnetic field. It is found that the shear gives rise to the transverse dispersion of Alfvén waves, i.e., the dependence of the radial component of the wave vector on the wave frequency. In the presence of shear, Alfvén waves are found to propagate across magnetic surfaces. In this case, the transparent region is bounded by two turning points, at one of which, the radial component of the wave vector approaches infinity and, at the other one, it vanishes. At the turning point for magnetosonic waves, the electric and magnetic fields are finite; however, the radial component of the wave vector approaches infinity, rather than vanishes as in the case with a homogeneous field.  相似文献   

13.
A multifluid MHD model is applied to study the magnetic field dynamics in a dusty plasma. The motion of plasma electrons and ions is treated against the background of arbitrarily charged, immobile dust grains. When the dust density gradient is nonzero and when the inertia of the ions and electrons and the dissipation from their collisions with dust grains are neglected, we are dealing with a nonlinear convective penetration of the magnetic field into the plasma. When the dust density is uniform, the magnetic field dynamics is described by the nonlinear diffusion equations. The limiting cases of diffusion equations are analyzed for different parameter values of the problem (i.e., different rates of the collisions of ions and electrons with the dust grains and different ratios between the concentrations of the plasma components), and some of their solutions (including self-similar ones) are found. The results obtained can also be useful for research in solid-state physics, in which case the electrons and holes in a semiconductor may be analogues of plasma electrons and ions and the role of dust grains may be played by the crystal lattice and impurity atoms.  相似文献   

14.
Theoretical investigation has been made on obliquely propagating dust-acoustic (DA) solitary waves (SWs) in a magnetized dusty plasma which consists of non-inertial adiabatic electron and ion fluids, and inertial negatively as well as positively charged adiabatic dust fluids. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits a solitary wave solution for small but finite amplitude limit. It has been shown that the basic features (speed, height, thickness, etc.) of such DA solitary structures are significantly modified by adiabaticity of plasma fluids, opposite polarity dust components, and the obliqueness of external magnetic field. The SWs have been changed from compressive to rarefactive depending on the value of μ (a parameter determining the number of positive dust present in this plasma model). The present investigation can be of relevance to the electrostatic solitary structures observed in various dusty plasma environments (viz. cometary tails, upper mesosphere, Jupiter’s magnetosphere, etc.).  相似文献   

15.
The properties of solitary Alfvén waves are studied for different ratios between the thermal plasma pressure and the magnetic pressure. It is shown that the wave propagation is accompanied by the generation of a nonlinear ion current along the magnetic field, the contribution of which to the Sagdeev potential was previously ignored. An expression for the quasi-potential of Alfvén waves with allowance for this effect is derived. It is found that Alfvén waves are compression waves in the inertial limit, whereas kinetic Alfvén waves are rarefaction waves. In a high-pressure plasma, a solitary wave has the form of either a well or a hump in the plasma density, depending on the relations between the Mach number, angle between the wave propagation direction and the magnetic field, and the value of the plasma beta.  相似文献   

16.
Characteristic features of the propagation of electromagnetic electron cyclotron waves in the vicinity of the electron cyclotron resonance surface are investigated both analytically and numerically with allowance for variation in the magnetic field strength and a corresponding variation in the magnetic field direction. It is demonstrated that variation in the magnetic field direction can qualitatively change the wave propagation pattern and can markedly affect the efficiency of electron cyclotron resonance plasma heating in an axisymmetric magnetic trap.  相似文献   

17.
During the observation of Perseid, Leonid, Gemenid, and Orionid meteor showers, stable low-frequency lines in the frequency range of 20–60 Hz were recorded against the radio-frequency noise background. A physical mechanism for this effect is proposed, and it is established that the effect itself is related to the modulational interaction between electromagnetic and dust acoustic waves. The dynamics of the components of a complex (dusty) ionospheric plasma with dust produced from the evolution of meteoric material is described. The conditions for the existence of dust acoustic waves in the ionosphere are considered, and the waves are shown to dissipate energy mainly in collisions of neutral particles with charged dust grains. The modulational instability of electromagnetic waves in a complex (dusty) ionospheric plasma is analyzed and is found to be driven by the nonlinear Joule heating, the ponderomotive force, and the processes governing dust charging and dynamics. The conditions for the onset of the modulational instability of electromagnetic waves, as well as its growth rate and threshold, are determined for both daytime and nighttime. It is shown that low-frequency perturbations generated in the modulational interaction are related to dust acoustic waves.  相似文献   

18.
Two-dimensional numerical simulations of the magnetic reconnection of two parallel force-free current loops are carried out using a high-resolution MHD code in which an artificial wind scheme is employed. Two typical cases (namely, co-helicity and counter-helicity reconnection) are investigated. The simulation results show that co-helicity reconnection involves only the reconnection of the poloidal component of the magnetic field, while counter-helicity reconnection involves the reconnection of both the poloidal and axial components of the magnetic field. Therefore, counter-helicity reconnection is much more complicated and violent as compared to co-helicity reconnection. In both cases, jetlike flows are generated. Counter-helicity reconnection is accompanied by oscillations of both the axial magnetic field and the axial component of the velocity. Due to these oscillations, quasi-steady models of a current sheet appear to be inapplicable, because the current sheet structure also changes. The complicated and unsteady structure of the current distribution shows that magnetic reconnection occurs not only in the central sheet between two loops in the earlier stage of the process, but also inside each loop in later stages. Rather complicated flows and waves with fine structures are also generated during reconnection. Some of the waves appear to be shock waves.  相似文献   

19.
The evolution of initial perturbations in a spatially inhomogeneous cold electron plasma in the absence of an external magnetic field is considered. The excitation of both continuous-spectrum bulk plasma waves and surface plasma waves with a discrete frequency spectrum is investigated. Analytic solutions are obtained in the long-wavelength limit, and the excitation of waves of arbitrary length is analyzed numerically. The local, integral, and spatial spectra are calculated, as well as the field structures and dispersion properties of waves in waveguides filled nonuniformly with a plasma. It is shown that, in a plasma with a smooth boundary, there also exist surface waves with a discrete spectrum (although with somewhat different properties as compared to those in a plasma with a sharp boundary), which are excited together with continuous-spectrum bulk waves during the evolution of the initial perturbation.  相似文献   

20.
Results are presented from experimental studies of the behavior of dust grains in a track plasma produced by an accelerated proton beam. Dynamic dust structures in such a plasma are obtained for the first time, and their spatiotemporal evolution is thoroughly investigated. The structures develop from a dust spiral, which abruptly transforms with increasing dust density into a differentially rotating dust cloud across which dust-sound waves (including spiral waves generated by the dense central core) propagate. As time elapses, the dust cloud loses its fragments and gradually vanishes. At constant experimental conditions, the lifetime of the structures attains a few minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号