首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorsby’s fundus dystrophy (SFD) is an autosomal dominant macular dystrophy which is developed usually in the third or fourth decade of life, and is characterized by central visual loss and nyctalopia due to fundus changes of exudative or atrophic macular lesions. Its functional prognosis is usually poor because of disciform macular scars and peripheral chorioretinal atrophies. To date, five different mutations in the tissue inhibitor of the metallo-proteinases-3 (TIMP3) gene have been identified in families of a wide geographic origin, all of which are missense mutations that cause replacement by cysteine of conserved amino acids in the C-terminus of exon 5 of TIMP3. We have studied two Japanese families with SFD, the first report from the Eastern world, and identified a novel 3’ splice site mutation in the TIMP3 gene, namely a single base insertion at the intron 4/exon 5 junction which converts the consensus sequence CAG to CAAG in the splice acceptor site. In addition, our patients displayed a distinctive clinical expression in that they developed macular dystrophies at an approximately 30-year later age of onset and preserved functional vision until later life with essentially uninvolved peripheral retina. The present findings may provide some insight into the genotype–phenotype relationship in SFD. Received: 27 March 1998 / Accepted: 2 May 1998  相似文献   

2.
Age-related macular degeneration (AMD) is an ocular neurodegenerative disorder and is the leading cause of legal blindness in Western societies, with a prevalence of up to 8 % over the age of 60, which continues to increase with age. AMD is characterized by the progressive breakdown of the macula (the central region of the retina), resulting in the loss of central vision including visual acuity. While its molecular etiology remains unclear, advances in genetics and genomics have illuminated the genetic architecture of the disease and have generated attractive pathomechanistic hypotheses. Here, we review the genetic architecture of AMD, considering the contribution of both common and rare alleles to susceptibility, and we explore the possible mechanistic links between photoreceptor degeneration and the alternative complement pathway, a cascade that has emerged as the most potent genetic driver of this disorder.  相似文献   

3.
Sorsby fundus dystrophy (SFD) is an autosomal dominant macular degeneration of late onset. A key feature of the disease is the thickening of Bruch's membrane, an ECM structure located between the RPE and the choroid. SFD is caused by mutations in the gene encoding the ECM-associated tissue inhibitor of metalloproteases-3 (TIMP3). We have recently generated two Timp3 gene-targeted mouse lines, one deficient for the murine gene (Timp3-/-) and one carrying an SFD-related S156C mutation. Based on extracts and cell cultures derived from tissues of these animals we now evaluated TIMP3 functionality and its contribution to SFD. We show that the activity levels of TIMP3 target proteases including TACE, ADAMTS4/5 and aggrecan-cleaving MMPs are similar in Timp3S156/+ and Timp3S156C/S156C mice when compared to controls. In Timp3-/- mice, a significant enhancement of enzyme activity was observed for TACE but not for ADAMTS4/5 and MMPs indicating a compensatory effect of other inhibitors regulating the latter two groups of proteases. Fibrin bead assays show that angiogenesis in Timp3S156/+ and Timp3S156C/S156C mice is not altered whereas increased formation of capillary tubes was observed in Timp3-/- animals over controls. Rescue experiments using recombinant proteins demonstrate that the inhibitory activities of TIMP3 towards TACE and aggrecan-cleaving MMPs as well as the anti-angiogenic properties of TIMP3 are not impaired by SFD mutation S156C. We finally demonstrate that wild-type and S156C-TIMP3 proteins block the binding of VEGF to its receptor VEGFR2 to a similar extent. Taken together, this study shows that S156C-TIMP3 retains its known functional properties suggesting that causes other than an imbalance in protease or angiogenic activities represent the primary molecular defect underlying SFD.  相似文献   

4.
Vitelliform macular dystrophy (VMD2, Best disease, MIM153700) is an early onset, autosomal, dominant macular degeneration characterized by the deposition of lipofuscin-like material within and below the retinal pigment epithelium (RPE); it is associated with degeneration of the RPE and overlying photoreceptors. Recently, we cloned the gene bestrophin, which is responsible for the disease, and identified a number of causative mutations in families with VMD2. Here, we report that the analysis of bestrophin in a collection of 259 age-related macular degeneration (AMD) patients provides evidence that mutations in the Best disease gene do not play a significant role in the predisposition of individuals to AMD. However, our results suggest that, in addition to Best disease, mutations within the bestrophin gene could be responsible for other forms of maculopathy with phenotypic characteristics similar to Best disease and for other diseases not included in the VMD category. Received: 11 March 1999 / Accepted: 6 April 1999  相似文献   

5.
Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a matrix-bound inhibitor of matrix metalloproteinases. Mutations in the Timp-3 gene cause Sorsby fundus dystrophy (SFD), a hereditary macular degenerative disease. The pathogenic mechanisms responsible for the disease phenotype are unknown. In an in vivo quest for binding partners of the TIMP-3 protein in the subretina, we identified epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1, also known as fibulin 3) as a strong interacting protein. The COOH-terminal end of TIMP-3 was involved in the interaction. Interestingly, a missense mutation in EFEMP1 is responsible for another hereditary macular degenerative disease, Malattia Leventinese (ML). Both SFD and ML have strong similarities to age-related macular degeneration (AMD), a major cause of blindness in the elderly population of the Western hemisphere. Our results were supported by significant accumulation and expression overlap of both TIMP-3 and EFEMP1 between the retinal pigment epithelia and Bruch membrane in the eyes of ML and AMD patients. These results provide the first link between two different macular degenerative disease genes and imply the possibility of a common pathogenic mechanism behind different forms of macular degeneration.  相似文献   

6.
Despite the fact that the retina is a fairly accessible portion of the central nervous system, there are virtually no treatments for early age-related macular degeneration (AMD). AMD is a degenerative retinal disease that causes progressive loss of central vision and is the leading cause of irreversible vision loss and legal blindness in individuals over the age of 50. Both environmental and genetic components play a role in its development. AMD is a multifactorial disease with characteristics that include drusen, hyperpigmentation and/or hypopigmentation of the retinal pigment epithelium (RPE), geographic atrophy and, in a subset of patients, late-stage choroidal neovascularization (CNV). Drugs that inhibit vascular endothelial growth factor (VEGF) have proven effective in treating late-stage CNV, but optimal means of drug delivery remains to be determined. Microscopic particles, whose size is on the nanometer scale, show considerable promise for drug delivery to the retina, for gene therapy, and for powering prosthetic "artificial retinas." This article summarizes the pathophysiology of AMD stressing potential applications from nanotechnology.  相似文献   

7.
Age-related macular degeneration is the leading cause of blindness in the Western world, and the pathophysiology of the condition is largely unknown. However, it shares many clinical and pathological features with Sorsby's fundus dystrophy (SFD), an autosomal dominant disease, known to be associated with mutations in the TIMP-3 gene. In Bruch's membrane of both conditions, there are molecular assemblies with distinct transverse bands occurring with a periodicity of about 100 nm. Similar assemblies were also found in the vitreous of a patient with full-thickness macular holes and were identified as being made of collagen VI. The assemblies found in the eye with SFD can be classified into two types, both with a 105-nm axial repeat, but one showing pairs of narrow bands about 30 nm apart and the other showing a single broad band in every repeat. By comparison with the assemblies in the vitreous, collagen VI is considered to be the most likely protein in these assemblies. Furthermore, both of the assemblies associated with SFD can be explained in terms of collagen VI tetramers, one in which the tetramers bind to the mutant tissue inhibitor of metalloproteinases-3 (the gene product of TIMP-3) and the other in which little or no binding occurs. TIMP-3 bound to collagen VI may be more resistant to degradation and create an imbalance between the normal amount of TIMP-3 and matrix metalloproteinases (the substrate of TIMPs) in Bruch's membrane with consequent disruption of the normal metabolic processes. Understanding the structure of these collagen VI/TIMP assemblies in Bruch's membrane may prove to be important for understanding the pathophysiology of age-related macular degeneration.  相似文献   

8.
Age-related macular degeneration (AMD) is a complex disorder of the eye and the third leading cause of blindness worldwide. With a multifactorial etiology, AMD results in progressive loss of central vision affecting the macular region of the eye in elderly. While the prevalence is relatively higher in the Caucasian populations, it has gradually become a major public health issue among the non-Caucasian populations (including Indians) as well due to senescence, rapidly changing demographics and life-style factors. Recent genome-wide association studies (GWAS) on large case-control cohorts have helped in mapping genes in the complement cascade that are involved in the regulation of innate immunity with AMD susceptibility. Genes involved with mitochondrial oxidative stress and extracellular matrix regulation also play a role in AMD pathogenesis. Majority of the associations observed in complement (CFH, CFB, C2 and C3) and other (ARMS2 and HTRA1) genes have been replicated in diverse populations worldwide. Gene-gene (CFH with ARMS2 and HTRA1) interactions and correlations with environmental traits (smoking and body mass index) have been established as significant covariates in AMD pathology. In this review, we have provided an overview on the underlying molecular genetic mechanisms in AMD worldwide and highlight the AMD-associated-candidate genes and their potential role in disease pathogenesis.  相似文献   

9.
Sorsby's fundus dystrophy (SFD) is a dominantly inherited degenerative disease of the retina that leads to loss of vision in middle age. It has been shown to be caused by mutations in the gene for tissue inhibitor of metalloproteinases-3 (TIMP-3). Five different mutations have previously been identified, all introducing an extra cysteine residue into exon 5 (which forms part of the C-terminal domain) of the TIMP-3 molecule; however, the significance of these mutations to the disease phenotype was unknown. In this report, we describe the expression of several of these mutated genes, together with a previously unreported novel TIMP-3 mutation from a family with SFD that results in truncation of most of the C-terminal domain of the molecule. Despite these differences, all of these molecules are expressed and exhibit characteristics of the normal protein, including inhibition of metalloproteinases and binding to the extracellular matrix. However, unlike wild-type TIMP-3, they all form dimers. These observations, together with the recent finding that expression of TIMP-3 is increased, rather than decreased, in eyes from patients with SFD, provides compelling evidence that dimerized TIMP-3 plays an active role in the disease process by accumulating in the eye. Increased expression of TIMP-3 is also observed in other degenerative retinal diseases, including the more severe forms of age-related macular degeneration, the most common cause of blindness in the elderly in developed countries. We hypothesize that overexpression of TIMP-3 may prove to be a critical step in the progression of a variety of degenerative retinopathies.  相似文献   

10.
《Autophagy》2013,9(4):563-564
Age-related macular degeneration (AMD) is the leading cause of loss of vision in developed countries. AMD is characterized by a progressive degeneration of the macula of the retina, usually bilateral, leading to a severe decrease in central vision. An early sign of AMD is the appearance of drusen, which are extracellular deposits that accumulate on Bruch’s membrane below the retinal pigment epithelium (RPE). Drusen are a risk factor for developing AMD. Some of the protein components of drusen are known, yet we know little about the processes that lead to formation of drusen. We have previously reported increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we used in vitro modeling of increased mtDNA damage. Under conditions of increased mtDNA damage, autophagy markers and exosome markers were upregulated. In addition, we found autophagy markers and exosome markers in the region of Bruch’s membrane in the retinas of old mice. Furthermore, we found that drusen in AMD donor eyes contain markers for autophagy and for exosomes. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients.  相似文献   

11.
Age-related macular degeneration (AMD) causes progressive impairment of central vision and is the leading cause of vision loss in older individuals. Although the etiology of AMD has not been clearly elucidated, genetic and environmental factors have been implicated. Vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF), a major regulator of vascular permeability and angiogenesis, have been suggested to play an important role in the pathogenesis of AMD. This study was performed to determine whether VEGF and PEDF variations are associated with AMD in the Korean population. Four SNPs of both the VEGF gene the PEDF gene were used to screen for genetic variation. This analysis was performed using polymerase chain reaction–restriction fragment length polymorphism, direct sequencing and an allele-specific oligonucleotide analysis. The study investigated four SNPs in VEGF and PEDF in Korean patients with AMD. The frequency of the TT genotype of rs1413711 and the recessive VEGF allele significantly differed between the patient and control groups. The TT genotype of rs1136287 (M72T) in PEDF significantly differed between the patient and control groups. Six haplotypes in the VEGF gene and two haplotypes in the PEDF gene were significantly associated with AMD. In this study, rs1413711 of VEGF, rs1136287 of PEDF and haplotypes were identified as candidate variants associated with AMD in Korean patients.  相似文献   

12.
13.
Stargardt disease (STGD) is a juvenile-onset macular dystrophy and can be inherited in an autosomal recessive or in an autosomal dominant manner. Genes involved in dominant STDG have been mapped to human chromosomes 13q (STGD2) and 6q (STGD3). Here, we identify a new kindred with dominant STGD and demonstrate genetic linkage to the STGD3 locus. Because of a more severe macular degeneration phenotype of one of the patients in this family, the gene responsible for the recessive STGD1, ABCR, was analyzed for sequence variants in all family members. One allele of the ABCR gene was shown to carry a stop codon-generating mutation (R152X) in three family members, including the one patient who had inherited also the dominant gene. A grandparent of that patient with the same ABCR mutation developed age-related macular degeneration (AMD), consistent with our earlier observation that some variants in the ABCR gene may increase susceptibility to AMD in the heterozygous state. Based on these results, we propose that there is a common genetic pathway in macular degeneration that includes genes for both recessive and dominant STGD.  相似文献   

14.

Background

Age-related macular degeneration (AMD) is the major cause of blindness in the elderly. Those with the neovascular end-stage of disease have irreversible loss of central vision. AMD is a complex disorder in which genetic and environmental factors play a role. Polymorphisms in the complement factor H (CFH) gene, LOC387715, and the HTRA1 promoter are strongly associated with AMD. Smoking also contributes to the etiology. We aimed to provide a model of disease risk based on these factors.

Methods and Findings

We genotyped polymorphisms in CFH and LOC387715/HTRA1 in a case–control study of 401 patients with neovascular AMD and 266 controls without signs of disease, and used the data to produce genetic risk scores for the European-descent population based on haplotypes at these loci and smoking history. CFH and LOC387715/HTRA1 haplotypes and smoking status exerted large effects on AMD susceptibility, enabling risk scores to be generated with appropriate weighting of these three factors. Five common haplotypes of CFH conferred a range of odds ratios (ORs) per copy from 1 to 4.17. Most of the effect of LOC387715/HTRA1 was mediated through one detrimental haplotype (carriage of one copy: OR 2.83; 95% confidence interval [CI] 1.91–4.20), with homozygotes being at particularly high risk (OR 32.83; 95% CI 12.53–86.07). Patients with neovascular macular degeneration had considerably higher scores than those without disease, and risk of blinding AMD rose to 15.5% in the tenth of the population with highest predicted risk.

Conclusions

An individual''s risk of developing AMD in old age can be predicted by combining haplotype data with smoking status. Until there is effective treatment for AMD, encouragement to avoid smoking in those at high genetic risk may be the best option. We estimate that total absence of smoking would have reduced the prevalence of severe AMD by 33%. Unless smoking habits change or preventative treatment becomes available, the prevalence of AMD will rise as a consequence of the increasing longevity of the population.  相似文献   

15.
Age-related macular degeneration (AMD) is a major cause of severe visual loss worldwide. Neovascular (wet) AMD accounts for 90% of the visual loss associated with the disorder and vascular endothelial growth factor (VEGF) has been shown to play a major role in neovascularization and vascular permeability, the major causes of visual loss in AMD, making it an ideal target for therapeutic intervention. To utilize this strategy, pegaptanib, an aptamer that specifically binds to and blocks VEGF165, the VEGF isoform primarily responsible for abnormal vascular growth and permeability in AMD, was developed. Following encouraging preclinical trials, clinical trials showed that pegaptanib stabilized vision and reduced the risk of severe visual loss in the majority of patients with AMD, with some patients showing visual improvement. Pegaptanib has maintained a good safety profile with only occasional adverse effects. Even greater success was achieved when pegaptanib was used in combination with another therapeutic strategy, such as photodynamic therapy or bevacizumab, a pan isoform VEGF inhibitor. Further investigation of pegaptanib for the therapy of wet AMD, particularly in combination with other modes of therapy, should be encouraged.  相似文献   

16.
Lotery A  Trump D 《Human genetics》2007,122(3-4):219-236
Age related macular degeneration (AMD) is an extremely prevalent complex genetic disorder. Its incidence rises exponentially in the elderly to a frequency of 1 in 2 in the general population by age 85. It affects approximately 25 million people and is the commonest cause of irreversible visual loss in the Western world. It is therefore a major public health problem. However, until recently its aetiology was unknown. Our understanding of both the molecular biology of AMD and the relevant clinical treatments has progressed dramatically in the last 2 years. Two genes of large effect have been identified which together contribute to over 70% of the population attributable risk of AMD. Treatments which inhibit expression of vascular endothelial growth factor have been developed which can rescue vision in the "wet" form of the disease. The association of complement factor H with AMD highlights the importance of the alternative complement pathway in the development of AMD whilst the pathophysiology of the serine protease HTRA1 is now under intensive study. This review will give an insight into these developments and will summarise our current knowledge of the molecular biology of AMD.  相似文献   

17.

Background:

Half of the cases of vision loss in people under 60 years of age have been attributed to age-related macular degeneration (AMD). This is a multifactorial disease with late onset. It has been demonstrated that many different genetic loci are implicated in the risk of developing AMD in different populations. In the current study, we investigated the association of high-temperature ‎requirement A-1 (HTRA1) gene polymorphisms with the risk of developing AMD in the Iranian population.

Methods:

Genomic DNA samples were extracted from 120 patients with AMD and 120 healthy age- and sex-matched controls. A 385 base-pair fragment of the HTRA1 gene promoter region was amplified using the polymerase chain reaction (PCR) technique and sequenced. The frequencies of the alleles were calculated and statistical analysis was performed using SPSS software.

Results:

Our study demonstrated that the rate of polymorphisms rs11200638 -625 G>A and rs2672598 -487T>C were significantly greater in AMD patients than in healthy controls from the Iranian population.

Conclusions:

The results of our study indicate that HTRA1 gene promoter region polymorphisms are associated with the risk of developing AMD in the Iranian population.Key Words: HTRA1, Single Nucleotide Polymorphisms, Macular Degeneration, Iran  相似文献   

18.
Age-related macular degeneration (AMD) is a major late-onset posterior eye disease that causes central vision to deteriorate among elderly populations. The predominant lesion of AMD is the macula, at the interface between the outer retina and the inner choroid. Recent advances in genetics have revealed that inflammatory and angiogenic pathways play critical roles in the pathophysiology of AMD. Genome-wide association studies have identified ARMS2/HTRA1 and CFH as major AMD susceptibility genes. Genetic studies for AMD will contribute to the prevention of central vision loss, the development of new treatment, and the maintenance of quality of vision for productive aging.  相似文献   

19.
Age-related macular degeneration (AMD) is the major cause of legal blindness in the industrialized world. Polymorphisms and recently discovered rare mutations of the Complement Factor H gene have been shown to be strongly associated with AMD. The deletion of CFH-related proteins 1 and 3, proteins that share homologous regions with CFH, is found in protective haplotypes. The following is a critical review of the current state of knowledge of the implication of CFH and CFH-related proteins 1 and 3 in AMD.  相似文献   

20.
Age is the major risk factor in the age-related macular degeneration (AMD) which is a complex multifactor neurodegenerative disease of the retina and the main cause of irreversible vision loss in people over 60 years old. The major role in AMD pathogenesis belongs to structure-functional changes in the retinal pigment epithelium cells, while the onset and progression of AMD are commonly believed to be caused by the immune system dysfunctions. The role of retinal glial cells (Muller cells, astrocytes, and microglia) in AMD pathogenesis is studied much less. These cells maintain neurons and retinal vessels through the synthesis of neurotrophic and angiogenic factors, as well as perform supporting, separating, trophic, secretory, and immune functions. It is known that retinal glia experiences morphological and functional changes with age. Age-related impairments in the functional activity of glial cells are closely related to the changes in the expression of trophic factors that affect the status of all cell types in the retina. In this review, we summarized available literature data on the role of retinal macro- and microglia and on the contribution of these cells to AMD pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号