首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multitude of complex diseases have been linked to elevated homocysteine levels; however, till date there is no plausible explanation for a single amino acid's involvement in so many diseases. Since homocysteine is a reactive thiol amino acid and the majority of plasma homocysteine is protein thiol bound, we hypothesized that homocysteine might bind to accessible cysteine residues in target proteins, thereby modulating its structure or function or both. The parameters that dictate homocysteine-protein interaction are not well understood, and the few known homocysteine binding proteins were identified by a candidate protein approach. In this study, we identified potential homocysteine interacting proteins based on cysteine content, solvent accessibility of cysteine residues, and dihedral strain energies and pKa of these cysteines. Pathway mapping of the cysteine-rich proteins revealed that proteins in the coagulation cascade, notch receptor-mediated signaling, LDL endocytosis, programmed cell death, and extracellular matrix proteins were significantly over-represented with cysteine-rich proteins, and we believe that homocysteine has a high probability to bind to proteins in these pathways. In fact, several clinical studies have implicated high homocysteine levels to be associated with diseases like thrombosis, neural tube defects, and so forth, which result from dysfunction of one or more of the proteins identified in our study. Further, we successfully validated our prediction parameters on the proteins that have already been experimentally shown to bind homocysteine, and our structural analysis argues a plausible explanation for these prior reported protein interactions with homocysteine that could not be previously explained.  相似文献   

2.
It may be possible, one day, to use gene therapy to treat diseases whose genetic defects have been discerned. Because many genes responsible for inherited eye disorders within the retina have been identified, diseases of the eye are prime candidates for this form of therapy. The eye also has the advantage of being highly accessible with altered immunological properties, important considerations for easy delivery of virus and avoidance of systemic immune responses. Currently, adenovirus, adeno-associated virus and lentivirus have been used to successfully transfer genetic material to retinal pigment epithelium and photoreceptor cells. By harnessing therapeutic genes to these viruses, researchers have been able to demonstrate rescue in rodent models of retinitis pigmentosa, providing evidence that this form of therapy can be effective in delaying photoreceptor cell death. Future challenges include confirming therapeutic effects in animal models with eyes more anatomically similar to those of humans and demonstrating long-term rescue with minimal toxicity.  相似文献   

3.
Mitochondrial DNA mutations and human disease   总被引:1,自引:0,他引:1  
Helen A.L. Tuppen 《BBA》2010,1797(2):113-109
Mitochondrial disorders are a group of clinically heterogeneous diseases, commonly defined by a lack of cellular energy due to oxidative phosphorylation (OXPHOS) defects. Since the identification of the first human pathological mitochondrial DNA (mtDNA) mutations in 1988, significant efforts have been spent in cataloguing the vast array of causative genetic defects of these disorders. Currently, more than 250 pathogenic mtDNA mutations have been identified. An ever-increasing number of nuclear DNA mutations are also being reported as the majority of proteins involved in mitochondrial metabolism and maintenance are nuclear-encoded. Understanding the phenotypic diversity and elucidating the molecular mechanisms at the basis of these diseases has however proved challenging. Progress has been hampered by the peculiar features of mitochondrial genetics, an inability to manipulate the mitochondrial genome, and difficulties in obtaining suitable models of disease. In this review, we will first outline the unique features of mitochondrial genetics before detailing the diseases and their genetic causes, focusing specifically on primary mtDNA genetic defects. The functional consequences of mtDNA mutations that have been characterised to date will also be discussed, along with current and potential future diagnostic and therapeutic advances.  相似文献   

4.
Traffic jams II: an update of diseases of intracellular transport   总被引:8,自引:2,他引:6  
As more details emerge on the mechanisms that mediate and control intracellular transport, the molecular basis for variety of human diseases has been revealed. In turn, disease pathology and physiology shed light on the intricate controls that regulate intracellular transport to assure proper cellular and tissue function and homeostasis. We previously listed a number of diseases that are the result of defects in intracellular transport, or cause defects in intracellular transport. (Aridor M, Hannan LA. Traffic Jam: A compendium of human diseases that affect intracellular transport processes. Traffic 2000; 1: 836–851). This Toolbox updates the previous list to include additional disorders that were recently identified to be related to intracellular trafficking. In the time since we have published our first list there have been significant advances in understanding of the molecular basis of these defects. Such advances will pave the way to future effective therapeutics.  相似文献   

5.
Molecular cloning of calcium channel subunit genes has identified an unexpectedly large number of genes and splicing variants, and a central problem of calcium channel biology is to now understand the functional significance of this genetic complexity. While electrophyisological, pharmacological, and molecular cloning techniques are providing one level of understanding, a complete understanding will require many additional kinds of studies, including genetic studies done in intact animals. In this regard, an intriguing variety of episodic diseases have recently been identified that result from defects in calcium channel genes. A study of these diseases illustrates the kind of insights into calcium channel function that can be expected from this method of inquiry.  相似文献   

6.
Primary immune deficiencies (PID) represent inborn errors of immunity. Over the years, detailed analysis of the clinical and laboratory features associated with these unique and rare disorders have shed light on the complex array of signals and processes that govern development and activation of the immune system. While the first examples of PID pertained to severe defects in lymphoid development, more recently a variety of gene defects have been identified in humans that do not compromize the ability to generate lymphocytes, but rather result in profound immune dysregulation. In many cases, identification of the molecular and cellular bases of PID has preceeded development of animal models by gene targeting. Finally, since the very first cases reported in humans, PID have also represented a unique tool to investigate the efficacy of novel therapeutic approaches (from molecular therapy to hematopoietic stem cell transplantation to somatic cells gene therapy), that have been applied or may apply to a variety of more common human diseases.  相似文献   

7.
As sequencing of the human genome nears completion, the genes that cause many human diseases are being identified and functionally described. This has revealed that many human diseases are due to defects of intracellular trafficking. This 'Toolbox' catalogs and briefly describes these diseases.  相似文献   

8.
The importance of active axonal transport to the neuron has been highlighted by the recent discoveries that mutations in microtubule motor proteins result in neurodegenerative diseases. Mutations affecting microtubule motor function have been shown to cause hereditary forms of Charcot-Marie-Tooth disease (type 2A), hereditary spastic paraplegia and motor neuron disease. Although motor neurons appear to be uniquely susceptible to defects in axonal transport, recent work has identified links between perturbations in axonal transport and the pathogenesis of other neurodegenerative diseases such as Huntington's disease and Alzheimer's disease. More broadly, cytoskeletal abnormalities might also be at the root of related disorders such as spinal muscular atrophy, supporting a key role for axonal transport in the pathogenesis of many neurodegenerative diseases.  相似文献   

9.
线粒体疾病是一种累及不同的组织和器官的复杂异质性疾病,由核基因或线粒体基因的遗传缺陷导致,同时也受环境因素的影响。近十年来,有关线粒体疾病的诊断及发生机制的研究进展迅速,而疾病的治疗方法却研究较少。着重介绍线粒体疾病的相关治疗方法和干预策略。  相似文献   

10.
The matrix metalloproteinase (MMP) family is heavily implicated in many diseases, including cancer. The developmental functions of these genes are not clear, however, because the >20 mammalian MMPs can be functionally redundant. Drosophila melanogaster has only two MMPs, which are expressed in embryos in distinct patterns. We created mutations in both genes: Mmp1 mutants have defects in larval tracheal growth and pupal head eversion, and Mmp2 mutants have defects in larval tissue histolysis and epithelial fusion during metamorphosis; neither is required for embryonic development. Double mutants also complete embryogenesis, and these represent the first time, to our knowledge, that all MMPs have been disrupted in any organism. Thus, MMPs are not required for Drosophila embryonic development, but, rather, for tissue remodeling.  相似文献   

11.
Mitochondrial Disease: Mutations and Mechanisms   总被引:8,自引:0,他引:8  
The mitochondrial diseases encompass a diverse group of disorders that can exhibit various combinations of clinical features. Defects in mitochondrial DNA (mtDNA) have been associated with these diseases, and studies have been able to assign biochemical defects. Deficiencies in mitochondrial oxidative phosphorylation appear to be the main pathogenic factors, although recent studies suggest that other mechanisms are involved. Reactive oxygen species (ROS) generation has been implicated in a wide variety of neurodegenerative diseases, and mitochondrial ROS generation may be an important factor in mitochondrial disease pathogenesis. Altered apoptotic signaling as a consequence of defective mitochondrial function has also been observed in both in vitro and in vivo disease models. Our current understanding of the contribution of these various mechanisms to mitochondrial disease pathophysiology will be discussed.  相似文献   

12.
Lysosomal storage disorders are inborn diseases resulting from the lack or activity of lysosomal hydrolases, transporters, or integral membrane proteins. Although most of the genes encoding these proteins have been characterized and many gene defects identified, the molecular bases underlying the pathophysiology of these genetic diseases still remain obscure. In this mini-review, the potential role of apoptotic cell death in the development of the cellular and tissue lesions seen in lysosomal storage disorders, and particularly in neurological diseases, is discussed. A list of observations documenting either a decrease or an exacerbation in apoptosis induction are presented. The putative, yet controversial contribution of certain sphingolipids and cathepsins in the regulation of these phenomena is emphasized.  相似文献   

13.
Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case-control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference.  相似文献   

14.
ABSTRACT

Introduction: Aberrant glycosylation has been associated with many diseases. Decades of research activities have reported many reliable glycan biomarkers of different diseases which enable effective disease diagnostics and prognostics. However, none of the glycan markers have been approved for clinical diagnosis. Thus, a review of these studies is needed to guide the successful clinical translation.

Area covered: In this review, we describe and discuss advances in analytical methods enabling clinical glycan biomarker discovery, focusing only on studies of released glycans. This review also summarizes the different glycobiomarkers identified for cancers, Alzheimer’s disease, diabetes, hepatitis B and C, and other diseases.

Expert commentary: Along with the development of techniques in quantitative glycomics, more glycans or glycan patterns have been reported as better potential biomarkers of different diseases and proved to have greater diagnostic/diagnostic sensitivity and specificity than existing markers. However, to successfully apply glycan markers in clinical diagnosis, more studies and verifications on large biological cohorts need to be performed. In addition, faster and more efficient glycomic strategies need to be developed to shorten the turnaround time. Thus, glycan biomarkers have an immense chance to be used in clinical prognosis and diagnosis of many diseases in the near future.  相似文献   

15.
Finding genes for complex diseases has been the goal of many genetic studies. Most of these studies have been successful by searching for genes and mutations in rare familial cases, by screening candidate genes and by performing genome wide association studies. However, only a small fraction of the total genetic risk for these complex genetic diseases can be explained by the identified mutations and associated genetic loci. In this review we focus on Hirschsprung disease (HSCR) as an example of a complex genetic disorder. We describe the genes identified in this congenital malformation and postulate that both common ‘low penetrant’ variants in combination with rare or private ‘high penetrant’ variants determine the risk on HSCR, and likely, on other complex diseases. We also discuss how new technological advances can be used to gain further insights in the genetic background of complex diseases. Finally, we outline a few steps to develop functional assays in order to determine the involvement of these variants in disease development.  相似文献   

16.
The latest fashions in skin disease.   总被引:1,自引:0,他引:1       下载免费PDF全文
The complex nature of epidermal tissue homeostasis is borne out by the range of diseases affecting this tissue. Indeed, mutations in proteins involved in intracellular integrity and cell-cell or cell-matrix adhesion can cause disease in an appropriate epidermal compartment. The most important realization in epidermal disease in the last two years has been that point mutations in key structural genes can result in filaments collapsing, cell cytolysis, or cell adhesion defects; and that these defects can result in severe human skin disease. Now that these associations have been made, the important next step will be to alleviate the suffering of these patients. Animal models will be an important part of these investigations; many molecules including growth factors, oncogenes, and cell adhesion molecules have been targeted to the epidermis of transgenic mice to investigate their role in disease. Such animal models should also elucidate the causes of diseases like psoriasis, a very common skin disease, the molecular basis of which remains elusive. Gene therapy involving the replacement of defective genes or local delivery of therapeutic molecules will be one of the main goals in alleviating these known epidermal diseases. Such protocols in the epidermis are aided by the relative accessibility of the skin and the presence of the "stem cells" in relatively accessible compartments. Indeed, as the last few years have shed much light on the genetic causes of epidermal disease, it is hoped that the next several years will prove as illuminating in the alleviation of these diseases.  相似文献   

17.
The sarcomere is the functional unit of striated muscle contraction. Mutations in sarcomeric proteins are now known to cause around 20 different skeletal muscle diseases. The diseases vary in severity from paralysis at birth, to mild conditions compatible with normal life span. The identification of the disease genes allows more accurate diagnosis, including prenatal diagnosis. Although many disease genes have been identified, the pathophysiology of the gene defects remains remarkably obscure, considering that many of the proteins have been researched for decades. The short-term goals are to determine the remaining disease genes and to decipher pathogenesis. The long-term goal is to develop effective therapies-a daunting task when humans are up to 40% muscle and the mutated proteins are fundamental to muscle contraction. The affected patients and families hope for help sooner rather than later. The onus is on all scientists researching sarcomeric proteins to help develop treatments.  相似文献   

18.
It is almost 40 years since Sydney Brenner introduced Caenorhabditis elegans as a model genetic system. During that time mutants with defects in intracellular trafficking have been identified in a diverse range of screens for abnormalities. This should, of course, come as no surprise as it is hard to imagine any biological process in which the regulated movement of vesicles within the cells is not critical at some step. Almost all of these genes have mammalian homologs, and yet the role of many of these homologs has not been investigated. Perhaps the protein that regulates your favorite trafficking step has already been identified in C. elegans? Here I provide a brief overview of those trafficking mutants identified in C. elegans and where you can read more about them.  相似文献   

19.
Sensory neurons and motor neurons are particularly vulnerable to axonal transport defects due to the length of their axons. Several mutations have recently been identified in genes coding for cytoskeletal or motor proteins as causative factors in various neurodegenerative diseases. This review synthesizes the main defects found in inherited peripheral neuropathies and in motor neuron diseases as well as in mouse models of these disorders.  相似文献   

20.
The understanding of neurodegenerative diseases of childhood has been changing rapidly in recent times: not only is the number of different diseases and underlying genetic defects steadily increasing, approaches to diagnosis and treatment have also developed because of recent technological and therapeutic advances relating to this group of disorders. New gene defects have been identified that provide a basis for understanding the molecular mechanisms underlying this group of diseases, and for the development of targeted therapies. This review focuses predominantly on one of the most common groups of diseases leading to degeneration of the central nervous system, neuronal ceroid lipofuscinosis (NCL). The number of NCL-causing genes and knowledge about genotype–phenotype correlations has been growing over the past few years and the first therapies have been developed. Hence, this group of diseases represents the rapid scientific development in the field of rare neurodegenerative diseases in childhood very well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号