首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
棘皮动物免疫学研究进展   总被引:11,自引:0,他引:11  
棘皮动物属原始后口动物、无脊椎动物的最高等类群,它处于由无脊椎动物向脊椎动物开始分支进化的阶段.研究棘皮动物的免疫功能和作用机理,对从比较免疫学角度探讨动物免疫系统进化过程有承前启后的重要意义.因此,有必要对棘皮动物的免疫学研究进展作一个较全面的综述,并理清未来的研究热点和方向.棘皮动物与其他无脊椎动物一样具有先天性免疫系统,但未发现脊椎动物所具有的获得性免疫.其免疫应答是由参与免疫反应的效应细胞——体腔细胞和多种体液免疫因子共同介导的.比较免疫学分析表明,棘皮动物存在脊椎动物补体系统的替代途径和凝集素途径,但未发现经典途径和明确的终端途径.棘皮动物先天性免疫系统存在数量庞大的基因家族.今后应加强对未知免疫相关基因、蛋白质、信号传导途径及效应分子的研究,回答免疫系统的起源、功能和进化等问题.  相似文献   

2.
Discrimination between self and non-self by lectins (carbohydrate-binding proteins) is a strategy of innate immunity that is found in both vertebrates and invertebrates. In vertebrates, immune recognition mediated by ficolins (lectins that consist of a fibrinogen-like and a collagen-like domain), as well as by mannose-binding lectins, triggers the activation of the complement system, which results in the activation of novel serine proteases. The presence of a similar lectin-based complement system in ascidians, our closest invertebrate relatives, indicates that the complement system probably had a pivotal role in innate immunity before the evolution of an adaptive immune system in jawed vertebrates.  相似文献   

3.
The evolution of adaptive immune systems   总被引:11,自引:0,他引:11  
Cooper MD  Alder MN 《Cell》2006,124(4):815-822
A clonally diverse anticipatory repertoire in which each lymphocyte bears a unique antigen receptor is the central feature of the adaptive immune system that evolved in our vertebrate ancestors. The survival advantage gained through adding this type of adaptive immune system to a pre-existing innate immune system led to the evolution of alternative ways for lymphocytes to generate diverse antigen receptors for use in recognizing and repelling pathogen invaders. All jawed vertebrates assemble their antigen-receptor genes through recombinatorial rearrangement of different immunoglobulin or T cell receptor gene segments. The surviving jawless vertebrates, lampreys and hagfish, instead solved the receptor diversification problem by the recombinatorial assembly of leucine-rich-repeat genetic modules to encode variable lymphocyte receptors. The convergent evolution of these remarkably different adaptive immune systems involved innovative genetic modification of innate-immune-system components.  相似文献   

4.
5.
Vertebrates have evolved an adaptive immune system in addition to the ancestral innate immune system. It is often assumed that a trade-off between costs and benefits of defence governs the evolution of immunological defence, but the costs and benefits specific to the adaptive immune system are poorly known. We used genetically engineered mice lacking lymphocytes (i.e. mice without adaptive, but with innate, immunity) as a model of the ancestral state in the evolution of the vertebrate immune system. To investigate if the magnitude of adaptive defence is constrained by the energetic costs of producing lymphocytes etc., we compared the basal metabolic rate of normal and lymphocyte-deficient mice. We found that lymphocyte-deficient mice had a higher basal metabolic rate than normal mice with both innate and adaptive immune defence. This suggests that the evolution of the adaptive immune system has not been constrained by energetic costs. Rather, it should have been favoured by the energy savings associated with a combination of innate and adaptive immune defence.  相似文献   

6.
Immune systems evolve as essential strategies to maintain homeostasis with the environment, prevent microbial assault and recycle damaged host tissues. The immune system is composed of two components, innate and adaptive immunity. The former is common to all animals while the latter consists of a vertebrate-specific system that relies on somatically derived lymphocytes and is associated with near limitless genetic diversity as well as long-term memory. Deuterostome invertebrates provide a view of immune repertoires in phyla that immediately predate the origins of vertebrates. Genomic studies in amphioxus, a cephalochordate, have revealed homologs of genes encoding most innate immune receptors found in vertebrates; however, many of the gene families have undergone dramatic expansions, greatly increasing the innate immune repertoire. In addition, domain-swapping accounts for the innovation of new predicted pathways of receptor function. In both amphioxus and Ciona, a urochordate, the VCBPs (variable region containing chitin-binding proteins), which consist of immunoglobulin V (variable) and chitin binding domains, mediate recognition through the V domains. The V domains of VCBPs in amphioxus exhibit high levels of allelic complexity that presumably relate to functional specificity. Various features of the amphioxus immune repertoire reflect novel selective pressures, which likely have resulted in innovative strategies. Functional genomic studies underscore the value of amphioxus as a model for studying innate immunity and may help reveal how unique relationships between innate immune receptors and both pathogens and symbionts factored in the evolution of adaptive immune systems.  相似文献   

7.
Immunological Control of Fish Diseases   总被引:2,自引:0,他引:2  
All metazoans possess innate immune defence system whereas parameters of the adaptive immune system make their first appearance in the gnathostomata, the jawed vertebrates. Fish are therefore the first animal phyla to possess both an innate and adaptive immune system making them very interesting as regards developmental studies of the immune system. The massive increase in aquaculture in recent decades has also put greater emphasis on studies of the fish immune system and defence against diseases commonly associated with intensive fish rearing. Some of the main components of the innate and adaptive immune system of fish are described. The innate parameters are at the forefront of immune defence in fish and are a crucial factor in disease resistance. The adaptive response of fish is commonly delayed but is essential for lasting immunity and a key factor in successful vaccination. Some of the inherent and external factors that can manipulate the immune system of fish are discussed, the main fish diseases are listed and the pathogenicity and host defence discussed. The main prophylactic measures are covered, including vaccination, probiotics and immunostimulation. A key element in the immunological control of fish diseases is the great variation in disease susceptibility and immune defence of different fish species, a reflection of the extended time the present day teleosts have been separated in evolution. Future research will probably make use of molecular and proteomic tools both to study important elements in immune defence and prophylactic measures and to assist with breeding programmes for disease resistance.  相似文献   

8.
Friedman R  Hughes AL 《Immunogenetics》2002,53(10-11):964-974
The mechanisms of innate immunity in vertebrates show certain overall resemblances to immune mechanisms of insects. Two hypotheses have been proposed to explain these resemblances. (1) According to the evolutionary continuity hypothesis, innate immune mechanisms evolved in the common ancestor of vertebrates and insects and have been conserved since that time. (2) In the independent-evolution hypothesis, the mechanisms of innate immunity in vertebrates evolved independently from invertebrate immune mechanisms. Phylogenetic analysis of five gene families (Pelle, Rel, IkappaB, Toll, and TRAF) whose members are involved in NF-kappaB signaling in vertebrates and insects were used to decide between these hypotheses. The phylogenies of the Rel and TRAF families strongly supported independent evolution of immune functions in vertebrates and invertebrates, and, except for a possible case in the Pelle family, orthologous molecules having immune functions in both vertebrates and invertebrates were not found. The results suggest that NF-kappaB represents an ancient, generalized signaling system that has been co-opted for immune system roles independently in vertebrate and insect lineages.  相似文献   

9.
Viruses are obligate parasites which are able to infect cells of all living organisms. Multiple antiviral defense mechanisms have appeared early in evolution of the immune system. Higher vertebrates have the most complex antiviral immunity which is based on both innate and adoptive immune responses. However, majority of living organisms, including plants and invertebrates, rely exclusively on innate immune mechanisms for protection against viral infections. There are some striking similarities in several components of the innate immune recognition between mammals, plants and insects, rendering these signaling cascades as highly conserved in the evolution of the immune system. This review summarizes recent advances in the field of innate immune recognition of viruses, with particular interest on pattern-recognition receptors.  相似文献   

10.
Recent advances in comparative immunology have established that invertebrates produce hypervariable molecules probably related to immunity, suggesting the possibility of raising a specific immune response. “Priming” and “tailoring” are terms now often associated with the invertebrate innate immunity. Comparative immunologists contributed to eliminate the idea of a static immune system in invertebrates, making necessary to re-consider the evolutive meaning of immunological memory of vertebrates. If the anticipatory immune system represents a maximally efficient immune system, why can it be observed only in vertebrates, especially in consideration that molecular hypervariability exists also in invertebrates? Using well-established theories concerning the evolution of the vertebrate immunity as theoretical basis we analyze from an Eco-immunology-based perspective why a memory-based immune system may have represented an evolutive advantage for jawed vertebrates. We hypothesize that for cold-blooded vertebrates memory represents a complimentary component that flanks the robust and fundamental innate immunity. Conversely, immunological memory has become indispensable and fully exploited in warm-blooded vertebrates, due to their stable inner environment and high metabolic rate, respectively.  相似文献   

11.
In vertebrates, the immune system consists of two arms of different characteristics: the innate and the acquired immune response. Parasites that are only shortly exposed to the immune system are most efficiently attacked by fast, constitutive innate immune mechanisms. Here, we experimentally selected within four fish families for high innate resistance versus susceptibility of three-spined sticklebacks (Gasterosteus aculeatus) against infection with the eye-fluke (Diplostomum pseudospathacaeum), a parasite whose metacercariae are protected from the immune system within the eye lens. We predicted that in families with high susceptibility, the adaptive immune system would be upregulated when challenged with infection. In accordance, we found that MHC class IIB expression is increased by approximately 50% in those lines selected for higher parasite load (i.e. low innate response). This suggests extensive genetic correlations between innate and adaptive immune system and/or crosstalk between both lines of defense. An efficient, specific innate immune response might reduce overall activation of the immune system and potentially alleviate associated effects of immunopathology.  相似文献   

12.
病毒是一种极具感染性和传染性的病原微生物.当病毒感染机体以后,机体会通过激活免疫系统来进行防御.高等哺乳动物的免疫系统分为两大类:适应性免疫系统和天然免疫系统.适应性免疫系统主要通过T淋巴细胞和B淋巴细胞特异性地识别入侵的病毒并将其清除.而天然免疫系统主要通过模式识别受体识别病毒的入侵,进而产生一系列的细胞因子抵抗病毒的入侵.其中,天然免疫系统作为抵御病毒入侵的第一道防线和激活后续适应性免疫的先决条件在整个抗病毒免疫反应中发挥着十分重要的作用.  相似文献   

13.

Background  

Regulation in protein networks often utilizes specialized domains that 'join' (or 'connect') the network through specific protein-protein interactions. The innate immune system, which provides a first and, in many species, the only line of defense against microbial and viral pathogens, is regulated in this way. Amphioxus (Branchiostoma floridae), whose genome was recently sequenced, occupies a unique position in the evolution of innate immunity, having diverged within the chordate lineage prior to the emergence of the adaptive immune system in vertebrates.  相似文献   

14.
Red Queen models of host-parasite coevolution are based on genotype by genotype host-parasite interactions. Such interactions require a genotype specific host defence and, simultaneously, a genotype specific parasite infectivity. Specificity is defined here as defence or infection ability successful against only a subset of genotypes of the same species. A specific defence depends on detectable genotypic variation on the parasite side and on a host defence mechanism that differentiates between parasite genotypes. In vertebrates, the MHC-based adaptive immune system can provide such a defence mechanism, but it needs at least several days to get fully mounted. In contrast, the innate immune system is immediately ready. The trematode parasite species used here reaches the immunologically protected eye lens of its three-spined stickleback (Gasterosteus aculeatus) host within 24 h. Thus, it disappears too fast for the fully mounted MHC-based adaptive immune system. In a complete cross-infection experiment using five fish-families and five parasite-clones, we found for the first time fish-family by parasite-clone interactions in vertebrates, although the parasite was only exposed to the immune system for maximally one day. Such interactions require a fast genotype specific defence, suggesting the importance of other defence mechanisms than the too slow, fully mounted adaptive immune system in vertebrates.  相似文献   

15.
梁佼  刘欣  吴芬芳  李庆伟 《遗传》2009,31(10):969-976
在以七鳃鳗和盲鳗为代表的无颌类脊椎动物中, 虽然发现了与有颌类脊椎动物T细胞受体(T-cell receptors, TLRs)、B细胞受体 (B-cell receptors, BCRs)可变区具有相似结构的先天性免疫受体, 却从未发现有颌类脊椎动物适应性免疫系统的核心组分: TCRs、BCRs、组织相容性复合体 (Major histocompatibility complex, MHC)。因此, 长期以来, 人们一直认为适应性免疫系统只存在于有颌类脊椎动物中。但最近的一项发现彻底改变了这一传统观念, 即在无颌类脊椎动物中, 存在一种新型可变淋巴细胞受体VLRs(Variable lymphocyte receptors), VLRs通过改变亮氨酸富集序列LRRs(Leucine-rich repeats)的插入情况, 实现对特异性抗原的高效识别。晶体衍射分析发现, 盲鳗的VLRs呈现一种“马蹄”型结构, 抗原结合位点则位于“马蹄”的凹面区。分泌型的VLRs以四聚体或五聚体的形式识别、结合特异性抗原。综上所述, 无颌类和有颌类脊椎动物应用不同的抗原识别系统完成适应性免疫反应。文章对近年来无颌类脊椎动物适应性免疫系统相关分子的研究进展加以概述, 为揭示适应性免疫系统起源与进化问题提供有益参考。  相似文献   

16.
适应性免疫一直被认为是脊椎动物特有的免疫机制,然而近年来许多研究表明 ,无脊椎动物体内也存在许多在结构或功能上与脊椎动物适应性免疫分子类似的免 疫成分. 免疫球蛋白超家族是适应性免疫的重要组成部分,本文主要综述近年来关 于水生无脊椎动物中肌联蛋白、唐氏综合症细胞黏着分子、特异性凝集素、几丁质 结合蛋白和185/133基因家族以及含有V和C结构域的蛋白等免疫球蛋白超家族成员研 究进展,这有助于深入理解无脊椎动物的免疫系统并揭示脊椎动物适应性免疫起源 与进化.  相似文献   

17.
From early on in evolution, organisms have had to protect themselves from pathogens. Mechanisms for discriminating "self" from "non-self" evolved to accomplish this task, launching a long history of host-pathogen co-evolution. Evolution of mechanisms of immune defense has resulted in a variety of strategies. Even unicellular organisms have rich arsenals of mechanisms for protection, such as restriction endonucleases, antimicrobial peptides, and RNA interference.In multicellular organisms, specialized immune cells have evolved, capable of recognition, phagocytosis, and killing of foreign cells as well as removing their own cells changed by damage, senescence, infection, or cancer. Additional humoral factors, such as the complement cascade, have developed that co-operate with cellular immunity in fighting infection and maintaining homeostasis. Defensive mechanisms based on germline-encoded receptors constitute a system known as innate immunity. In jaw vertebrates, this system is supplemented with a second system, adaptive immunity, which in contrast to innate immunity is based on diversification of immune receptors and on immunological memory in each individual.Usually, each newly evolved defense mechanism did not replace the previous one, but supplemented it, resulting in a layered structure of the immune system. The immune system is not one system but rather a sophisticated network of various defensive mechanisms operating on different levels, ranging from mechanisms common for every cell in the body to specialized immune cells and responses at the level of the whole organism. Adaptive changes in pathogens have shaped the evolution of the immune system at all levels.  相似文献   

18.
适应性免疫的起源一直是免疫学研究的关键问题.文昌鱼被认为是最接近于脊椎动物的祖先 自从被发现以来一直是研究脊椎动物起源与进化机制的经典模式动物.为了在文昌鱼中寻找适应性免疫系统的分子证据,采用金黄色葡萄球菌感染文昌鱼以调查免疫的起源.应用抑制性差减杂交(SSH)技术,通过对差减文库克隆序列的测定,共获得588个表达序列标签(EST).对这些EST进行生物信息学分析和进一步功能分类,发现了一些免疫上调基因,如免疫调控基因、凋亡相关基因、细胞黏附相关基因、转录相关基因、信号传导相关基因等,以及一些非免疫相关基因;这些基因在文昌鱼中绝大多数为首次报道.金黄色葡萄球菌差减文库的成功构建,为调查文昌鱼抗细菌感染的分子事件提供了重要线索,对于这些新发现基因的进一步研究将有助于深入了解免疫系统起源与进化的机制.  相似文献   

19.
Viruses are obligate parasites which can infect cells of all living organisms. Multiple antiviral defense mechanisms appeared early in the evolution of the immune system. Higher vertebrates possess the most complex antiviral immunity based on both innate and adoptive immune responses. However, a majority of living organisms, including plants and invertebrates, rely exclusively on innate immune mechanisms for protection against viral infections. There are some striking similarities in several components of innate immune recognition in mammals, plants, and insects suggesting that these signaling cascades are highly conserved in the evolution of the immune system. This review summarizes recent advances in the field of innate immune recognition of viruses, with a focus on pattern-recognition receptors.  相似文献   

20.
Uematsu S  Akira S 《Uirusu》2004,54(2):145-151
The immune system has been divided into innate and adaptive component, each of which has different roles and functions in defending the organism against foreign agents, such as bacteria and viruses. An important advance in our understanding of early events in microbial recognition and subsequent development of immune responses was the identification of Toll-like receptors (TLRs) as key molecules of the innate immune systems. The family of TLRs in vertebrates detects conserved structures found in a broad range of pathogens and triggers innate immune responses. At present, 11 members of the TLR family have been identified. A subset of TLRs recognize viral components and induce antiviral responses by producing type I interferons. Recent accumulating evidence has clarified signaling pathways triggered by TLRs in viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号