首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We examined interspecific and intraspecific variation in tree seedling survival as a function of allocation to carbohydrate reserves and structural root biomass. We predicted that allocation to carbohydrate reserves would vary as a function of the phenology of shoot growth, because of a hypothesized tradeoff between aboveground growth and carbohydrate storage. Intraspecific variation in levels of carbohydrate reserves was induced through experimental defoliation of naturally occurring, 2-year-old seedlings of four northeastern tree species –Acer rubrum, A. saccharum, Quercus rubra, and Prunus serotina– with shoot growth strategies that ranged from highly determinate to indeterminate. Allocation to root structural biomass varied among species and as a function of light, but did not respond to the defoliation treatments. Allocation to carbohydrate reserves varied among species, and the two species with the most determinate shoot growth patterns had the highest total mass of carbohydrate reserves, but not the highest concentrations. Both the total mass and concentrations of carbohydrate reserves were significantly reduced by defoliation. Seedling survival during the year following the defoliation treatments did not vary among species, but did vary dramatically in response to defoliation. In general, there was an approximately linear relationship between carbohydrate reserves and subsequent survival, but no clear relationship between allocation to root structural biomass and subsequent survival. Because of the disproportionate amounts of reserves stored in roots, we would have erroneously concluded that allocation to roots was significantly and positively related to seedling survival if we had failed to distinguish between reserves and structural biomass in roots. Received: 14 December 1999 / Accepted: 2 June 1999  相似文献   

2.
Plants that store nonstructural carbohydrates (NSC) may rely on carbon reserves to survive carbon‐limiting stress, assuming that reserves can be mobilized. We asked whether carbon reserves decrease in resource stressed seedlings, and if NSC allocation is related to species' relative stress tolerances. We tested the effects of stress (shade, drought, and defoliation) on NSC in seedlings of five temperate tree species (Acer rubrum Marsh., Betula papyrifera Marsh., Fraxinus americana L., Quercus rubra L., and Quercus velutina Lam.). In a greenhouse experiment, seedlings were subjected to combinations of shade, drought, and defoliation. We harvested seedlings over 32–97 days and measured biomass and NSC concentrations in stems and roots to estimate depletion rates. For all species and treatments, except for defoliation, seedling growth and NSC accumulation ceased. Shade and drought combined caused total NSC decreases in all species. For shade or drought alone, only some species experienced decreases. Starch followed similar patterns as total NSC, but soluble sugars increased under drought for drought‐tolerant species. These results provide evidence that species deplete stored carbon in response to carbon limiting stress and that species differences in NSC response may be important for understanding carbon depletion as a buffer against shade‐ and drought‐induced mortality.  相似文献   

3.
We examined arbuscular mycorrhizal (AM) fungi colonizing the roots of Stipa krylovii, a grass species dominating the grasslands of the steppe zone in Hustai and Uvurkhangai in Mongolia. The AM fungal communities of the collected S. krylovii roots were examined by molecular analysis based on the partial sequences of a small subunit of ribosomal RNA gene as well as AM fungal colonization rates. Almost all AM fungi detected were in Glomus-group A, and were divided into 10 phylotypes. Among them, one phylotype forming a clade with G. intraradices and G. irregulare was the most dominant. Furthermore, it was also found that most of the phylotypes include AM fungi previously detected in high altitude regions in the Eurasian Continent. Significant correlations were found among soil total N, total plant biomass and AM fungal colonization ratio, which suggested that higher plant biomass may be required for the proliferation of AM fungi in the environment. Meanwhile, redundancy analysis on AM fungal distribution and environmental variables suggested that the effect of plant biomass and most soil chemical properties on the AM fungal communities were not significant.  相似文献   

4.
The effects of partial defoliation on photosynthesis, whole-seedling carbon allocation, partitioning and growth were studied for two species with contrasting foliar traits. Field-grown seedlings of deciduous Japanese larch ( Larix leptolepis ) and evergreen red pine ( Pinus resinosa ) were defoliated by hand in early summer for 2 consecutive years. In the first year (1990), seedlings were defoliated by removing the distal 0, 25, 50 or 75% of each needle. In the second year (1991), seedlings were defoliated either 0 or 50%, regardless of previous defoliation treatments. Defoliation had little effect on photosynthesis and starch concentration in whole seedlings of either species in the first year. In the second year, photosynthesis increased in both species in response to the 1991 defoliation treatment, and in red pine also increased in response to the 1990 defoliation treatment. Further, in 1991 both larch and pine had decreased whole-seedling total non-structural carbohydrate concentrations in all seedlings that were defoliated at least once over the 2-yr period. This decrease was noted mostly in the starch component of the non-structural carbohydrates, and was similar in both species. In 1991, biomass was similarly decreased in both species in response to 1991 defoliation. Both species showed overcompensation in total and component biomass in seedlings defoliated by 25% in 1990. Overall, the results do not support the widely held belief that evergreen trees are substantially more affected than deciduous trees by defoliation.  相似文献   

5.

Background and Aims

The growth–differentiation balance hypothesis (GDBH) states that there is a physiological trade-off between growth and secondary metabolism and predicts a parabolic effect of resource availability (such as water or nutrients) on secondary metabolite production. To test this hypothesis, the response of six Patagonian Monte species (Jarava speciosa, Grindelia chiloensis, Prosopis alpataco, Bougainvillea spinosa, Chuquiraga erinacea and Larrea divaricata) were investigated in terms of total biomass and resource allocation patterns in response to a water gradient.

Methods

One-month-old seedlings were subjected to five water supply regimes (expressed as percentage dry soil weight: 13 %, 11 %, 9 %, 7 % or 5 % – field water capacity being 15 %). After 150 d, plants were harvested, oven-dried and partitioned into root, stem and leaf. Allometric analysis was used to correct for size differences in dry matter partitioning. Determinations of total phenolics (TP), condensed tannins (CT), nitrogen (N) and total non-structural carbohydrates (TNC) concentrations were done on each fraction. Based on concentrations and biomass data, contents of TP and CT were estimated for whole plants, and graphical vector analysis was applied to interpret drought effect.

Key Results

Four species (J. speciosa, G. chiloensis, P. alpataco and B. spinosa) showed a decrease in total biomass in the 5 % water supply regime. Differences in dry matter partitioning among treatments were mainly due to size variation. Concentrations of TP, CT, N and TNC varied little and the effect of drought on contents of TP and CT was not adequately predicted by the GDBH, except for G. chiloensis.

Conclusions

Water stress affected growth-related processes (i.e. reduced total biomass) rather than defence-related secondary metabolism or allocation to different organs in juvenile plants. Therefore, the results suggest that application of the GDBH to plants experiencing drought-stress should be done with caution, at least for Patagonian Monte species.  相似文献   

6.
The seasonal dynamics of non-structural carbohydrates in the woody organs of two co-existing mediterranean sub-shrubs were analyzed. The two species show different leaf phenology during summer: Linum suffruticosum, maintains many of its green leaves, while Lepidium subulatum sheds most of its leaves. These different leaf phenologies are related to different strategies with regard to summer stress. The maintenance of leaves in Linum is related to its stress tolerance while Lepidium avoids stress by shedding its leaves. The main objectives were to: (1) determine the differences in the seasonal dynamics of non-structural carbohydrates among the main woody organs of both species; (2) verify if differences in the leaf phenology, and hence in the strategy with regard to summer drought, lead to different seasonal patterns of carbohydrate storage and use between the two species; (3) compare the seasonal dynamics of carbohydrates of the two studied sub-shrubs with those of mediterranean trees and shrubs previously reported in the literature. The concentration of soluble sugars (SS), starch and total non-structural carbohydrates (TNC) were assessed monthly, over 17 months, in the main roots, stems and the transition zone between root and shoot systems of both species. Starch storage capacity and SS, starch and TNC pools were calculated. The seasonal pattern of carbohydrate accumulation was similar among the woody organs analyzed, but it differed with those reported for mediterranean trees and shrubs. The two species showed different pools and seasonal patterns of non-structural carbohydrate concentrations in its woody organ, which corresponded to their different extent of leaf shedding. The stress-avoider Lepidium accumulated starch during spring shoot growth as a carbon store for summer respiration and had low pools of SS, whereas the stress-tolerant Linum increased SS during summer drought to maintain photosynthetic activity during summer and had low starch pools and storage capacity. However, irrespective of their different leaf shedding patterns, both species had a similar relative variation of their TNC concentration, which contrasts with previous results on deciduous and evergreen woody species.  相似文献   

7.
Many notorious alien invasive plants have the capacity for vigorous clonal growth, and clonal integration may contribute to their invasiveness in response to various disturbances. Here, it is hypothesized that clonal integration affects the growth, biomass allocation, physiology, and compensatory response of the alien invasive clonal plant Alternanthera philoxeroides when faced with defoliation. To test these hypotheses, a growth experiment was conducted to investigate the effect of clonal integration on the responses of A. philoxeroides to different levels of defoliation. Daughter ramets that had been grown with stolon connections that were either severed from or connected to the mother plant were subjected to four defoliation levels: 0 (control), 30% (mild), 60% (moderate) and 90% (heavy) removal of leaf tissue. Defoliation greatly decreased growth (total biomass, number of ramets and total stolon length) but increased the maximum quantum yield of photosystem II (Fv/Fm) of daughter ramets. Clonal integration significantly increased growth, Fv/Fm and contents of non-structural carbohydrates (soluble sugars and total non-structural carbohydrates) of A. philoxeroides, and these effects were larger under heavier defoliation. Moreover, clonal integration markedly reduced the shoot/root ratio of A. philoxeroides, and these effects tended to increase with increasing levels of defoliation. These results support our hypothesis that A. philoxeroides benefits from clonal integration in response to defoliation, suggesting that clonal integration may be closely related to the invasiveness of A. philoxeroides in natural habitats with frequent disturbances.  相似文献   

8.
Aya Imaji  Kenji Seiwa 《Oecologia》2010,162(2):273-281
Optimal carbon allocation to growth, defense, or storage is a critical trait in determining the shade tolerance of tree species. Thus, examining interspecific differences in carbon allocation patterns is useful when evaluating niche partitioning in forest communities. We hypothesized that shade-tolerant species allocate more carbon to defense and storage and less to growth compared to shade-intolerant species. In gaps and forest understory, we measured relative growth rates (RGR), carbon-based defensive compounds (condensed tannin, total phenolics), and storage compounds (total non-structural carbohydrate; TNC) in seedlings of two tree species differing in shade tolerance. RGR was greater in the shade-intolerant species, Castanea crenata, than in the shade-tolerant species, Quercus mongolica var. grosseserrata, in gaps, but did not differ between the species in the forest understory. In contrast, concentrations of condensed tannin and total phenolics were greater in Quercus than in Castanea at both sites. TNC pool sizes did not differ between the species. Condensed tannin concentrations increased with increasing growth rate of structural biomass (GRstr) in Quercus but not in Castanea. TNC pool sizes increased with increasing GRstr in both species, but the rate of increase did not differ between the species. Accordingly, the amount of condensed tannin against TNC pool sizes was usually higher in Quercus than in Castanea. Hence, Quercus preferentially invested more carbon in defense than in storage. Such a large allocation of carbon to defense would be advantageous for a shade-tolerant species, allowing Quercus to persist in the forest understory where damage from herbivores and pathogens is costly. In contrast, the shade-intolerant Castanea preferentially invested more carbon in growth rather than defense (and similar amounts in storage as Quercus), ensuring establishment success in gaps, where severe competition occurs for light among neighboring plants. These contrasting carbon allocation patterns are closely associated with strategies for persistence in these species’ respective habitats.  相似文献   

9.
We investigated the effects of ramet defoliation frequency on clonal propagation and the patterns of biomass production and allocation on five rhizomatous species (Carex divisa Hude., Eleocharis palustris L., Juncus articulatus L., Juncus gerardii Lois. and Elytrigia repens L.). Plants were grown during an 18-week experiment in greenhouse conditions. The above ground parts of ramets were clipped following three treatments: frequent (every 2 weeks), moderate (every 4 weeks) and unclipped (control). The growth of C. divisa, J. articulatus and E. repens was strongly affected by defoliation whereas E. palustris and J. gerardii maintained a similar performance when defoliated. The latter were able to compensate for the biomass loss even after six consecutive clippings. Defoliation frequency had a significant effect on total biomass production for C. divisa, J. articulatus and E. repens while J. gerardii and E. palustris maintained total biomass production. Most of the studied species showed a decrease in clonal traits when defoliated. Clipped plants displayed fewer and shorter rhizomes. Defoliation had a strong influence in biomass production with a decrease in rhizome mass in all clipped species. A greater allocation to aerial parts and a lower to rhizomes were also detected. Moderate defoliation entailed intermediate response in 1/3 of detected significant effects of defoliation on plant traits. Finally, in the experimental conditions, E. palustris and J. gerardii were the most tolerant species to defoliation, while J. articulatus was intermediate and C. divisa and E. repens had the lowest tolerance.  相似文献   

10.
Summary A significant decrease in production of total phenolics was apparent with nitrogen fertilization in three of five seed sources of grand fir [Abies grandis (Dougl.) Lindl.]. Subsequent extraction and identification of phenolics indicated that two compounds increased with fertilization, and when grouped by biosynthetic origin into cinnamic acids, benzoic acids, and flavonoids, no differences were apparent with fertilization. Total biomass increased with fertilization, and the relation between growth and total phenolics was similar for all seed sources. The increase in growth and decrease in total phenolics suggest that, in the carbon allocation hierarchy, as available soil nitrogen increases, phenolics represent a lower priority.  相似文献   

11.
Evaluation of phenotypic plasticity of plants is important to predict the long-term fate of populations exposed to environmental change. Climate scenarios predict a decrease in rainfall and increase in temperature for Northern Patagonia (Argentina). The long-term assessment of the effect of water shortage on allocation patterns of Prosopis alpataco provides insights into how climate change could affect this dominant shrub of the Monte Desert. A single-factor (water supply) field experiment was conducted. Phenotypic plasticity in biomass partitioning and allocation to storage and defense was assessed over the course of pre-reproductive growth during five years. Water-effect and size-dependent effects were sorted out. Our results indicate that as plants grow larger, root:shoot ratio increases, as well as total non-structural carbohydrates pool, irrespective of water treatment. Increasing belowground allocation through partitioning to reserves instead of allocation to non-storage mass, favors carbohydrate forms that later can be mobilized. Spine mass ratio increased 3-fold in response to drought. These conservative strategies might facilitate the persistence of Prosopis alpataco in a novel and drier environment, through the production of drought-tolerant juvenile individuals.  相似文献   

12.

Background and Aims

Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. It was further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species.

Methods

Root carbohydrate storage and organ biomass allometries were compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0·003 to 258·724 g).

Key Results

Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits.

Conclusions

Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant allometry could arise due to selection for different types of biomass allocation in response to different environmental stressors (e.g. fire vs. herbivory).  相似文献   

13.
Summary Agropyron desertorum, a grazing-tolerant bunchgrass introduced to the western U.S. from Eurasia, and Agropyron spicatum, a grazing-sensitive bunchgrass native to North America, were examined in the field for photosynthetic capacity, growth, resource allocation, and tiller dynamics. These observations allowed identification of physiological characteristics that may contribute to grazing tolerance in semiarid environments. A uniform matrix of sagebrush, Artemisia tridentata, provided an ecologically relevant competitive environment for both bunch-grass species. Physiological activity, growth, and allocation were also followed during recovery from a severe defoliation treatment and were correlated with tiller dynamics.Potential photosynthetic carbon uptake of both species was dominated by stems and leaf sheaths during June, when maximum uptake rates occurred. For both species, water use efficiency of stems and sheaths was similar to that of leaf blades, but nitrogen investment per photosynthetic surface area was less than in blades. In addition, soluble carbohydrates in stems and sheaths of both species constituted the major labile carbon pools in control plants. Contrary to current theory, these findings suggest that culms from which leaf blades have been removed should be of considerable value to defoliated bunchgrasses, and in the case of partial defoliation could provide important supplies of organic nutrients for regrowth. These interpretations, based on total pool sizes, differ markedly from previous interpretations based on carbohydrate concentrations alone, which suggested that crowns contain large carbohydrate reserves. In this study, crowns of both species contained a minor component of the total plant carbohydrate pool.Following defoliation, A. desertorum plants rapidly reestablished a canopy with 3 to 5 times the photosynthetic surface of A. spicatum plants. This difference was primarily due to the greater number of quickly growing new tillers produced following defoliation. Agropyron spicatum produced few new tillers following defoliation despite adequate moisture, and carbohydrate pools that were equivalent to those in A. desertorum.Leaf blades of regrowing tillers had higher photosynthetic capacity than blades on unclipped plants of both species, but the relative increase, considered on a unit mass, area, or nitrogen basis, was greater for A. desertorum than for A. spicatum. Agropyron desertorum also had lower investment of nitrogen and biomass per unit area of photosynthetic tissues, more tillers and leaves per bunch, and shorter lived stems, all of which can contribute to greater tolerance of partial defoliation.Greater flexibility of resource allocation following defoliation was demonstrated by A. desertorum for both nitrogen and carbohydrates. Relatively more allocation to the shoot system and curtailed root growth in A. desertorum resulted in more rapid approach to the preclipping balance between the root and shoot systems, whereas root growth in A. spicatum continued unabated following defoliation. Nitrogen required for regrowth in both species was apparently supplied by uptake rather than reserve depletion. Carbohydrate pools in the shoot system of both species remained very low following severe defoliation and were approximately equivalent to carbon fixed in one day by photosynthesis of the whole canopy.Dedicated to Drs. Michael Evenari and Konrad Springer  相似文献   

14.
In managed settings, seedlings are often fertilized with the objective of enhancing establishment, growth, and survival. However, responses of seedlings to fertilization can increase their susceptibility to abiotic stresses such as drought. Seedlings acclimate to variation in soil resources by reallocating carbon among different physiological processes and compartments, such as above versus belowground growth, secondary metabolism, and support of ectomycorrhizal fungi (EMF). We examined the effects of nutrient and water availability on carbon allocation to above and belowground growth of river birch (Betula nigra), as well as partitioning among root sugars, starch, phenolics, lignin, and EMF abundance. As nutrient availability increased, total plant biomass and total leaf area increased, while percent root biomass decreased. Root sugars, total root phenolics and EMF abundance responded quadratically to nutrient availability, being lowest at intermediate fertility levels. Decreased water availability reduced total leaf area and root phenolics relative to well-watered controls. No interactions between nutrient and water availability treatments were detected, which may have been due to the moderate degree of drought stress imposed in the low water treatment. Our results indicate that nutrient and water availability significantly alter patterns of carbon allocation and partitioning in roots of Betula nigra seedlings. The potential effects of these responses on stress tolerance are discussed.  相似文献   

15.
Sun  Yuanfeng  Wang  Yupin  Yan  Zhengbing  He  Luoshu  Ma  Suhui  Feng  Yuhao  Su  Haojie  Chen  Guoping  Feng  Yinping  Ji  Chengjun  Shen  Haihua  Fang  Jingyun 《Journal of plant research》2022,135(1):41-53

Above- and belowground biomass allocation is an essential plant functional trait that reflects plant survival strategies and affects belowground carbon pool estimation in grasslands. However, due to the difficulty of distinguishing living and dead roots, estimation of biomass allocation from field-based studies currently show large uncertainties. In addition, the dependence of biomass allocation on plant species, functional type as well as plant density remains poorly addressed. Here, we conducted greenhouse manipulation experiments to study above- and belowground biomass allocation and its density regulation for six common grassland species with different functional types (i.e., C3 vs C4; annuals vs perennials) from temperate China. To explore the density regulation on the biomass allocation, we used five density levels: 25, 100, 225, 400, and 625 plant m?2. We found that mean root to shoot ratio (R/S) values ranged from 0.04 to 0.92 across the six species, much lower than those obtained in previous field studies. We also found much lower R/S values in annuals than in perennials (C. glaucum and S. viridis vs C. squarrosa, L. chinensis, M. sativa and S. grandis) and in C4 plants than in C3 plants (C. squarrosa vs L. chinensis, M. sativa and S. grandis). In addition to S. grandis, plant density had significant effects on the shoot and root biomass fraction and R/S for the other five species. Plant density also affected the allometric relationships between above- and belowground biomass significantly. Our results suggest that R/S values obtained from field investigations may be severely overestimated and that R/S values vary largely across species with different functional types. Our findings provide novel insights into approximating the difficult-to-measure belowground living biomass in grasslands, and highlight that species composition and intraspecific competition will regulate belowground carbon estimation.

  相似文献   

16.
袁野梅  柳隽瑶  高秀丽  薛璟  王仁忠 《生态学报》2022,42(21):8784-8794
为比较针茅(Stipa)植物适应策略,以大尺度梯度下(>1600 km)温带草原主要针茅植物为对象,系统研究了8个样点7种针茅根系生物量、根冠比、解剖结构和生理调节物质的差异及其对环境因子的适应。在由东北至西南的区域上,随降水量下降针茅植物根系的抗旱特征增强或适应策略趋于复杂,不同针茅植物根系对水分变化(或旱季和雨季)有着不同的适应策略。综合分析表明贝加尔针茅(S.baicalensis)、大针茅(S.grandis)及克氏针茅(S.krylovii)(多伦样点)的生长受干旱制约,对降水高度敏感,雨季降水促进其生物量快速积累。沙生针茅(S.glareosa)、短花针茅(S.breviflora)、戈壁针茅(S.gobica)、本氏针茅(S.bungeana)等通过增大根冠比和渗透调节物质累积等途径提高根系吸水和保水能力,抵御干旱胁迫。偏相关分析显示实验区域针茅植物根系性状与降水量和海拔高度存在显著的相关性。  相似文献   

17.
Patterns of resource allocation reflect the plastic strategies that result from different selective pressures imposed by the environment. However, biomass allocation can be limited by architectural restrictions that change with the plant size. Our knowledge about sex allocation in heterosporous aquatic ferns remains scarce and studies on the reproductive strategies of these plants may yield valuable information regarding the evolutionary history of heterospory. Here, we investigate resources allocation, both in number and in biomass, to produce megasporangia and microsporangia among three species of Salvinia with different body sizes. Salvinia oblongifolia, S. auriculata and S. minima were collected in temporary ponds on the floodplain of the Pandeiros River in Brazil. We counted megasporangia and microsporangia, and measured their dry mass in each ramet. We also measured the total vegetative biomass and total reproductive biomass of each ramet in each species. Resource allocation to megasporangia production is associated with the specific body size of each species. However, the allocation for microsporangia production was higher in the species with intermediate size, which probably may be related to the drought event. The total reproductive biomass of each species was not dependent on the total vegetative biomass, but despite a similar reproductive effort, species differ on which sex is prioritized in the allocation process. Our results provide the first data about the processes underlying the sex allocation of Salvinia in the floodplains. The production of sori is size dependent in each Salvinia species and is shaped by drought, an intense selective pressure in temporary wet habitats.  相似文献   

18.
Yuan ZY  Li LH  Han XG  Chen SP  Wang ZW  Chen QS  Bai WM 《Oecologia》2006,148(4):564-572
The concept of nutrient use efficiency is central to understanding ecosystem functioning because it is the step in which plants can influence the return of nutrients to the soil pool and the quality of the litter. Theory suggests that nutrient efficiency increases unimodally with declining soil resources, but this has not been tested empirically for N and water in grassland ecosystems, where plant growth in these ecosystems is generally thought to be limited by soil N and moisture. In this paper, we tested the N uptake and the N use efficiency (NUE) of two Stipa species (S. grandis and S. krylovii) from 20 sites in the Inner Mongolia grassland by measuring the N content of net primary productivity (NPP). NUE is defined as the total net primary production per unit N absorbed. We further distinguished NUE from N response efficiency (NRE; production per unit N available). We found that NPP increased with soil N and water availability. Efficiency of whole-plant N use, uptake, and response increased monotonically with decreasing soil N and water, being higher on infertile (dry) habitats than on fertile (wet) habitats. We further considered NUE as the product of the N productivity (NP the rate of biomass increase per unit N in the plant) and the mean residence time (MRT; the ratio between the average N pool and the annual N uptake or loss). The NP and NUE of S. grandis growing usually in dry and N-poor habitats exceeded those of S. krylovii abundant in wet and N-rich habitats. NUE differed among sites, and was often affected by the evolutionary trade-off between NP and MRT, where plants and communities had adapted in a way to maximize either NP or MRT, but not both concurrently. Soil N availability and moisture influenced the community-level N uptake efficiency and ultimately the NRE, though the response to N was dependent on the plant community examined. These results show that soil N and water had exerted a great impact on the N efficiency in Stipa species. The intraspecific differences in N efficiency within both Stipa species along soil resource availability gradient may explain the differences in plant productivity on various soils, which will be conducive to our general understanding of the N cycling and vegetation dynamics in northern Chinese grasslands.  相似文献   

19.
Summary The African grass Hyparrhenia rufa has established itself successfully in South American savannas (Llanos) and displaced dominant native grasses such as Trachypogon plumosus from the wetter and more fertile habitats. Several ecophysiological traits have been related to the higher competitive capacity of H. rufa. To further analyze the behavior of both species, their growth, biomass allocation, physiological and architectural responses to defoliation and water stress were compared under controlled conditions. Although total, aerial and underground biomass decreased under defoliation in both grasses, increases in clipped-leaf biomass and area compensated for defoliation in H. rufa but not in T. plumosus. This difference was due mainly to a higher proportion of assimilates being directed to leaf and tiller production and a higher leaf growth rate in the African grass as compared to T. plumosus, which showed incrased senescence under frequent defoliation. In both species, water stress ameliorated the effects of defoliation. The ability to compensate for defoliated biomass in H. rufa is possibly related to its long coevolution with large herbivores in its original African habitat and is apparently one of the causes of its success in Neotropical savannas.  相似文献   

20.
《植物生态学报》2017,41(3):359
Aims Adaptation mechanisms of plants to environment can be classified as genetic differentiation and phenotypic plasticity (environmental modification). The strategy and mechanism of plant adaptation is a hot topic in the field of evolutionary ecology. Leymus chinensis is one of constructive species in the Nei Mongol grassland. Particularly, Leymus chinensis is a rhizomatous and clonally reproductive grass, a genotype that can play an important role in the community. In this study, we aimed to (1) investigate the phenotypic plasticity of L. chinensis under different conditions, and (2) test the genetic differentiation and reaction norms (the relationship between the environment and the phenotype of an individual or a group of individuals) under four environmental conditions among different genotypes of L. chinensis. Methods Ten genotypes of L. chinensis were randomly selected. Under the control condition, we studied the effects of genotype, defoliation, drought and their interactions on 11 quantitative traits of growth (8 traits including photochemical efficiency of photosystem II, maximum net photosynthetic rate, transpiration rate, specific leaf area, relative growth rate, the number of tillers increased, aboveground and underground biomass growth), defense (total phenol concentration of leaf) and tolerance (non-structural carbohydrate content of root, root/shoot ratio) of L. chinensis. We studied the phenotypic plasticity, genetic differentiation and reaction norms mainly through tested the effect of environment and genotype on these traits. Important findings First, all 11 traits showed obvious phenotypic plasticity (i.e., significant effect of drought, defoliation and their interactions). The expression of 10 genotypes of L. chinensis was divergent under different environmental conditions. Interactions of genotype and environment significantly affected the maximum net photosynthetic rate, transpiration rate, specific leaf area, relative growth rate, total phenolic concentration of leaf, and total non-structural carbohydrate content of root. This indicated that the phenotypic plasticity of these five traits exhibited genetic differentiation. Second, the increase of number of tillers, belowground biomass and non-structural carbohydrate content of root did not show genetic differentiation under the same condition. The other eight traits showed significantly genetic differentiation, and the heritabilities (H2) of six traits related to growth were higher than 0.5. The leaf total phenol concentration and root/shoot ratio showed genetically differentiation only under the drought and defoliation condition, with the heritabilities being 0.145 and 0.201, respectively. These results explained why L. chinensis widely distributed in the Nei Mongol grassland, and provided genetic and environmental basis for related application and species conservation in this grassland ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号