首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cells that constitute the membranous labyrinth in the vertebrate inner ear are all derived from a single embryonic source, namely, the otocyst. The mature inner ear epithelia contain different regions with highly differentiated cells, displaying a highly specialized cytoarchitecture. The present study was designed to determine the presence of adherens-type intercellular junctions in this tissue and study the expression of cell adhesion molecules (CAMs) associated with these junctions, namely, A-CAM and L-CAM, in the developing avian inner ear epithelia. The results presented here show that throughout the early otocyst, A-CAM is coexpressed with L-CAM. The formation of asymmetries between sensory and nonsensory areas in the epithelium is accompanied by the modulation of CAMs expression and the assembly of intercellular junctional complexes. A-CAM and L-CAM display reciprocal expression patterns, the former being expressed mostly in the mosaic sensory epithelium, while L-CAM becomes conspicuous in the nonsensory areas but its expression in the sensory region is markedly reduced. Adherens-type junctions and numerous desmosomes are found in the junctional complexes of early otocyst cells. The former persist to maturity of the various inner ear epithelia, whereas desmosomes disappear from junctional complexes of hair cells but remain in the intercellular junctional complexes of all other cell types in the membranous labyrinth. Thus, adherens type intercellular junctions comprise the only defined cytoskeleton-bound junction in mature hair cells. A-CAM-positive cells are also found in the region of the acoustic ganglion in early developmental stages but not in the mature neural elements.  相似文献   

2.
Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions.  相似文献   

3.
Adult feline ventricular myocytes cultured on a laminin-coated substratum reestablish intercellular junctions, yet disassemble their myofibrils. Immunofluorescence microscopy reveals that these non- beating heart cells lack vinculin-positive focal adhesions; moreover, intercellular junctions are also devoid of vinculin. When these quiescent myocytes are stimulated to contract with the beta-adrenergic agonist, isoproterenol, extensive vinculin-positive focal adhesions and intercellular junctions emerge. If solitary myocytes are stimulated to beat, an elaborate series of vinculin-positive focal adhesions develop which appear to parallel the reassembly of myofibrils. In cultures where neighboring myocytes reestablish cell-cell contact, myofibrils appear to reassemble from the fascia adherens rather than focal contacts. Activation of beating is accompanied by a significant reduction in the rate of total and cytoskeletal protein synthesis; in fact, myofibrillar reassembly, redevelopment of focal adhesions and fascia adherens junctions require no protein synthesis for at least 24 h, implying the existence of an assembly competent pool of cytoskeletal proteins. Maturation of the fasciae adherens and the appearance of vinculin within Z-line/costameres, does require de novo synthesis of new cytoskeletal proteins. Changes in cytoskeletal protein turnover appear dependent on beta agonist-induced cAMP production, but myofibrillar reassembly is a cAMP-independent event. Such observations suggest that mechanical forces, in the guise of contractile activity, regulate vinculin distribution and myofibrillar order in cultured adult feline heart cells.  相似文献   

4.
The hair cells of the auditory and balance systems of the inner ear have precise structures and orientations related to function. Hair cells differentiate from a homogenous cell population with the initiation of afferent synaptogenesis and appearance of the apical hair bundle being the first definitive structural sign of hair cell development. The cytoskeletal network then develops and the intercellular membrane junctions become more complex. As auditory function is established in mammalian cochlear hair cells, the lateral membrane acquires certain specializations. Accompanying this there is a change from afferent to efferent innervation of outer hair cells.  相似文献   

5.
E-cadherin is thought to mediate intercellular adhesion in the mammalian epidermis and in hair follicles as the adhesive component of adherens junctions. We have tested this role of E-cadherin directly by conditional gene ablation in the mouse. We show that postnatal loss of E-cadherin in keratinocytes leads to a loss of adherens junctions and altered epidermal differentiation without accompanying signs of inflammation. Overall tissue integrity and desmosomal structures were maintained, but skin hair follicles were progressively lost. Tumors were not observed and beta-catenin levels were not strongly altered in the mutant skin. We conclude that E-cadherin is required for maintaining the adhesive properties of adherens junctions in keratinocytes and proper skin differentiation. Furthermore, continuous hair follicle cycling is dependent on E-cadherin.  相似文献   

6.
Experiments were carried out to elucidate changes in cytoskeletal elements and intercellular junctions in the organ of Corti, when hair cells degenerate and phalangeal scars form. Hair cell damage was induced by exposing guinea pigs to high intensity noise. The spatial and temporal changes in the organization of microfilaments, intermediate filaments, and tight junction-specific proteins were investigated using scanning and transmission electron microscopy and histochemistry. The results show that microfilaments, cytokeratins, adherens junctions, and tight junctions rearrange their distribution in damaged areas. From the temporal sequence of these changes it appears that phalangeal scars develop simultaneous with hair cell degeneration, and that the integrity of the luminal membranes in the organ of Corti is not interrupted. Each scar is formed by two supporting cells which expand and invade the sub-apical region of the dying hair cell. This region becomes cytokeratin-positive. The two supporting cells meet at the mid-line of the scar, where a new junctional complex is formed. The junctional complex consists of tight junction and adherens-type junction, but desmosomes are absent.  相似文献   

7.
Oncogenic transformation of cells alters their morphology, cytoskeletal organization, and adhesive interactions. When the mammary epithelial cell line MCF10A is transformed by activated H-Ras, the cells display a mesenchymal/fibroblastic morphology with decreased cell–cell junctions but increased focal adhesions and stress fibers. We have investigated whether the transformed phenotype is due to Rho activation. The Ras-transformed MCF10A cells have elevated levels of myosin light chain phosphorylation and are more contractile than their normal counterparts, consistent with the activation of Rho. Furthermore, inhibitors of contractility restore a more normal epithelial phenotype to the Ras-transformed MCF10A cells. However, inhibiting Rho by microinjection of C3 exotransferase or dominant negative RhoA only partially restores the normal phenotype, in that it fails to restore normal junctional organization. This result prompted us to examine the effect that inhibiting Rho would have on the junctions of normal MCF10A cells. We have found that inhibiting Rho by C3 microinjection leads to a disruption of E-cadherin cytoskeletal links in adherens junctions and blocks the assembly of new adherens junctions. The introduction of constitutively active Rho into normal MCF10A cells did not mimic the Ras-transformed phenotype. Thus, these results lead us to conclude that some, but not all, characteristics of Ras-transformed epithelial cells are due to activated Rho. Whereas Rho is needed for the assembly of adherens junctions, high levels of activated Rho in Ras-transformed cells contribute to their altered cytoskeletal organization. However, additional events triggered by Ras must also be required for the disruption of adherens junctions and the full development of the transformed epithelial phenotype.  相似文献   

8.
9.
The regulation of adherens junction formation in cells of mesenchymal lineage is of critical importance in tumorigenesis but is poorly characterized. As actin filaments are crucial components of adherens junction assembly, we studied the role of gelsolin, a calcium-dependent, actin severing protein, in the formation of N-cadherin-mediated intercellular adhesions. With a homotypic, donor-acceptor cell model and plates or beads coated with recombinant N-cadherin-Fc chimeric protein, we found that gelsolin spatially co-localizes to, and is transiently associated with, cadherin adhesion complexes. Fibroblasts from gelsolin-null mice exhibited marked reductions in kinetics and strengthening of N-cadherin-dependent junctions when compared with wild-type cells. Experiments with lanthanum chloride (250 microm) showed that adhesion strength was dependent on entry of calcium ions subsequent to N-cadherin ligation. Cadherin-associated gelsolin severing activity was required for localized actin assembly as determined by rhodamine actin monomer incorporation onto actin barbed ends at intercellular adhesion sites. Scanning electron microscopy showed that gelsolin was an important determinant of actin filament architecture of adherens junctions at nascent N-cadherin-mediated contacts. These data indicate that increased actin barbed end generation by the severing activity of gelsolin associated with N-cadherin regulates intercellular adhesion strength.  相似文献   

10.
Several signaling pathways that regulate tight junction and adherens junction assembly are being characterized. Calpeptin activates stress fiber assembly in fibroblasts by inhibiting SH2-containing phosphatase-2 (SHP-2), thereby activating Rho-GTPase signaling. Here, we have examined the effects of calpeptin on stress fiber and junctional complex assembly in Madin-Darby canine kidney (MDCK) and LLC-PK epithelial cells. Calpeptin induced disassembly of stress fibers and inhibition of Rho GTPase activity in MDCK cells. Interestingly, calpeptin augmented stress fiber formation in LLC-PK epithelial cells. Calpeptin treatment of MDCK cells resulted in a displacement of zonula occludens-1 (ZO-1) and occludin from cell-cell junctions and a loss of phosphotyrosine on ZO-1 and ZO-2, without any detectable effect on tight junction permeability. Surprisingly, calpeptin increased paracellular permeability in LLC-PK cells even though it did not affect tight junction assembly. Calpeptin also modulated adherens junction assembly in MDCK cells but not in LLC-PK cells. Calpeptin treatment of MDCK cells induced redistribution of E-cadherin and -catenin from intercellular junctions and reduced the association of p120ctn with the E-cadherin/catenin complex. Together, our studies demonstrate that calpeptin differentially regulates stress fiber and junctional complex assembly in MDCK and LLC-PK epithelial cells, indicating that these pathways may be regulated in a cell line-specific manner. calpeptin; tight junctions; adherens junctions; Rho; cadherin; p120ctn  相似文献   

11.
Cellular junctions are critical for intercellular communication and for the assembly of cells into tissues. Cell junctions often consist of tight junctions, which form a permeability barrier and prevent the diffusion of lipids and proteins between cell compartments, and adherens junctions, which control the adhesion of cells and link cortical actin filaments to attachment sites on the plasma membrane. Proper tight junction formation and cell polarity require the function of membrane-associated guanylate kinases (MAGUKs) that contain the PDZ protein-protein interaction domain. In contrast, less is known about how adherens junctions are assembled. Here we describe how the PDZ-containing protein DLG-1 is required for the proper formation and function of adherens junctions in Caenorhabditis elegans. DLG-1 is a MAGUK protein that is most similar in sequence to mammalian SAP97, which is found at both synapses of the CNS, as well as at cell junctions of epithelia. DLG-1 is localized to adherens junctions, and DLG-1 localization is mediated by an amino-terminal domain shared with SAP97 but not found in other MAGUK family members. DLG-1 recruits other proteins and signaling molecules to adherens junctions, while embryos that lack DLG-1 fail to recruit the proteins AJM-1 and CPI-1 to adherens junctions. DLG-1 is required for the proper organization of the actin cytoskeleton and for the morphological elongation of embryos. In contrast to other proteins that have been observed to affect adherens junction assembly and function, DLG-1 is not required to maintain cell polarity. Our results suggest a new function for MAGUK proteins distinct from their role in cell polarity.  相似文献   

12.
Defects in myosin VIIA are responsible for deafness in the human and mouse. The role of this unconventional myosin in the sensory hair cells of the inner ear is not yet understood. Here we show that the C-terminal FERM domain of myosin VIIA binds to a novel transmembrane protein, vezatin, which we identified by a yeast two-hybrid screen. Vezatin is a ubiquitous protein of adherens cell-cell junctions, where it interacts with both myosin VIIA and the cadherin-catenins complex. Its recruitment to adherens junctions implicates the C-terminal region of alpha-catenin. Taken together, these data suggest that myosin VIIA, anchored by vezatin to the cadherin-catenins complex, creates a tension force between adherens junctions and the actin cytoskeleton that is expected to strengthen cell-cell adhesion. In the inner ear sensory hair cells vezatin is, in addition, concentrated at another membrane-membrane interaction site, namely at the fibrillar links interconnecting the bases of adjacent stereocilia. In myosin VIIA-defective mutants, inactivity of the vezatin-myosin VIIA complex at both sites could account for splaying out of the hair cell stereocilia.  相似文献   

13.
Several pathways are involved in the control of endothelial cell morphology, endothelial permeability and function in order to maintain vascular homeostasis. Here we report that protein kinase N3 (PKN3) appears to play a pivotal role in maintaining endothelial cell morphology, cell-cell junctions and motility. An RNAi-based cell biological approach in cultured human endothelial cells (HUVEC) revealed that knockdown of PKN3 expression gave rise to cells with divergent cell morphology, impaired locomotion, disturbed adherens junctions (AJ) integrity and irregular actin organization. Notably, knockdown of PKN3 cells led to improper stress fiber formation and marked adhesiveness of intercellular adherens junctions when cells became stimulated with the pro-inflammatory cytokine TNF-α. Moreover, TNF-α-induced ICAM-1 expression on the cell surface was reduced in cells with suppressed PKN3 expression. Finally, loss-of-function for PKN3 appeared to affect Pyk2 phosphorylation in endothelial cells. These observations suggest that PKN3 can be considered a novel protein implicated in remodeling the actin-adherens junction, possibly by linking ICAM-1-signaling with actin/AJ dynamics. We propose that loss of PKN3 function and concomitant aberrations in actin rearrangement may attenuate pro-inflammatory activation of endothelial cells.  相似文献   

14.
Sphingosine 1-phosphate (S1P), a bioactive phospholipid, simultaneously induces actin cytoskeletal rearrangements and activation of matriptase, a membrane-associated serine protease in human mammary epithelial cells. In this study, we used a monoclonal antibody selective for activated, two-chain matriptase to examine the functional relationship between these two S1P-induced events. Ten minutes after exposure of 184 A1N4 mammary epithelial cells to S1P, matriptase was observed to accumulate at cell-cell contacts. Activated matriptase first began to appear as small spots at cell-cell contacts, and then its deposits elongated along cell-cell contacts. Concomitantly, S1P induced assembly of adherens junctions and subcortical actin belts. Matriptase localization was observed to be coincident with markers of adherens junctions at cell-cell contacts but likely not to be incorporated into the tightly bound adhesion plaque. Disruption of subcortical actin belt formation and prevention of adherens junction assembly led to prevention of accumulation and activation of the protease at cell-cell contacts. These data suggest that S1P-induced accumulation and activation of matriptase depend on the S1P-induced adherens junction assembly. Although MAb M32, directed against one of the low-density lipoprotein receptor class A domains of matriptase, blocked S1P-induced activation of the enzyme, the antibody had no effect on S1P-induced actin cytoskeletal rearrangement. Together, these data indicate that actin cytoskeletal rearrangement is necessary but not sufficient for S1P-induced activation of matriptase at cell-cell contacts. The coupling of matriptase activation to adherens junction assembly and actin cytoskeletal rearrangement may serve to ensure tight control of matriptase activity, restricted to cell-cell junctions of mammary epithelial cells.  相似文献   

15.
Cells in mechanically active environments form extensive, cadherin-mediated intercellular junctions that are important in tissue remodeling and differentiation. Currently, it is unknown whether adherens junctions in connective tissue fibroblasts transmit mechanical signals and coordinate multicellular adaptations to physical forces. We hypothesized that cadherins mediate intercellular mechanotransduction by activating calcium-permeable, stretch-sensitive channels. Human gingival fibroblasts in suspension were plated on established homotypic monolayer cultures. The cells formed intercellular adherens junctions. Controlled mechanical forces were applied to intercellular junctions by electromagnets acting on cells containing internalized magnetite beads. At early but not later stages of intercellular attachment, force application visibly displaced magnetite bead-loaded cells and induced robust Ca(2+) transients (65 +/- 9.4 nm above base line). Similar Ca(2+) transients were induced by force application to anti-N-cadherin antibody-coated magnetite beads. Ca(2+) responses depended on influx of extracellular Ca(2+) through mechanosensitive channels because both Ca(2+) chelation and gadolinium chloride abolished the response and MnCl(2) quenched fura-2 fluorescence after force application. Force application induced accumulation of microinjected rhodamine-actin at intercellular contacts; actin assembly was inhibited by buffering intracellular calcium fluxes. Our results indicate that mechanical forces applied to adherens junctions activate stretch-sensitive calcium-permeable channels and increase actin polymerization. We suggest that N-cadherins in fibroblasts are intercellular mechanotransducers.  相似文献   

16.
Hepatocyte growth factor/scatter factor (HGF/SF) stimulates the motility of epithelial cells, initially inducing centrifugal spreading of colonies followed by disruption of cell–cell junctions and subsequent cell scattering. In Madin–Darby canine kidney cells, HGF/SF-induced motility involves actin reorganization mediated by Ras, but whether Ras and downstream signals regulate the breakdown of intercellular adhesions has not been established. Both HGF/SF and V12Ras induced the loss of the adherens junction proteins E-cadherin and β-catenin from intercellular junctions during cell spreading, and the HGF/SF response was blocked by dominant-negative N17Ras. Desmosomes and tight junctions were regulated separately from adherens junctions, because they were not disrupted by V12Ras. MAP kinase, phosphatidylinositide 3-kinase (PI 3-kinase), and Rac were required downstream of Ras, because loss of adherens junctions was blocked by the inhibitors PD098059 and LY294002 or by dominant-inhibitory mutants of MAP kinase kinase 1 or Rac1. All of these inhibitors also prevented HGF/SF-induced cell scattering. Interestingly, activated Raf or the activated p110α subunit of PI 3-kinase alone did not induce disruption of adherens junctions. These results indicate that activation of both MAP kinase and PI 3-kinase by Ras is required for adherens junction disassembly and that this is essential for the motile response to HGF/SF.  相似文献   

17.
Differentiation and polarization of epithelial cells depends on the formation of the apical junctional complex (AJC), which is composed of the tight junction (TJ) and the adherens junction (AJ). In this study, we investigated mechanisms of actin reorganization that drive the establishment of AJC. Using a calcium switch model, we observed that formation of the AJC in T84 intestinal epithelial cells began with the assembly of adherens-like junctions followed by the formation of TJs. Early adherens-like junctions and TJs readily incorporated exogenous G-actin and were disassembled by latrunculin B, thus indicating dependence on continuous actin polymerization. Both adherens-like junctions and TJs were enriched in actin-related protein 3 and neuronal Wiskott-Aldrich syndrome protein (N-WASP), and their assembly was prevented by the N-WASP inhibitor wiskostatin. In contrast, the formation of TJs, but not adherens-like junctions, was accompanied by recruitment of myosin II and was blocked by inhibition of myosin II with blebbistatin. In addition, blebbistatin inhibited the ability of epithelial cells to establish a columnar phenotype with proper apico-basal polarity. These findings suggest that actin polymerization directly mediates recruitment and maintenance of AJ/TJ proteins at intercellular contacts, whereas myosin II regulates cell polarization and correct positioning of the AJC within the plasma membrane.  相似文献   

18.
《The Journal of cell biology》1986,103(4):1451-1464
Intercellular adherens junctions between cultured lens epithelial cells are highly Ca2+-dependent and are readily dissociated upon chelation of extracellular Ca2+ ions. Addition of Ca2+ to EGTA-treated cells results in the recovery of cell-cell junctions including the reorganization of adherens junction-specific cell adhesion molecule (A-CAM), vinculin, and actin (Volk, T., and B. Geiger, 1986, J. Cell Biol., 103:000-000). Incubation of cells during the recovery phase with Fab' fragments of anti-A-CAM specifically inhibited the re-formation of cell-cell adherens junctions. This inhibition was accompanied by remarkable changes in microfilament organization manifested by an apparent deterioration of stress fibers and the appearance of fragmented actin bundles throughout the cytoplasm. Incubation of EGTA-dissociated cells with intact divalent anti-A-CAM antibodies in normal medium had no apparent inhibitory effect on junction formation and did not affect the assembly of actin microfilament bundles. Moreover, adherens junctions formed in the presence of the divalent antibodies became essentially Ca2+-independent, suggesting that cell-cell adhesion between them was primarily mediated by the antibodies. These studies suggest that A-CAM participates in intercellular adhesion in adherens-type junctions and point to its involvement in microfilament bundle assembly.  相似文献   

19.
During epithelial sheet formation, linear actin cables assemble at nascent adherens junctions. This process requires alpha-catenin and actin polymerization, although the underlying mechanism is poorly understood. Here, we show that formin-1 interacts with alpha-catenin, localizes to adherens junctions and nucleates unbranched actin filaments. Furthermore, disruption of the alpha-catenin-formin-1 interaction blocks assembly of radial actin cables and perturbs intercellular adhesion. A fusion protein of the beta-catenin-binding domain of alpha-catenin with the actin polymerization domains of formin-1 rescues formation of adherens junctions and associated actin cables in alpha-catenin-null keratinocytes. These findings provide new insight into how alpha-catenin orchestrates actin dynamics during intercellular junction formation.  相似文献   

20.
In developing mammalian telencephalon, the loss of adherens junctions and cell cycle exit represent crucial steps in the differentiation of neuroepithelial cells into neurons, but the relationship between these cellular events remains obscure. Atypical protein kinase C (aPKC) is known to contribute to junction formation in epithelial cells and to cell fate determination for Drosophila neuroblasts. To elucidate the functions of aPKClambda, one out of two aPKC members, in mouse neocortical neurogenesis, a Nestin-Cre mediated conditional gene targeting system was employed. In conditional aPKClambda knockout mice, neuroepithelial cells of the neocortical region lost aPKClambda protein at embryonic day 15 and demonstrated a loss of adherens junctions, retraction of apical processes and impaired interkinetic nuclear migration that resulted in disordered neuroepithelial tissue architecture. These results are evidence that aPKClambda is indispensable for the maintenance of adherens junctions and may function in the regulation of adherens junction integrity upon differentiation of neuroepithelial cells into neurons. In spite of the loss of adherens junctions in the neuroepithelium of conditional aPKClambda knockout mice, neurons were produced at a normal rate. Therefore, we concluded that, at least in the later stages of neurogenesis, regulation of cell cycle exit is independent of adherens junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号