首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degeneration of hair cells and spiral ganglion neurons due to acoustic trauma and various ototoxins is a major cause of hearing loss. Although our previous study demonstrates that specific neurotrophins protect spiral ganglion neurons from ototoxic insult, they do not protect hair cells. In the present experiments, we used postnatal rat cochlear explant cultures to identify molecules that protect hair cells from ototoxic damage. Of 51 compounds examined, only concanavalin A (Con A) significantly protected hair cells from gentamicin. A dose-dependent study of Con A showed that maximal protection occurred at 100 nM. The protective effects of Con A on hair cells were confirmed with confocal microscopy and paraffin sectioning of the cultures. Several experiments were performed to examine the mechanism of protection by Con A. Incubation of Con A with gentamicin did not form a complex and coaddition of Con A and gentamicin to Escherichia coli cultures did not interfere with the antibiotic activity of gentamicin. However, Lyso-Tracker staining and gentamicin immunocytochemistry provided evidence that preincubation with Con A blocked gentamicin uptake into hair cells. Considered together, these findings may help elucidate the ototoxic mechanism of aminoglycoside antibiotics, and suggest that Con A may be of therapeutic value in prevention of aminoglycoside-induced hearing loss.  相似文献   

2.
Macrophages are the primary effector cells of the innate immune system and are also activated in response to tissue injury. The avian cochlea contains a population of resident macrophages, but the precise function of those cells is not known. The present study characterized the behavior of cochlear macrophages after aminoglycoside ototoxicity and also examined the possible role of macrophages in sensory regeneration. We found that the undamaged chick cochlea contains a large resting population of macrophages that reside in the hyaline cell region, immediately outside the abneural (inferior) border of the sensory epithelium. Following ototoxic injury, macrophages appear to migrate out of the hyaline cell region and towards the basilar membrane, congregating immediately below the lesioned sensory epithelium. In order to determine whether recruited macrophages contribute to the regeneration of sensory receptors, we quantified supporting cell proliferation and hair cell recovery after the elimination of most resident macrophages via application of liposomally-encapsulated clodronate. Examination of macrophage-depleted specimens at two days following ototoxic injury revealed no deficits in hair cell clearance, when compared to normal controls. In addition, we found that elimination of macrophages did not affect either regenerative proliferation of supporting cells or the production of replacement hair cells. However, we did find that macrophage-depleted cochleae contained reduced numbers of proliferative mesothelial cells below the basilar membrane. Our data suggest that macrophages are not required for normal debris clearance and regeneration, but that they may play a role in the maintenance of the basilar membrane.  相似文献   

3.
Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.  相似文献   

4.
Aminoglycoside antibiotics, like gentamicin, kill inner ear sensory hair cells in a variety of species including chickens, mice, and humans. The zebrafish (Danio rerio) has been used to study hair cell cytotoxicity in the lateral line organs of larval and adult animals. Little is known about whether aminoglycosides kill the hair cells within the inner ear of adult zebrafish. We report here the ototoxic effects of gentamicin on hair cells in the saccule, the putative hearing organ, and utricle of zebrafish. First, adult zebrafish received a single 30 mg/kg intraperitoneal injection of fluorescently-tagged gentamicin (GTTR) to determine the distribution of gentamicin within inner ear sensory epithelia. After 4 hours, GTTR was observed in hair cells throughout the saccular and utriclar sensory epithelia. To assess the ototoxic effects of gentamicin, adult zebrafish received a single 250 mg/kg intraperitoneal injection of gentamicin and, 24 hours later, auditory evoked potential recordings (AEPs) revealed significant shifts in auditory thresholds compared to untreated controls. Zebrafish were then euthanized, the inner ear fixed, and labeled for apoptotic cells (TUNEL reaction), and the stereociliary bundles of hair cells labeled with fluorescently-tagged phalloidin. Whole mounts of the saccule and utricle were imaged and cells counted. There were significantly more TUNEL-labeled cells found in both organs 4 hours after gentamicin injection compared to vehicle-injected controls. As expected, significantly fewer hair cell bundles were found along the rostral-caudal axis of the saccule and in the extrastriolar and striolar regions of the utricle in gentamicin-treated animals compared to untreated controls. Therefore, as in other species, gentamicin causes significant inner ear sensory hair cell death and auditory dysfunction in zebrafish.  相似文献   

5.
Programmed cell death (PCD) is an important process in development and disease, as it allows the body to rid itself of unwanted or damaged cells. However, PCD pathways can also be activated in otherwise healthy cells. One such case occurs in sensory hair cells of the inner ear following exposure to ototoxic drugs, resulting in hearing loss and/or balance disorders. The intracellular pathways that determine if hair cells die or survive following this or other ototoxic challenges are incompletely understood. We use the larval zebrafish lateral line, an external hair cell-bearing sensory system, as a platform for profiling cell death pathways activated in response to ototoxic stimuli. In this report the importance of each pathway was assessed by screening a custom cell death inhibitor library for instances when pathway inhibition protected hair cells from the aminoglycosides neomycin or gentamicin, or the chemotherapy agent cisplatin. This screen revealed that each ototoxin likely activated a distinct subset of possible cell death pathways. For example, the proteasome inhibitor Z-LLF-CHO protected hair cells from either aminoglycoside or from cisplatin, while d-methionine, an antioxidant, protected hair cells from gentamicin or cisplatin but not from neomycin toxicity. The calpain inhibitor leupeptin primarily protected hair cells from neomycin, as did a Bax channel blocker. Neither caspase inhibition nor protein synthesis inhibition altered the progression of hair cell death. Taken together, these results suggest that ototoxin-treated hair cells die via multiple processes that form an interactive network of cell death signaling cascades.  相似文献   

6.
Isolation and culture of hair cell progenitors from postnatal rat cochleae   总被引:14,自引:0,他引:14  
Cochlear hair cells are a terminally differentiated cell population that is crucial for hearing. Although recent work suggests that there are hair cell progenitors in postnatal mammalian cochleae, isolation and culture of pure hair cell progenitors from a well-defined cochlear area have not been reported. Here we present an experimental method that allows isolation and culture of hair cell progenitors from postnatal rat cochleae. These progenitor cells are isolated from the lesser epithelial ridge (LER, or outer spiral sulcus cell) area of pre-plated neonatal rat cochlear segments. They express the same markers as LER cells in vivo, including ZO1, Islet1, Hes1, and Hes5. When these cells are induced to express Hath1, they show the potential to differentiate into hair cell-like cells. Interestingly, these cells can be lifted from monolayer cultures and maintained in aggregate cultures in which spheres can be formed. Hair cell progenitors in the spheres display their proliferating capability and express only epithelial markers. Furthermore, when these spheres are mixed with dissociated mesenchymal cells prepared from postnatal rat utricular whole mounts, and replated onto a collagen substratum, the epithelial progenitor cells are able to differentiate into cells expressing markers of hair cells and supporting cells in epithelial islands, which mirrors the inner ear sensory epithelium in vivo. Successful isolation and culture of hair cell progenitors from the mammalian cochlea will facilitate studies on gene expression profiling and mechanism of differentiation/regeneration of hair cells, which are crucial for repairing hearing loss.  相似文献   

7.
Emx2 is a homeodomain protein that plays a critical role in inner ear development. Homozygous null mice die at birth with a range of defects in the CNS, renal system and skeleton. The cochlea is shorter than normal with about 60% fewer auditory hair cells. It appears to lack outer hair cells and some supporting cells are either absent or fail to differentiate. Many of the hair cells differentiate in pairs and although their hair bundles develop normally their planar cell polarity is compromised. Measurements of cell polarity suggest that classic planar cell polarity molecules are not directly influenced by Emx2 and that polarity is compromised by developmental defects in the sensory precursor population or by defects in epithelial cues for cell alignment. Planar cell polarity is normal in the vestibular epithelia although polarity reversal across the striola is absent in both the utricular and saccular maculae. In contrast, cochlear hair cell polarity is disorganized. The expression domain for Bmp4 is expanded and Fgfr1 and Prox1 are expressed in fewer cells in the cochlear sensory epithelium of Emx2 null mice. We conclude that Emx2 regulates early developmental events that balance cell proliferation and differentiation in the sensory precursor population.  相似文献   

8.
Hearing loss and balance disturbances are often caused by death of mechanosensory hair cells, which are the receptor cells of the inner ear. Since there is no cell line that satisfactorily represents mammalian hair cells, research on hair cells relies on primary organ cultures. The best-characterized in vitro model system of mature mammalian hair cells utilizes organ cultures of utricles from adult mice (Figure 1) 1-6. The utricle is a vestibular organ, and the hair cells of the utricle are similar in both structure and function to the hair cells in the auditory organ, the organ of Corti. The adult mouse utricle preparation represents a mature sensory epithelium for studies of the molecular signals that regulate the survival, homeostasis, and death of these cells.Mammalian cochlear hair cells are terminally differentiated and are not regenerated when they are lost. In non-mammalian vertebrates, auditory or vestibular hair cell death is followed by robust regeneration which restores hearing and balance functions 7, 8. Hair cell regeneration is mediated by glia-like supporting cells, which contact the basolateral surfaces of hair cells in the sensory epithelium 9, 10. Supporting cells are also important mediators of hair cell survival and death 11. We have recently developed a technique for infection of supporting cells in cultured utricles using adenovirus. Using adenovirus type 5 (dE1/E3) to deliver a transgene containing GFP under the control of the CMV promoter, we find that adenovirus specifically and efficiently infects supporting cells. Supporting cell infection efficiency is approximately 25-50%, and hair cells are not infected (Figure 2). Importantly, we find that adenoviral infection of supporting cells does not result in toxicity to hair cells or supporting cells, as cell counts in Ad-GFP infected utricles are equivalent to those in non-infected utricles (Figure 3). Thus adenovirus-mediated gene expression in supporting cells of cultured utricles provides a powerful tool to study the roles of supporting cells as mediators of hair cell survival, death, and regeneration.  相似文献   

9.
The development of the mammalian cochlea is an example of patterning in the peripheral nervous system. Sensory hair cells and supporting cells in the cochlea differentiate via regional and cell fate specification. The Notch signaling components shows both distinct and overlapping expression patterns of Notch1 receptor and its ligands Jagged1 (Jag1) and Jagged2 (Jag2) in the developing auditory epithelium of the rat. On embryonic day 16 (E16), many precursor cells within the K?lliker's organ immunostained for the presence of both Notch1 and Jag1, while the area of hair cell precursors did not express either Notch1 and Jag1. During initial events of hair cell differentiation between E18 and birth, Notch1 and Jag1 expression predominated in supporting cells and Jag2 in nascent hair cells. Early after birth, Jag2 expression decreased in hair cells while the pattern of Notch1 expression now included both supporting cells and hair cells. We show that the normal pattern of hair cell differentiation is disrupted by alteration of Notch signaling. A decrease of either Notch1 or Jag1 expression by antisense oligonucleotides in cultures of the developing sensory epithelium resulted in an increase in the number of hair cells. Our data suggest that the Notch1 signaling pathway is involved in a complex interplay between the consequences of different ligand-Notch1 combinations during cochlear morphogenesis and the phases of hair cell differentiation.  相似文献   

10.
The endorgans of the inner ear of the gar were examined using transmission and scanning electron microscopy as well as nerve staining. The ultrastructure of the sensory hair cells and supporting cells of the gar ear are similar to cells in other bony fishes, whereas there are significant differences between the gar and other bony fishes in the orientations patterns of the sensory hair cells on the saccular and lagenar sensory epithelia. The saccular sensory epithelium has two regions, a main region and a secondary region ventral to the main region. The ciliary bundles on the main region are divided into two groups, one oriented dorsally and the other ventrally. Furthermore, as a result of curvature of the saccular sensory epithelium, the dorsal and ventral ciliary bundles on the rostral portion of the epithelium are rotated ninety degrees and are thus oriented on the animal's rostro-caudal axis. Hair cells on the secondary region are generally oriented ventrally. The lagenar epithelium has three groups of sensory hair cells. The groups on the rostral and caudal ends of the macula are oriented dorsally, whereas the middle group is oriented ventrally. Hair cell orientations on the utricular epithelium and macula neglecta are similar to those in other bony fishes. Nerve fiber diameters can be divided into three size classes, 1-8 microns, 9-13 microns, and 14 microns or more, with the smallest size class containing the majority of fibers. The distribution of the various classes of fiber diameters is not the same in nerve branches to each of the end organs. Similarly, the ratio of hair cells to axons differs in each end organ. The highest hair cell to axon ratio is in the utricle (23:1) and the smallest is in the macula neglecta (7:1). The number of sensory hair cells far exceed the number of eighth nerve axons in all sensory epithelia.  相似文献   

11.
12.
Sensory hair cells from the striolar region (striolar hair cells) of the utricle and the lagena of the ear of a teleost fish Astronotus ocellatus (Cuvier) ear are sensitive to gentamicin sulphate, an ototoxic drug. In contrast, sensory hair cells from outside the striolar region (extra-striolar hair cells) are not sensitive to gentamicin. These data, combined with results from studies showing different ultrastructural features and different immunoreactivity to a calcium binding protein, S-100, lead to the suggestion that there are distinguishable types of hair cells in these endorgans. These results add to the increasing evidence that classifying the sensory hair cells of fish ears only as the traditional 'vestibular type II' may be inadequate for properly understanding structure and function of the fish ear.  相似文献   

13.
Warchol  Mark E. 《Brain Cell Biology》1999,28(10-11):889-900
Prior studies have shown that macrophages are recruited to sites of hair cell lesions in the avian inner ear in vitro (Warchol, 1997) and in vivo (Bhave et al., 1998). Although the avian ear has a high capacity for sensory regeneration (Oberholtzer & Corwin, 1997; Stone et al., 1998), the role of macrophages in the regenerative process is uncertain. The present study examined the possible influence of macrophages and immune cytokines on regenerative proliferation in the avian utricle, one of the sensory endorgans of the vestibular system. Utricles from post-hatch chicks were placed in organ culture and hair cell lesions were created by incubation in neomycin. The cultures were then maintained for an additional 24–48 hours in vitro, and some cultures were treated with dexamethasone, which inhibits macrophage activation and cytokine production. Following fixation, resident macrophages were identified by immunoreactivity to CD68. Labeled macrophages were present in all specimens and increased numbers of macrophages were observed following neomycin treatment. Regenerative proliferation in dexamethasone-treated specimens was reduced by about 50%, relative to untreated controls. Additional experiments showed that two macrophage secretory products—TGF-α and TNF-α—enhanced the proliferation of utricular supporting cells. The results are consistent with a role for macrophages in hair cell regeneration.  相似文献   

14.
Hair cell regeneration in the avian auditory epithelium   总被引:2,自引:0,他引:2  
Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing significant and functional regeneration in mammals.  相似文献   

15.
Our senses of hearing and balance depend upon hair cells, the sensory receptors of the inner ear. Millions of people suffer from hearing and balance deficits caused by damage to hair cells as a result of exposure to noise, aminoglycoside antibiotics, and antitumor drugs. In some species such damage can be reversed through the production of new cells. This proliferative response is limited in mammals but it has been hypothesized that damaged hair cells might survive and undergo intracellular repair. We examined the fate of bullfrog saccular hair cells after exposure to a low dose of the aminoglycoside antibiotic gentamicin to determine whether hair cells could survive such treatment and subsequently be repaired. In organ cultures of the bullfrog saccule a combination of time-lapse video microscopy, two-photon microscopy, electron microscopy, and immunocytochemistry showed that hair cells can lose their hair bundle and survive as bundleless cells for at least 1 week. Time-lapse and electron microscopy revealed stages in the separation of the bundle from the cell body. Scanning electron microscopy (SEM) of cultures fixed 2, 4, and 7 days after antibiotic treatment showed that numerous new hair bundles were produced between 4 and 7 days of culture. Further examination revealed hair cells with small repaired hair bundles alongside damaged remnants of larger surviving bundles. The results indicate that sensory hair cells can undergo intracellular self-repair in the absence of mitosis, offering new possibilities for functional hair cell recovery and an explanation for non-proliferative recovery.  相似文献   

16.
The upside-down swimming catfish (Synodontis nigriventris) has unique behavior, i.e., it frequently shows a stable upside-down posture during swimming and resting. To examine whether the unique postural control in S. nigriventris results from the characteristics of the vestibular organ, we observed the morphological aspects of the otolith and the orientation of sensory hair cells in the utricle. Soft X-ray densitometry analysis showed that the transmittance of soft X-rays in the otolith of S. nigriventris was higher than that in a closely related species (Synodontis multipunctatus) belonging to Synodontis family, goldfish (Carassius auratus) or miniature catfish (Corydoras paleatus) which shows upside-up swimming. The higher transmittance of soft X-rays suggests that the density of the otolith in S. nigriventris is lower than that in S. multipunctatus, C. auratus or C. paleatus. It is possible that the low density of the otolith may have a relation to the control of the unique upside-down posture of S. nigriventris. The hair cells in S. nigriventris were present at the ventral to ventro-lateral site of the utricular epithelium, forming a single hair cell layer as in the other 3 species of fish. The orientation of the sensory hair cells does not appear to cause the unique postural control.  相似文献   

17.
Ebp1, an ErbB-3 binding protein, translocates from the cytoplasm to the nucleus of human breast cancer cells after treatment with the ErbB-3 ligand, heregulin. The purpose of these studies was to examine the effects of ectopic expression of ebp1 on the biological properties of human ErbB-3-expressing breast carcinoma cell lines. Ectopic expression of ebp1 in ErbB-2, ErbB-3-expressing breast carcinoma cell lines resulted in inhibition of colony formation, a decreased proliferation rate, an accumulation of cells in the G2/M phase of the cell cycle, and suppression of growth in soft agar. Ectopic expression of ebp1 led to a more differentiated phenotype in AU565 breast cancer cells, as evidenced by increased expression of lipid droplets and of the milk protein casein. Basal phosphorylation of extracellular regulated kinases (Erks) 1 and 2, kinases activated by heregulin treatment, was also observed in ebp1 transfectants. The promoter for the intercellular adhesion molecule-1 gene, a heregulin-inducible gene, was constitutively activated in ebp1 transfectants as determined by reporter construct analysis. These data demonstrate that ectopic expression of the ErbB-3 binding protein Ebp1 inhibits proliferation and induces differentiation of ErbB-2, ErbB-3-expressing human breast carcinoma cell lines.  相似文献   

18.
19.
Our senses of hearing and balance depend upon hair cells, the sensory receptors of the inner ear. Millions of people suffer from hearing and balance deficits caused by damage to hair cells as a result of exposure to noise, aminoglycoside antibiotics, and antitumor drugs. In some species such damage can be reversed through the production of new cells. This proliferative response is limited in mammals but it has been hypothesized that damaged hair cells might survive and undergo intracellular repair. We examined the fate of bullfrog saccular hair cells after exposure to a low dose of the aminoglycoside antibiotic gentamicin to determine whether hair cells could survive such treatment and subsequently be repaired. In organ cultures of the bullfrog saccule a combination of time‐lapse video microscopy, two‐photon microscopy, electron microscopy, and immunocytochemistry showed that hair cells can lose their hair bundle and survive as bundleless cells for at least 1 week. Time‐lapse and electron microscopy revealed stages in the separation of the bundle from the cell body. Scanning electron microscopy (SEM) of cultures fixed 2, 4, and 7 days after antibiotic treatment showed that numerous new hair bundles were produced between 4 and 7 days of culture. Further examination revealed hair cells with small repaired hair bundles alongside damaged remnants of larger surviving bundles. The results indicate that sensory hair cells can undergo intracellular self‐repair in the absence of mitosis, offering new possibilities for functional hair cell recovery and an explanation for non‐proliferative recovery. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 81–92, 2002; DOI 10.1002/neu.10002  相似文献   

20.
Examination of the lateral line canals in the Epaulette Shark reveals a much more differentiated sensory system than previously reported from any elasmobranch. Two main types of lateral line canals are found. In one type rounded patches of sensory epithelia are separated by elevations of the canal floor. The other type is a straight canal without restrictions and with an almost continuous sensory epithelium. In addition, we found epithelia (type A) with very long apical microvilli on the supporting cells. These microvilli reach beyond the stereovilli of the hair cells. Another type (B) of sensory epithelium has short microvilli on the supporting cells. In this latter type of epithelium the stereovilli of the hair cells are comparatively tall and reach out beyond the supporting cell microvilli.
  New hair cells are found widely in both types of sensory epithelia. These always occur as single cells, unlike those described in teleost lateral line canal sensory epithelia where new hair cells seem to form in pairs. Dying hair cells are also widespread, indicating a continuous turnover of hair cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号