首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Minagawa  Y Kasuya  S Baba  G Knapp  J P Skelly 《Steroids》1986,47(2-3):175-188
Identification of 6 beta-hydroxydexamethasone as a major urinary metabolite of dexamethasone in man has been accomplished by nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. Mass fragmentographic measurements revealed that more than 30% of the intravenously or orally administered dexamethasone dose was excreted in the 24-h urine as 6 beta-hydroxydexamethasone, while only a small fraction of the dose was excreted as unchanged dexamethasone and its glucuronic acid conjugate.  相似文献   

2.
1. After oral administration of acetylruthenocene to rats, metabolites were detected in bile and urine. 2. The major metabolite, which is present in both bile and urine, is a glucuronide with the structure: C5H5-Ru-C5H4-CO-CH2-O-C6H9O6 3. The metabolite was identified by mass spectrometry of the permethylated glucuronide and mass spectrometry and n.m.r. of the aglycone. 4. The nature of the metabolite is discussed, and a comparison is made with the metabolism of the benzene analogue, acetophenone.  相似文献   

3.
4.
The cyclopentenone isoprostanes (A(2)/J(2)-IsoPs) are formed in significant amounts in humans and rodents esterified in tissue phospholipids. Nonetheless, they have not been detected unesterified in the free form, presumably because of their marked reactivity. A(2)/J(2)-IsoPs, similar to other electrophilic lipids such as 15-deoxy-Delta(12,14)-prostaglandin J(2) and 4-hydroxynonenal, contain a highly reactive alpha,beta-unsaturated carbonyl, which allows these compounds to react with thiol-containing biomolecules to produce a range of biological effects. We sought to identify and characterize in rats the major urinary metabolite of 15-A(2t)-IsoP, one of the most abundant A(2)-IsoPs produced in vivo, in order to develop a specific biomarker that can be used to quantify the in vivo production of these molecules. Following intravenous administration of 15-A(2t)-IsoP containing small amounts of [(3)H(4)]15-A(2t)-IsoP, 80% of the radioactivity excreted in the urine remained in aqueous solution after extraction with organic solvents, indicating the formation of a polar conjugate(s). Using high pressure liquid chromatography/mass spectrometry, the major urinary metabolite of 15-A(2t)-IsoP was determined to be the mercapturic acid sulfoxide conjugate in which the carbonyl at C9 was reduced to an alcohol. The structure was confirmed by direct comparison to a synthesized standard and via various chemical derivatizations. In addition, this metabolite was found to be formed in significant quantities in urine from rats exposed to an oxidant stress. The identification of this metabolite combined with the finding that these metabolites are produced in in vivo settings of oxidant stress makes it possible to use this method to quantify, for the first time, the in vivo production of cyclopentenone prostanoids.  相似文献   

5.
[11,12-3H2]Prostaglandin E3 was administered subcutaneously into male Sprague-Dawley rats in doses of 0.4 microgram-10 mg/kg body weight. 40-60% of the administered radioactivity was excreted in the urine. The major metabolite was isolated by solid phase extraction followed by three steps of high-performance liquid chromatography. The structure of the major metabolite (5-11% of the administered radioactivity) was 7 alpha,11 alpha-dihydroxy-5-ketotetranorprosta-9,13-dienoic acid as shown by gas-liquid chromatography-mass spectrometry and by its conversion into 11 alpha-hydroxy-5-ketotetranorprosta-4(8),9, 13-trienoic acid.  相似文献   

6.
Urine samples from mice which had received N,N-dimethylformamide were investigated by high field 1H-NMR spectroscopy. The most prominent signals in the N-CH3 region had chemical shifts identical with those of N,N-dimethylformamide (delta 2.85, 3.01) and N-(hydroxymethyl)-N-methylformamide (delta 2.91, 3.05). Resonances downfield of delta 7.5 (from formyl protons) also coincided with those of the reference formamides. When [14C]methyl-labelled N,N-dimethylformamide was injected and urine samples investigated by radio thin layer chromatography, the major area of radioactivity corresponded to the Rf of N-(hydroxymethyl)-N-methylformamide. Dimethylamine and methylamine were found to be minor metabolites of N,N-dimethylformamide.  相似文献   

7.
Thromboxane B2 (TxB2) was biosynthesized from prostaglandin endoperoxides (PGG2, PGH2) using guinea pig lung microsomes and infused into an unanesthetized monkey. Urine was collected and TxB2 metabolites were isolated by reversed phase partition chromatography and high performance liquid chromatography. A major metabolite (TxB2-M) was found to be excreted in greater than two-fold abundance relative to other metabolites. Its structure was determined by gas chromatography-mass spectrometry to be dinor-thromboxane B2. In vitro incubation of TxB2 with rat liver mitochondria yielded a C18 derivative with a mass spectrum identical to that of TxB2-M, substantiating that the major urinary metabolite of TxB2 in the monkey is a product of a single step of beta-oxidation.  相似文献   

8.
Benzo(a)pyrene metabolites were isolated after incubation of [14C]-benzo(a)pyrene with the green alga, Selenastrum capricornutum. A significant amount of radioactivity chromatographed in the dihydrodiol region which did not coelute with any of the previously identified dihydrodiol metabolites isolated from this system. Following characterization by mass spectrometry, fluorescence spectroscopy, and high pressure liquid chromatography, this metabolite was identified as the cis-11,12-dihydro-11,12-dihydroxybenzo(a)pyrene. This metabolite has not been identified previously as a metabolite formed in a plant system.  相似文献   

9.
The identification and polarity of release of the major metabolite of 12-HETE produced by cultured canine renal tubular epithelial cells was determined. When incubated with 1.0 microM [3H]12-HETE for 1 h, cultured Madin Darby Canine Kidney (MDCK) cells converted 35% of the radiolabeled 12-HETE to a more polar metabolite. Following high performance liquid chromatography isolation and chemical derivatization, gas-liquid chromatography combined with mass spectrometry was used to identify the compound as 8-hydroxyhexadecatrienoic acid [16:3(8-OH)]. The electron impact mass spectrum of the hydrogenated derivative contained major ions at m/z = 215 and 245, corresponding to cleavage on either side of the trimethylsilyl group, and chemical ionization with NH3 yielded a major ion at m/z = 359, corresponding to the protonated molecular weight of the methyl ester. Incubation with 25 mM alpha-naphthoflavone, 20 microM nordihydroguaiaretic acid, and 0.1 mM 4-pentenoic acid failed to inhibit the formation 16:3 (8-OH), suggesting that the formation of 16:3 (8-OH) is not mediated by the cytochrome P-450, lipoxygenase, or mitochondrial beta-oxidation pathways. When grown on fibronectin-treated polycarbonate filters, MDCK cells released the 16:3 (8-OH) in both the apical and basolateral directions, irrespective of which side the 12-HETE was encountered. These results demonstrate the conversion of 12-HETE to a 16-carbon monohydroxy derivative by renal tubular epithelium and suggest that this product can be released to either the potential urinary space or the kidney parenchyma and renal microcirculation.  相似文献   

10.
Thromboxane B2 (TxB2) was biosynthesized from prostaglandin endoperoxides (PGG2, PGH2) using guinea pig lung microsomes and infused into an unanesthetized monkey. Urine was collected and TxB2 metabolites were isolated by reversed phase partition chromatography and high performance liquid chromatography. A major metabolite (TxB2-M) was found to be excreted in greater than two-fold abundance relative to other metabolites. Its structure was determined by gas chromatography-mass spectrometry to be dinorthromboxane B2. In vitro incubation of TxB2 with rat liver mitochondria yielded a C18 derivative with a mass spectrum identical to that of TxB2-M, substantiating that the major urinary metabolite of TxB2 in the monkey is a product of a single step of β-oxidation.  相似文献   

11.
12.
Gambogic acid (GA), a promising anticancer candidate, is a polyprenylated xanthone abundant in the resin of Garcinia morella and Garcinia hanburyi. The major circulating metabolite of GA in human, 10-hydroxygambogic acid (10-OHGA), was identified by comparison of the retention time and mass spectra with those of reference standard using liquid chromatography–tandem mass spectrometry. The reference standard of 10-OHGA was isolated from bile samples of rats after intravenous injection of GA injection, and its structure was confirmed by NMR. Then, a selective and sensitive method was developed for the quantitative determination of this metabolite in human plasma. After liquid–liquid extraction by ethyl acetate, the analyte and the internal standard were separated on a Sepax HPC18 column (100 mm × 2.1 mm i.d., 3.0 μm) with a mobile phase of 10 mM ammonium acetate water solution containing 0.1% formic acid–acetonitrile (20:80, v/v). The detection was performed on a single quadrupole mass spectrometer equipped with electrospray ionization (ESI) source. The calibration curve was linear over the range of 3–2000 ng/mL for 10-OHGA. The developed quantification method can now be used for the pharmacokinetic and pharmacological studies of 10-OHGA after intravenous infusion of GA injection in human.  相似文献   

13.
14.
Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of [3H]LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.  相似文献   

15.
Calcitroic acid (1 alpha-hydroxy-23 carboxy-24,25,26,27-tetranorvitamin D(3)) is known to be the major water-soluble metabolite produced during the deactivation of 1 alpha,25-dihydroxyvitamin D(3). This deactivation process involves a series of oxidation reactions at C(24) and C(23) leading to side-chain cleavage and, ultimately, formation of the calcitroic acid. Like 1 alpha,25-dihydroxyvitamin D(3), 1 alpha,25-dihydroxyvitamin D(2) is also known to undergo side-chain oxidation; however, to date there has been no evidence suggesting that 1 alpha,25-dihydroxyvitamin D(2) undergoes side-chain cleavage. To investigate this possibility, we studied 1 alpha,25-dihydroxyvitamin D(2) metabolism in HPK1A-ras cells as well as the well characterized perfused rat kidney system. Lipid and aqueous-soluble metabolites were prepared for characterization. Aqueous-soluble metabolites were subjected to reverse-phase HPLC analysis. The major aqueous-soluble metabolite from both the kidney and cell incubations comigrated with authentic calcitroic acid on two reverse-phase HPLC columns of different chemistry. The putative calcitroic acid from the cell and kidney incubations was methylated and found to comigrate with methylated authentic standard on straight-phase and reverse-phase HPLC columns. The identity of the methylated metabolite from cell incubations was also confirmed by mass spectral analysis. These data show, for the first time, that calcitroic acid is a major terminal product for the deactivation of 1 alpha,25-dihydroxyvitamin D(2). Intermediates leading to the formation of the calcitroic acid in the 1 alpha,25-dihydroxyvitamin D(2) metabolism pathway are currently being studied.  相似文献   

16.
N-(2-propenal)ethanolamine was isolated from rat and human urine using anion exchange, cation exchange, size exclusion and high performance liquid chromatography. Acid hydrolysis of the isolate yielded malondialdehyde (MDA) and ethanolamine (E) in a 1:1 molar ratio. A 1:1 E-MDA adduct was synthesized and found to be chromatographically inseparable from the urinary metabolite. Its NMR and UV spectra and lack of fluorescence were consistent with those of an enaminal formed by a Schiff's base reaction. The identification in urine of an adduct of MDA with ethanolamine, and the previous identification of an adduct with serine, constitutes direct evidence for the oxidative decomposition in vivo of polyunsaturated fatty acids present in the relevant phospholipids. The absence in urine of MDA adducts with other alpha-amino compounds (at least in comparable amounts) indicates that the ethanolamine and serine derivatives are formed in situ and not as a result of reactions with MDA generated in enzymatic processes.  相似文献   

17.
N-2-(Propenal) serine (S-MDA) was synthesized by reacting serine with malondialdehyde (MDA) and was shown to be a 1:1 adduct of the starting materials. The synthetic compound was found to be identical to a metabolite of MDA excreted in rat and human urine. The identity of the metabolite was confirmed by isolation and hydrolysis to yield equimolar quantities of serine and MDA. The presence of S-MDA in urine constitutes direct evidence for oxidative decomposition of phospholipids by lipid peroxidation in vivo.  相似文献   

18.
Summary A novel approach of aerobic growth followed by anaerobic growth was used to identify the anaerobic end products of the facultative organismCellulomonas sp. (ATCC 21399) utilizing cellulose as the substrate. The organism was found to produce an equimolar mixture of ethanol and acetic acid as the two carbon end products.  相似文献   

19.
Although orally administered malondialdehyde (MDA), a reactive hepatotoxic and mutagenic product of lipid peroxidation, is extensively metabolized to CO2, a portion is excreted in the urine in acid labile "bound" forms. Since much of the MDA in the diet is apparently bound to protein, the metabolism of protein-bound MDA was investigated. MDA was reacted with serum albumin and fed to rats. A urinary metabolite was detected which was shown to be identical to a metabolite of the lysine-MDA enaminal N epsilon-(2-propenal)lysine. After isolation by ion exchange and high performance liquid chromatography the metabolite was identified using high field nuclear magnetic resonance spectroscopy and fast atom bombardment-mass spectroscopy as N alpha-acetyl-epsilon-(2-propenal)lysine. This compound also was a major urinary metabolite of the Na enol salt of MDA administered by stomach intubation, and was excreted in increased amounts by rats fed a diet containing a highly peroxidizable oil (cod liver oil). It was also detected in the urine of fasted animals after injection with NaMDA, indicating that it is formed as a product of lipid peroxidation in vivo as well as of peroxidation of dietary lipids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号