首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurotransmitter GABA exerts a strong negative influence on the production of adult-born olfactory bulb interneurons via tightly regulated, non-synaptic GABAergic signaling. After discussing some findings on GABAergic signaling in the neurogenic subventricular zone (SVZ), we provide data suggesting ambient GABA clearance via two GABA transporter subtypes and further support for a non-vesicular mechanism of GABA release from neuroblasts. While GABA works in cooperation with the neurotransmitter glutamate during embryonic cortical development, the role of glutamate in adult forebrain neurogenesis remains obscure. Only one of the eight metabotropic glutamate receptors (mGluRs), mGluR5, has been reported to tonically increase the number of proliferative SVZ cells in vivo, suggesting a local source of glutamate in the SVZ. We show here that glutamate antibodies strongly label subventricular zone (SVZ) astrocytes, some of which are stem cells. We also show that some SVZ neuroblasts express one of the ionotropic glutamate receptors, AMPA/kainate receptors, earlier than previously thought. Collectively, these findings suggest that neuroblast-to-astrocyte GABAergic signaling may cooperate with astrocyte-to-neuroblast glutamatergic signaling to provide strong homeostatic control on the production of adult-born olfactory bulb interneurons. An erratum to this article can be found at  相似文献   

2.
3.
Recent studies suggest that neurons born in the developing basal forebrain migrate long distances perpendicularly to radial glia and that many of these cells reach the developing neocortex. This form of tangential migration, however, has not been demonstrated in vivo, and the sites of origin, pathways of migration and final destinations of these neurons in the postnatal brain are not fully understood. Using ultrasound-guided transplantation in utero, we have mapped the migratory pathways and fates of cells born in the lateral and medial ganglionic eminences (LGE and MGE) in 13.5-day-old mouse embryos. We demonstrate that LGE and MGE cells migrate along different routes to populate distinct regions in the developing brain. We show that LGE cells migrate ventrally and anteriorly, and give rise to the projecting medium spiny neurons in the striatum, nucleus accumbens and olfactory tubercle, and to granule and periglomerular cells in the olfactory bulb. By contrast, we show that the MGE is a major source of neurons migrating dorsally and invading the developing neocortex. MGE cells migrate into the neocortex via the neocortical subventricular zone and differentiate into the transient subpial granule neurons in the marginal zone and into a stable population of GABA-, parvalbumin- or somatostatin-expressing interneurons throughout the cortical plate.  相似文献   

4.
5.
6.
7.
8.
Distinct cortical migrations from the medial and lateral ganglionic eminences   总被引:39,自引:0,他引:39  
Recent evidence suggests that projection neurons and interneurons of the cerebral cortex are generally derived from distinct proliferative zones. Cortical projection neurons originate from the cortical ventricular zone (VZ), and then migrate radially into the cortical mantle, whereas most cortical interneurons originate from the basal telencephalon and migrate tangentially into the developing cortex. Previous studies using methods that label both proliferative and postmitotic cells have found that cortical interneurons migrate from two major subdivisions of the developing basal telencephalon: the medial and lateral ganglionic eminences (MGE and LGE). Since these studies labeled cells by methods that do not distinguish between the proliferating cells and those that may have originated elsewhere, we have studied the contribution of the MGE and LGE to cortical interneurons using fate mapping and genetic methods. Transplantation of BrdU-labeled MGE or LGE neuroepithelium into the basal telencephalon of unlabeled telencephalic slices enabled us to follow the fate of neurons derived from each of these primordia. We have determined that early in neurogenesis GABA-expressing cells from the MGE tangentially migrate into the cerebral cortex, primarily via the intermediate zone, whereas cells from the LGE do not. Later in neurogenesis, LGE-derived cells also migrate into the cortex, although this migration occurs primarily through the subventricular zone. Some of these LGE-derived cells invade the cortical plate and express GABA, while others remain within the cortical proliferative zone and appear to become mitotically active late in gestation. In addition, by comparing the phenotypes of mouse mutants with differential effects on MGE and LGE migration, we provide evidence that the MGE and LGE may give rise to different subtypes of cortical interneurons.  相似文献   

9.
During early formation of the eye, the optic vesicle becomes partitioned into a proximal domain that forms the optic nerve and a distal domain that forms the retina. In this study, we investigate the activity of Nodal, Hedgehog (Hh) and Fgf signals and Vax family homeodomain proteins in this patterning event. We show that zebrafish vax1 and vax2 are expressed in overlapping domains encompassing the ventral retina, optic stalks and preoptic area. Abrogation of Vax1 and Vax2 activity leads to a failure to close the choroid fissure and progressive expansion of retinal tissue into the optic nerve, finally resulting in a fusion of retinal neurons and pigment epithelium with forebrain tissue. We show that Hh signals acting through Smoothened act downstream of the Nodal pathway to promote Vax gene expression. However, in the absence of both Nodal and Hh signals, Vax genes are expressed revealing that other signals, which we show include Fgfs, contribute to Vax gene regulation. Finally, we show that Pax2.1 and Vax1/Vax2 are likely to act in parallel downstream of Hh activity and that the bel locus (yet to be cloned) mediates the ability of Hh-, and perhaps Fgf-, signals to induce Vax expression in the preoptic area. Taking all these results together, we present a model of the partitioning of the optic vesicle along its proximo-distal axis.  相似文献   

10.
Chatzi C  Brade T  Duester G 《PLoS biology》2011,9(4):e1000609
Although retinoic acid (RA) has been implicated as an extrinsic signal regulating forebrain neurogenesis, the processes regulated by RA signaling remain unclear. Here, analysis of retinaldehyde dehydrogenase mutant mouse embryos lacking RA synthesis demonstrates that RA generated by Raldh3 in the subventricular zone of the basal ganglia is required for GABAergic differentiation, whereas RA generated by Raldh2 in the meninges is unnecessary for development of the adjacent cortex. Neurospheres generated from the lateral ganglionic eminence (LGE), where Raldh3 is highly expressed, produce endogenous RA, which is required for differentiation to GABAergic neurons. In Raldh3?/? embryos, LGE progenitors fail to differentiate into either GABAergic striatal projection neurons or GABAergic interneurons migrating to the olfactory bulb and cortex. We describe conditions for RA treatment of human embryonic stem cells that result in efficient differentiation to a heterogeneous population of GABAergic interneurons without the appearance of GABAergic striatal projection neurons, thus providing an in vitro method for generation of GABAergic interneurons for further study. Our observation that endogenous RA is required for generation of LGE-derived GABAergic neurons in the basal ganglia establishes a key role for RA signaling in development of the forebrain.  相似文献   

11.
During telencephalic development, cells from the medial ganglionic eminence (MGE) are thought to migrate to the neocortex to give rise to a majority of cortical GABAergic interneurons. By combining time-lapse video-microscopy, immunofluorescence and pharmacological perturbations in a new in vitro migration assay, we find that MGE-derived cells migrate through the entire extent of the cortex and into the CA fields of the hippocampus, but avoid the dentate gyrus. Migrating neurons initially travel within the marginal zone and intermediate zone, and can enter the cortical plate from either location. Tangential migration is strongly stimulated by BDNF and NT4 and attenuated by the Trk-family inhibitor, K252a, suggesting that migration is regulated by TrkB signaling. Furthermore, TrkB-null mice show a significant decrease in the number of calbindin-positive neurons migrating tangentially in the embryonic cortex. BDNF and NT4 cause rapid activation of PI3-kinase in MGE cells, and inhibition of PI3-kinase (but not of MAP kinase or PLCgamma) dramatically attenuates tangential migration. These observations suggest that TrkB signaling, via PI3-kinase activation, plays an important role in controlling interneuron migration in the developing cerebral cortex.  相似文献   

12.
Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain but is also potentially disease modifying. We show that transplantation of immature telencephalic GABAergic interneurons from the mouse medial ganglionic eminence (MGE) into the adult mouse spinal cord completely reverses the mechanical hypersensitivity produced by peripheral nerve injury. Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve injury-induced neuropathic pain.  相似文献   

13.
14.
15.
GABAergic cortical interneurons, derived from the embryonic medial and caudal ganglionic eminences (MGE and CGE), are functionally and morphologically diverse. Inroads have been made in understanding the roles of distinct cortical interneuron subgroups, however, there are still many mechanisms to be worked out that may contribute to the development and maturation of different types of GABAergic cells. Moreover, altered GABAergic signaling may contribute to phenotypes of autism, schizophrenia and epilepsy. Specific Cre-driver lines have begun to parcel out the functions of unique interneuron subgroups. Despite the advances in mouse models, it is often difficult to efficiently study GABAergic cortical interneuron progenitors with molecular approaches in vivo. One important technique used to study the cell autonomous programming of these cells is transplantation of MGE cells into host cortices. These transplanted cells migrate extensively, differentiate, and functionally integrate. In addition, MGE cells can be efficiently transduced with lentivirus immediately prior to transplantation, allowing for a multitude of molecular approaches. Here we detail a protocol to efficiently transduce MGE cells before transplantation for in vivo analysis, using available Cre-driver lines and Cre-dependent expression vectors. This approach is advantageous because it combines precise genetic manipulation with the ability of these cells to disperse after transplantation, permitting greater cell-type specific resolution in vivo.  相似文献   

16.
17.
18.
Selective cortical interneuron and GABA deficits in cyclin D2-null mice   总被引:2,自引:0,他引:2  
In contrast to cyclin D1 nulls (cD1-/-), mice without cyclin D2 (cD2-/-) lack cerebellar stellate interneurons; the reason for this is unknown. In the present study in cortex, we found a disproportionate loss of parvalbumin (PV) interneurons in cD2-/- mice. This selective reduction in PV subtypes was associated with reduced frequency of GABA-mediated inhibitory postsynaptic currents in pyramidal neurons, as measured by voltage-clamp recordings, and increased cortical sharp activity in the EEGs of awake-behaving cD2-/- mice. Cell cycle regulation was examined in the medial ganglionic eminence (MGE), the major source of PV interneurons in mouse brain, and differences between cD2-/- and cD1-/- suggested that cD2 promotes subventricular zone (SVZ) divisions, exerting a stronger inhibitory influence on the p27 Cdk-inhibitor (Cdkn1b) to delay cell cycle exit of progenitors. We propose that cD2 promotes transit-amplifying divisions in the SVZ and that these ensure proper output of at least a subset of PV interneurons.  相似文献   

19.
The corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated. Here, we show that two distinct GABAergic neuronal subpopulations converge toward the midline prior to the arrival of callosal axons. Using in vivo and ex vivo fate mapping we show that CC GABAergic neurons originate in the caudal and medial ganglionic eminences (CGE and MGE) but not in the lateral ganglionic eminence (LGE). Time lapse imaging on organotypic slices and in vivo analyses further revealed that CC GABAergic neurons contribute to the normal navigation of callosal axons. The use of Nkx2.1 knockout (KO) mice confirmed a role of these neurons in the maintenance of proper behavior of callosal axons while growing through the CC. Indeed, using in vitro transplantation assays, we demonstrated that both MGE‐ and CGE‐derived GABAergic neurons exert an attractive activity on callosal axons. Furthermore, by combining a sensitive RT‐PCR technique with in situ hybridization, we demonstrate that CC neurons express multiple short and long range guidance cues. This study strongly suggests that MGE‐ and CGE‐derived interneurons may guide CC axons by multiple guidance mechanisms and signaling pathways. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 647–672, 2013  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号