首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the period of most active leaf expansion, the foliar dark respiration rate of soybeans (Glycine max cv Williams), grown for 2 weeks in 1000 microliters CO2 per liter air, was 1.45 milligrams CO2 evolved per hour leaf density thickness, and this was twice the rate displayed by leaves of control plants (350 microliters CO2 per liter air). There was a higher foliar nonstructural carbohydrate level (e.g. sucrose and starch) in the CO2 enriched compared with CO2 normal plants. For example, leaves of enriched plants displayed levels of nonstructural carbohydrate equivalent to 174 milligrams glucose per gram dry weight compared to the 84 milligrams glucose per gram dry weight found in control plant leaves. As the leaves of CO2 enriched plants approached full expansion, both the foliar respiration rate and carbohydrate content of the CO2 enriched leaves decreased until they were equivalent with those same parameters in the leaves of control plants. A strong positive correlation between respiration rate and carbohydrate content was seen in high CO2 adapted plants, but not in the control plants.

Mitochondria, isolated simultaneously from the leaves of CO2 enriched and control plants, showed no difference in NADH or malate-glutamate dependent O2 uptake, and there were no observed differences in the specific activities of NAD+ linked isocitrate dehydrogenase and cytochrome c oxidase. Since the mitochondrial O2 uptake and total enzyme activities were not greater in young enriched leaves, the increase in leaf respiration rate was not caused by metabolic adaptations in the leaf mitochondria as a response to long term CO2 enrichment. It was concluded, that the higher respiration rate in the enriched plant's foliage was attributable, in part, to a higher carbohydrate status.

  相似文献   

2.
Seven-day-old seedlings of two cultivars (Cristalina and UFV ITM1) of Glycine max were inoculated with 0, 3,000, 9,000, or 27,000 eggs of Meloidogyne incognita race 3 or M. javanica and maintained in a greenhouse. Thirty days later, plants were exposed to ¹⁴CO₂ for 4 hours. Twenty hours after ¹⁴CO₂ exposure, the root fresh weight, leaf dry weight, nematode eggs per gram of root, total and specific radioactivity of carbohydrates in roots, and root carbohydrate content were evaluated. Meloidogyne javanica produced more eggs than M. incognita on both varieties. A general increase in root weight and a decrease in leaf weight with increased inoculum levels were observed. Gall tissue appeared to account for most of the root mass increase in seedlings infected with M. javanica. For both nematodes there was an increase of total radioactivity in the root system with increased levels of nematodes, and this was positively related to the number of eggs per gram fresh weight and to the root fresh weight, but negatively related to leaf dry weight. In most cases, specific radioactivities of sucrose and reducing sugars were also increased with increased inoculum levels. Highest specific radioactivities were observed with reducing sugars. Although significant changes were not observed in endogenous levels of carbohydrates, sucrose content was higher than reducing sugars. The data show that nematodes are strong metabolic sinks and significantly change the carbon distribution pattern in infected soybean plants. Carbon partitioning in plants infected with nematodes may vary with the nematode genotype.  相似文献   

3.
Rabe E  Lovatt CJ 《Plant physiology》1984,76(3):747-752
Young, fully expanded leaves from 7-month-old P-deficient citrus rootstock seedlings had levels of nonprotein arginine that were 10- to 50-fold greater than those from P-sufficient control plants. Arginine content of the protein fraction increased 2- to 4-fold in P-deficient leaves. Total arginine content, which averaged 72 ± 6 micromoles per gram dry weight of P-sufficient leaf tissue (mean ± se, n = the four rootstocks) was 207, 308, 241, and 178 micromoles in P-deficient leaves from Citrus limon cv rough lemon, Poncirus trifoliata × C. sinensis cv Carrizo citrange and cv Troyer citrange, and P. trifoliata cv Australian trifoliate orange, respectively. For each rootstock, the accumulation of arginine paralleled an increase in the activity of the pathway for the de novo biosynthesis of arginine. The ratio of the nanomoles NaH14CO3 incorporated into the combined pool of arginine plus urea per gram fresh weight intact leaf tissue during a 3-hour labeling period for P-deficient to P-sufficient plants was 91:34, 49:11, 35:11, and 52:41, respectively. When P-deficient plants were supplied with P, incorporation of NaH14CO3 into arginine plus urea was reduced to the level observed for the P-sufficient control plants of the same age and arginine ceased to accumulate. Arginase and arginine decarboxylase activity were either unaffected or slightly increased during phosphorus deficiency. Taken together, these results provide strong evidence that arginine accumulation during phosphorus deficiency is due to increased activity of the de novo arginine biosynthetic pathway.  相似文献   

4.
Our objective was to examine alterations in carbohydrate status of leaf meristems that are associated with nitrogen-induced changes in leaf elongation rates of tall fescue (Festuca arundinacea Schreb.). Dark respiration rates, concentrations of nonstructural carbohydrates, and soluble proteins were measured in leaf intercalary meristems and adjacent segments of elongating leaves. The two genotypes used differed by 43% in leaf elongation rate. Application of high nitrogen (336 kilograms per hectare) resulted in 140% higher leaf elongation rate when compared to plants receiving low nitrogen (22 kilograms per hectare). Leaf meristems of plants receiving high and low nitrogen had dark respiration rates of 5.4 and 2.9 microliters O2 consumed per milligram structural dry weight per hour, respectively. Concentrations of soluble proteins were lower while concentrations of fructan tended to be slightly higher in leaf meristems of low-nitrogen plants when compared to high-nitrogen plants. Concentrations of reducing sugars, nonreducing sugars, and takadiastase-soluble carbohydrate of leaf meristems were not affected by nitrogen treatment. Total nonstructural carbohydrates of leaf meristems averaged 44 and 39% of dry weight for low- and high-nitrogen plants, respectively. Within the leaf meristem, approximately 74 and 34% of the pool of total nonstructural carbohydrate could be consumed per day in high- and low-nitrogen plants, respectively, assuming no carbohydrate import to the meristem occurred. Plants were able to maintain high concentrations of nonstructural carbohydrates in leaf meristems despite a 3-fold range in leaf elongation rates, suggesting that carbohydrate synthesis and transport to leaf intercalary meristems may not limit leaf growth of these genotypes.  相似文献   

5.
Three tomatoes, Lycopersicon esculentum Mill. cv UC82B, a droughttolerant wild related species, Lycopersicon pennellii (Cor.) D'Arcy, and their F1 hybrid, were grown in containers maintained at three levels of soil moisture. Season-long water use was obtained by summing over the season daily weight losses of each container corrected for soil evaporation. Plant biomass was determined by harvesting and weighing entire dried plants. Season-long water use efficiency (gram dry weight/kilogram H2O) was calculated by dividing the dry biomass by the season-long water use. The season-long water use efficiency was greatest in the wild parent, poorest in the domestic parent, and intermediate (but closer to the wild parent) in the F1 hybrid. Instantaneous water-use efficiency (micromole CO2/millimole H2O) determined by gas exchange measurements on individual leaves was poorly correlated with season-long water use efficiency. However, the relative abundance of stable carbon isotopes of leaf tissue samples was strongly correlated with the season-long water use efficiency. Also, the isotopic composition and the season-long water use efficiency of each genotype alone were strongly negatively correlated with plant dry weight when the dry weight varied as a function of soil moisture.  相似文献   

6.
The effect of maturation on the morphological and photosynthetic characteristics, as well as the expression of two genes involved in photosynthesis in the developing, current year foliage of Eastern larch (Larix laricina [Du Roi]) is described. These effects were observed on foliage during the third growing season after grafting of scions from trees of different ages onto 2 year old rootstock. Specific leaf weight (gram dry weight per square meter), leaf cross-sectional area (per square millimeter), and chlorophyll content (milligram per gram dry weight) all increase with increasing age in long shoot foliage from both indoor- and outdoor-grown trees. Net photosynthesis (NPS) (mole of CO2 per square millimeter per second) increases with age on indoor- but not outdoor-grown trees. NPS also increases with increased chlorophyll content, but outdoor-grown scions of all ages had higher chlorophyll content, and chlorophyll does not appear to be limiting for NPS outdoors. To extend these studies of maturation-related differences in foliar morphology and physiology to the molecular genetic level, sequences were cloned from the cab and rbsS gene families of larch. Both cab and rbcS gene families are expressed in foliage but not in roots, and they are expressed in light-grown seedlings of larch but only at very low levels in dark-grown seedlings (~2% of light-grown seedlings). Steady-state cab mRNA levels are relatively higher (~40%) in newly expanding short shoot foliage from juvenile plants compared to mature plants. Unlike cab, the expression of the rbcS gene family did not seem to vary with age. These data show that the maturation-related changes in morphological and physiological phenotypes are associated with changes in gene expression. No causal relationship has been established, however. Indeed, we conclude that the faster growth of juvenile scions reported previously (MS Greenwood, CA Hopper, KW Hutchison [1989] Plant Physiol 90: 406-412) is not due to increased NPS or cab expression. Long shoot foliage is the dominant foliar type on young trees and its lower specific leaf weight will permit production of more photosynthetic surface area per unit of leaf biomass.  相似文献   

7.
The fruticose thallus of the lichen Cladina stellaris (Opiz.) Brodo can be subdivided into individual whorls of branches of known age. Photosynthesis declines steadily with age from a maximum rate of 0.76 milligram CO2 per gram dry weight per hour in 1-year-old whorls to 0.02 milligram CO2 per gram dry weight per hour after 15 years. Conversely, the dry biomass of the whorls increases up to age 9 years and then approximately levels off. Photosynthesis in whorls older than 15 years is less than 0.01 milligram per gram per hour. Progressive changes in thallus color with age are associated with the observed photosynthetic decline. Whorls aged 6 years and younger together account for 18% of thallus biomass but 50% of photosynthetic activity. The implications of these results for the idea that the lichen symbiosis results in truly integrated organisms with senescence phenomena akin to those in higher plants is discussed.  相似文献   

8.
Two cultivars of soybean (Glycine max [L.] Merr.) were grown in solution with up to 100 millimolar NaCl. Leaf solute potential was −1.1 to −1.2 megapascals in both cultivars without NaCl. At 100 millimolar NaCl leaf solute potential was −3.1 to −3.5 megapascals in Bragg and −1.7 megapascals in Ransom. The decrease in solute potential was essentially proportional to the concentration of NaCl. In both salt susceptible Bragg and salt semitolerant Ransom, leaf proline was no more than 0.4 micromole per gram fresh weight at or below 20 millimolar NaCl. At 40 and 60 millimolar NaCl, Bragg leaf proline levels were near 1.2 and 1.9 micromoles per gram fresh weight, respectively. Proline did not exceed 0.5 micromole per gram fresh weight in Ransom even at 100 millimolar NaCl. Proline accumulated in Bragg only after stress was severe enough to induce injury; therefore proline accumulation is not a sensitive indicator of salt stress in soybean plants.  相似文献   

9.
To gain a better understanding of the mechanism of cold induced sweetening, sugar accumulation in potato, Solanum tuberosum cv Bintje, was compared to the maximum activity of inorganic pyrophosphate (PPi):fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90) and the concentration of two regulatory metabolites. Mature tubers accumulated reducing sugars and sucrose at an almost linear rate of 13.4 and 5.2 micromole per day per gram dry weight at 2°C and 4.5 and 1.3 micromole per day per gram dry weight, respectively, at 4°C. During storage at 8°C sugar accumulation was nil. Sugar accumulation was preceded by a lag phase of about 4 days. The accumulation of reducing sugars persisted for at least 4 weeks, whereas sucrose accumulation declined after 2 weeks of storage. The ratio of glucose:fructose changed concomitantly with sugar increase from 65:35 to equimolarity. The maximum activity of PPi:fructose 6-phosphate 1-phosphotransferase was 2.51 and 2.25 units per gram dry weight during storage at 2 and 8°C, respectively. The temperature coefficient of this enzyme from potatoes kept at 2 or 8°C was 2.12 and 2.48, respectively. The endogenous concentration of fructose 2,6-biphosphate increased from 0.15 to 1 nanomole per gram dry weight during storage at 2 and 4°C but remained the same throughout storage at 8°C. After exposure to 2°C an initial increase in the concentration of PPi was observed from 4.0 to 5.6 nanomoles per gram dry weight. Pyrophosphate concentration did not change during storage at 4°C but decreased slightly at 8°C. All observed changes became annulled after transfer of cold stored tubers to 18°C. These data strongly indicate that PPi:fructose 6-phosphate 1-phosphotransferase can be fully operational in cold stored potato tubers and the lack of increase in PPi concentration supports the functioning of this enzyme during sugar accumulation.  相似文献   

10.
Vertucci CW 《Plant physiology》1989,90(4):1478-1485
The effect of cooling rate on seeds was studied by hydrating pea (Pisum sativum), soybean (Glycine max), and sunflower (Helianthus annuus) seeds to different levels and then cooling them to − 190°C at rates ranging from 1°C/minute to 700°C/minute. When seeds were moist enough to have freezable water (> 0.25 gram H2O/gram dry weight), rapid cooling rates were optimal for maintaining seed vigor. If the seeds were cooled while at intermediate moisture levels (0.12 to 0.20 gram H2O per gram dry weight), there appeared to be no effect of cooling rate on seedling vigor. When seeds were very dry (< 0.08 gram H2O per gram dry weight), cooling rate had no effect on pea, but rapid cooling rates had a marked detrimental effect on soybean and sunflower germination. Glass transitions, detected by differential scanning calorimetry, were observed at all moisture contents in sunflower and soybean cotyledons that were cooled rapidly. In pea, glasses were detectable when cotyledons with high moisture levels were cooled rapidly. The nature of the glasses changed with moisture content. It is suggested that, at high moisture contents, glasses were formed in the aqueous phase, as well as the lipid phase if tissues had high oil contents, and this had beneficial effects on the survival of seeds at low temperatures. At low moisture contents, glasses were observed to form in the lipid phase, and this was associated with detrimental effects on seed viability.  相似文献   

11.
Unselected and sodium sulfate tolerant callus cultures of Brassica napus L. cv Westar were grown on media supplemented with mannitol, NaCl, or Na2SO4. In all cases, growth of tolerant callus, measured on a fresh weight or dry weight basis, was greater than that of unselected callus, which was also subject to necrosis on high levels of salt. Tissue water potential became more negative in both unselected and tolerant callus grown in the presence of mannitol or Na2SO4. Water potentials in unselected callus were more negative than those of the tolerant tissues; but over a range of Na2SO4 concentrations both cultures displayed osmotic adjustment, maintaining relatively constant turgor. Proline accumulation in both unselected and tolerant callus was low (15 to 20 micromoles per gram dry weight) in the absence of stress, but increased on media supplemented with mannitol, NaCl, or Na2SO4. Increases in proline concentration were approximately linear in tolerant callus, reaching a maximum of 130 to 175 micromoles per gram dry weight. In unselected callus, concentrations were higher, reaching 390 to 520 micromoles per gram dry weight. Proline accumulation was correlated with inhibition of growth, and there was a negative correlation between proline concentration and culture age for tolerant callus.  相似文献   

12.
We assessed the contribution of pre-anthesis reserve C to protein and carbohydrate deposition in grains of wheat (Triticum aestivum L.) using a new approach comprised of steady-state 13C/12C labeling and separation of the protein and carbohydrate fractions of mature grains. Experiments were performed with two spring wheat cultivars (Kadett and Star) grown with differential N fertilizer supply over 2 years. Pre-anthesis reserves contributed between 30% and 47% of the C in protein and 8% to 27% of the C in carbohydrates of grains. Partitioning of pre-anthesis C among the grain fractions was strongly dependent on the C/N (w/w) ratio in mobilized pre-anthesis biomass (r2 = 0.92). There appeared to be no significant exchange of pre-anthesis C between amino acids and carbohydrates during redistribution. The mean apparent efficiency of mobilized carbohydrate-C use in grain filling (MECHO, estimated as the mass of pre-anthesis C deposited in grain carbohydrates per gram of pre-anthesis C mobilized from carbohydrates in vegetative plant parts) was 0.72, whereas that of protein-C (MEP) was 0.56. However, MEP and MECHO varied among treatments. MECHO increased with increasing contributions of water-soluble carbohydrates to total pre-anthesis carbohydrate mobilization. MEP decreased with increasing residence time of protein in vegetative biomass. Possible causes for variability of MEP and MECHO are discussed.  相似文献   

13.
The synthesis of Cd-binding peptides (CdBPs) was induced upon addition of 20 micromolar CdCl2 (nonphytotoxic level) to the nutrient solution of hydroponically grown tobacco seedlings (Nicotiana rustica var Pavonii). Amino acid analysis showed that the main components were γ-(Glu-Cys)3-Gly and γ-(Glu-Cys)4-Gly. Seedlings exposed to the metal for 1 week contained similar glutathione levels as found in the controls (about 0.18 micromole per gram fresh weight). If, as has been proposed, CdBPs are involved in Cd-detoxification by chelation, both metal and ligand must be localized in the same cellular compartment. To directly determine the localization of Cd and CdBPs, protoplasts and vacuoles were isolated from leaves of Cd-exposed seedlings. Purified vacuoles contained virtually all of the CdBPs and Cd found in protoplasts (104% ± 8 and 110% ± 8, respectively). CdBPs were associated with the vacuolar sap and not with the tonoplast membrane. Glutathione was observed in leaves and protoplasts but not in vacuoles. The probability that CdBPs are synthesized extravacuolarly and our finding that they and Cd are predominantly located in the vacuole suggest that these molecules might be involved in transport of Cd to the vacuole. Our results also suggest that a simple cytoplasmic chelator role for CdBPs in Cd tolerance cannot be assumed.  相似文献   

14.
This study was conducted to determine by gas chromatography (GC) and mass spectrometry (MS) the identity and the quantity of volatile N products produced during the helium-purged in vivo NR assay of soybean (Glycine max [L.] Merr. cv Williams) and winged bean (Psophocarpus tetragonolobus [L.] DC. cv Lunita) leaflets. Gaseous material for identification and quantitation was collected by cryogenic trapping of volatile compounds carried in the He-purge gas stream. As opposed to an earlier report, acetaldehyde oxime production was not detected by our GC method, and acetaldehyde oxime was shown to be much more soluble in water than the compound(s) evolved from soybean leaflets. Nitric oxide (NO) and nitrous oxide (N2O) were identified by GC and GC/MS as the main N products formed. NO and N2O produced from soybean leaflets were both labeled with 15N when 15N-nitrate was used in the assay medium, demonstrating that both were produced from nitrate during nitrate reduction. Other compounds co-trapped with NO and N2O were identified as air (N2, O2), CO2, methanol, acetaldehyde, and ethanol. Leaves of winged bean, subjected to the purged in vivo NR assay, evolved greater quantities of NO and N2O (13.9 and 0.37 micromole per gram fresh weight per 30 minutes, respectively) than did the soybean cv Williams (1.67 and 0.09 micromole per gram fresh weight per 30 minutes, respectively). In both species NO production was dominant. In contrast, with similar assays, NO and N2O were not evolved from leaves of the nr1 soybean mutant which lacks the constitutive NR enzymes. In addition to soybean cv Williams, six other Glycine sp. examined evolved significant quantities of NO(x) (NO and NO2). Other species including Neonotonia wightii (Arn.) Lackey comb. nov., Pueraria montana (Lour.) Merr., and Pueraria thunbergiana Benth. evolved lower levels of NO(x).  相似文献   

15.
A method for calculating the contraction strain (or the converse stress) to protoplasts of frozen multicellular plant tissues is described. The method requires (i) a nuclear magnetic resonance (NMR) measure of the quantity of bound water per gram dry weight (K), (ii) a gravimetric measure of grams of H2O per gram dry weight (L0), (iii) a measure of solute concentration in non-frozen cells (C0), (iv) an estimate of the specific volume of tissue dry matter (0.625 ml/g), (v) an NMR measure of the fraction of tissue water that is intracellular osmotic water (Pa), and (vi) a measure of the fraction of the dry weight that is cell wall (fcw). This method is a refinement of previous methods that calculate cell contraction strain from four (L0, K, C0, and 0.625) of the above six measurements. Comparison of the calculated protoplast strain to the calculated cell strain indicates that the two measures are quite similar, however, the measure of protoplast strain is, in theory, a more appropriate measure of the freezing strain. It is also demonstrated that derivation of a measure of strain from the parameters controlling it is useful, because it allows one to evaluate the relative contribution of each parameter in preventing the development of strain.  相似文献   

16.
Endogenous indoleacetic acid (IAA) levels were examined in 7-day-old, dark-grown tomato seedlings (Lycopersicon esculentum Mill. cv VFN8), and in two single-gene mutants, Epinastic and diageotropica. Gas chromatography-mass spectrometry was employed to quantify IAA using 13C6-[benzene ring]indoleacetic acid as internal standard. IAA concentrations ranged from 89 to 134 nanograms per gram dry weight and were not significantly different for the three genotypes. Ethylene over-production by dark-grown Epi seedlings is not likely to result from increased IAA. Assuming similar recovery percentages for each genotype, indole-3-ethanol, a purported storage form of IAA, was identified by GC-MS and found to be more prevalent in the parent tomato, VFN8, with only trace amounts observed in Epi. No IEt was detected by high performance liquid chromatography/fluorescence in dgt (detection limit >100 picograms).  相似文献   

17.
《Biochemical education》1998,26(1):22-23
The authors of many recent popular textbooks of biochemistry quote values for the ‘energy content’ of triacylglcyerol and dry carbohydrate on a weight basis as well as presenting calculations for the yield of ATP obtained when a molecule of glucose, or palmitic acid, is completely oxidised to CO2 and H2O. By extending these calculations and computing the yield of ATP in terms of the weight of glucose or palmitic acid oxidised to CO2 and H2O, it can be shown that the value for the ratio of the energy content of fat to that of carbohydrate is almost identical to the ratio of the yield of ATP per gram of palmitic acid oxidised, compared with that of glucose. Therefore, the efficiency (on a per gram basis) by which energy is made available as ATP is comparable for both the oxidation of fat and carbohydrate, thus underscoring the fact that the catabolic pathways for both fat and carbohydrate ultimately use the same means of generating ATP, namely, oxidative phosphorylation.  相似文献   

18.
Mannityl opine accumulation and exudation by transgenic tobacco   总被引:1,自引:0,他引:1       下载免费PDF全文
Three genes from the TR region of pTi15955 were introduced into tobacco (Nicotiana tabacum L.) to direct the synthesis of the mannityl opines from hexose sugars and glutamine or glutamate. Opines were present in all tissue types tested and accumulated to levels of 100 to 150 micrograms per milligram dry weight in root, stem, and leaf tissues. Opine-producing plants appeared normal with respect to morphology and development. Transgenic plants grown for 60 days under sterile autotrophic conditions produced up to 540 micrograms of the mannityl opines per milligrams dry weight of tissue as root exudates. Opines were also detected in leaf and seed washes from soil-grown plants.  相似文献   

19.
Seven chloroplast proteins were localized in Porphyridium cruentum (ATCC 50161) by immunolabeling with colloidal gold on electron microscope sections of log phase cells grown under red, green, and white light. Ribulose bisphosphate carboxylase labeling occurred almost exclusively in the pyrenoid. The major apoproteins of photosystem I (56-64 kD) occurred mostly over the stromal thylakoid region and also appeared over the thylakoids passing through the pyrenoid. Labeling for photosystem II core components (D2 and a 45 kD Chl-binding protein), for phycobilisomes (allophycocyanin, and a 91 kD Lcm linker) and for ATP synthase (β subunit) were predominantly present in the thylakoid region but not in the pyrenoid region of the chloroplast. Red light cells had increased labeling per thylakoid length for polypeptides of photosystem II and of phycobilisomes, while photosystem I density decreased, compared to white light cells. Conversely, green light cells had a decreased density of photosystem II and phycobilisome polypeptides, while photosystem I density changed little compared with white light cells. A comparison of the immunogold labeling results with data from spectroscopic methods and from rocket immunoelectrophoresis indicates that it can provide a quantitative measure of the relative amounts of protein components as well as their localization in specific organellar compartments.  相似文献   

20.
Genetic tests of the roles of the embryonic ureases of soybean   总被引:8,自引:5,他引:3       下载免费PDF全文
We assayed the in vivo activity of the ureases of soybean (Glycine max) embryos by genetically eliminating the abundant embryo-specific urease, the ubiquitous urease, or a background urease. Mutant embryos accumulated urea (250-fold over progenitor) only when lacking all three ureases and only when developed on plants lacking the ubiquitous urease. Thus, embryo urea is generated in maternal tissue where its accumulation is not mitigated by the background urease. However, the background urease can hydrolyze virtually all urea delivered to the developing embryo. Radicles of 2-day-old germinants accumulated urea in the presence or absence of the embryo-specific urease (2 micromoles per gram dry weight radicle). However, mutants lacking the ubiquitous urease exhibited increased accumulation of urea (to 4-5 micromoles urea per gram dry weight radicle). Thus, the ubiquitous and not the embryo-specific urease hydrolyzes urea generated during germination. In the absence of both of these ureases, the background urease activity (4% of ubiquitous urease) may hydrolyze most of the urea generated. A pleiotropic mutant lacking all urease accumulated 34 micromoles urea per gram dry weight radicle (increasing 2.5-fold at 3 days after germination). Urea (20 millimolar) was toxic to in vitro-cultured cotyledons which contained active embryo-specific urease. Cotyledons lacking the embryo-specific urease accumulated more protein when grown with urea than with no nitrogen source. Among cotyledons lacking the embryo-specific urease, fresh weight increases were virtually unchanged whether grown on urea or on no nitrogen and whether in the presence or absence of the ubiquitous urease. However, elimination of the ubiquitous urease reduced protein deposition on urea-N, and elimination of both the ubiquitous and background ureases further reduced urea-derived protein. The evidence is consistent with the lack of a role in urea hydrolysis for the embryo-specific urease in developing embryos or germinating seeds. Because the embryo-specific urease is deleterious to cotyledons cultured in vitro on urea-N, its role may be to hydrolyze urea in wounded or infected embryos, creating a hostile environment for pest or pathogen. While the ubiquitous urease is operative in leaves and in seedlings, all or most of its function can be assumed by the background urease in embryos and in seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号