首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate reductase (NaR) linked to reduced methyl viologen from Clostridium perfringens was purified by ammonium sulfate precipitation. DEAE-cellulose chromatography, disc electrophoresis on polyacrylamide gel, and triple DEAE-Sephadex chromatography. The specific activity was increased 1,200-fold with a yield of 9%. The purified preparation was nearly homogeneous in disc electrophoresis. It was brown, and its spectrum showed a slight shoulder near 420 nm as well as a peak at 280 nm. The molecular weight was found to be 90,000 based on s020,w (5.8S) and 80,000 by Sephadex G-100 gel filtration. In SDS-polyacrylamide electrophoresis, it showed only a single band with a molecular weight of 90,000; it had no subunit structure. The isoelectric point was pH 5.5, and the optimum pH was 9. Mn2+, Fe2+, Mg2+, and Ca2+ stimulated the activity. Km for nitrate was 0.10 mM, and nitrate was stoichiometrically reduced to nitrite in the presence of 2 mM Mn2+. Ferredoxin fraction obtained from extracts of the bacterium was utilizable as an electron donor at pH 8. Cyanide and azide inhibited the enzyme. The formation of NaR was induced by nitrate and inhibited by 0.5 mM tungstate, but recovered in the presence of 0.1 mM molybdate; NaR of C. perfringens appears to be a molybdo-iron-sulfur protein.  相似文献   

2.
NADH:nitrate reductase (EC 1.6.6.1) from Chlorella vulgaris has been purified 640-fold with an over-all yield of 26% by a combination of protamine sulfate fractionation, ammonium sulfate fractionation, gel chromatography, density gradient centrifugation, and DEAE-chromatography. The purified enzyme is stable for more than 2 months when stored at minus 20 degrees in phosphate buffer (pH 6.9) containing 40% (v/v) glycerol. After the initial steps of the purification, a constant ratio of NADH:nitrate reductase activity to NADH:cytochrome c reductase and reduced methyl viologen:nitrate reductase activities was observed. One band of protein was detected after polyacrylamide gel electrophoresis of the purified enzyme. This band also gave a positive stain for heme, NADH dehydrogenase, and reduced methyl viologen:nitrate reductase. One band, corresponding to a molecular weight of 100, 000, was detected after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme contains FAD, heme, and molybdenum in a 1:1:0.8 ratio. One "cyanide binding site" per molybdenum was found. No non-heme-iron or labile sulfide was detected. From a dry weight determination of the purified enzyme, a minimal molecular weight of 152, 000 per molecule of heme or FAD was calculated. An s20, w of 9.7 S for nitrate reductase was found by the use of sucrose density gradient centrifugation and a Stokes radius of 89 A was estimated by gel filtration techniques. From these values, and the assumption that the partial specific volume is 0.725 cc/g, a molecular weight of 356, 000 was estimated for the native enzyme. These data suggest that the native enzyme contains a minimum of 2 molecules each of FAD, heme, and molybdenum and is composed of at least three subunits.  相似文献   

3.
Thiosulfate reductase was purified to an almost homogeneous state from Desulfovibrio vulgaris, strain Miyazaki F, by ammonium sulfate precipitation, chromatography on DEAE-Toyopearl, Ultrogel AcA 34, and hydroxylapatite, and disc electrophoresis. The specific activity was increased 580-fold over the crude extract. The molecular weight was determined by gel filtration to be 85,000-89,000, differing from those reported for thiosulfate reductases from other Desulfovibrio strains. The enzyme had no subunit structure. When coupled with hydrogenase and methyl viologen, it stoichiometrically reduced thiosulfate to sulfite and sulfide with consumption of hydrogen. It did not reduce sulfite or trithionate. Cytochrome c3 was active as an electron donor. More than 0.75 mM thiosulfate inhibited the enzyme activity. o-Phenanthroline and 2,2'-bipyridine inhibited the enzyme and ferrous ion stimulated the reaction.  相似文献   

4.
1. The respiratory nitrate reductase of Klebsiella aerogenes was solubilized from the bacterial membranes by deoxycholate and purified further by means of gel chromatography in the presence of deoxycholate, and anion-exchange chromatography. 2. Dependent on the isolation procedure two different homogeneous forms of the enzyme, having different subunit compositions, can be obtained. These forms are designated nitrate reductase I and nitrate reductase II. Both enzyme preparations are isolated as tetramers having sedimentation constants (s20,w) of 22.1 S and 21.7 S for nitrate reductase I and II, respectively. The nitrate reductase I tetramer has a molecular weight of about 106. 3. In the presence of deoxycholate both enzyme preparations dissociate reversibly into their respective monomeric forms. The monomeric form of nitrate reductase I has a molecular weight of about 260 000 and a sedimentation constant of 9.8 S. For nitrate reductase II these values are 180 000 and 8.5 S, respectively. 4. Nitrate reductase I consists of three different subunits, having molecular weights of 117 000; 57 000 and 52 000, which are present in a 1:1:2 molar ratio, respectively. Nitrate reductase II contains only the subunits with a molecular weight of 117 000 and 57 000 in a equimolar ratio. 5. Treatment at pH 9.5 in the presence of deoxycholate and 0.05 M NaCl or ageing removes the 52 000 Mr subunit from nitrate reductase I. This smallest subunit, in contrast to the other subunits, is a basic protein. 6. The 52 000 Mr subunit has no catalytic function in the intramolecular electron transfer from reduced benzylviologen to nitrate. However, it appears to have a structural function since nitrate reductase II, which lacks this subunit, is much more labile than nitrate reductase I. Inactivation of nitrate reductase II can be prevented by the presence of deoxycholate. 7. The spectrum of the enzyme resembles that of iron-sulfur proteins. No cytochromes or contaminating enzyme activities are present in the purified enzyme. Only reduced benzylviologen was found to be capable of acting as an electron donor. 8. p-Chlormercuribenzoate enhances the enzymatic activity at concentrations of 0.1 mM and lower. At higher p-chlormercuribenzoate concentrations the enzymatic activity is inhibited non-competitively with either nitrate or benzylviologen as a substrate. The inhibition is not counteracted by cysteine.  相似文献   

5.
Studies on nitrite reductase in barley   总被引:1,自引:0,他引:1  
W. F. Bourne  B. J. Miflin 《Planta》1973,111(1):47-56
Summary Nitrite reductase from barley seedlings was purified 50–60 fold by ammonium sulphate precipitation and gel filtration. No differences were established in the characteristics of nitrite reductases isolated in this way from either leaf or root tissues. The root enzyme accepted electrons from reduced methyl viologen, ferredoxin, or an unidentified endogenous cofactor. Enzyme activity in both tissues was markedly increased by growth on nitrate. This activity was not associated with sulphite reductase activity. Microbial contamination could not account for the presence of nitrite reductase activity in roots. Nitrite reductase assayed in vitro with reduced methyl viologen as the electron donor was inhibited by 2,4-dinitrophenol but not by arsenate.Abbreviations DNP 2,4-dinitrophenol - DEAE diethyl amino ethyl  相似文献   

6.
Dissimilatory nitrate reductase was purified to homogeneity from anaerobic cultures of the denitrifying bacterium Pseudomonas aeruginosa. The following procedures were used in the rapid isolation of this unstable enzyme: induction by nitrate in semianaerobic cell suspension, heat-stimulated activation and solubilization from the membrane fraction, and purification by hydrophobic interaction chromatography. The molecular weight of the purified enzyme was estimated by nondenaturing polyacrylamide gel electrophoresis, sucrose density gradient sedimentation, and gel filtration chromatography. Subunit molecular weights were estimated by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. The active enzyme monomer, with a molecular weight of 176,000 to 260,000 (depending upon the method of determination), was composed of subunits with molecular weights of approximately 64,000 and 118,000. The monomer aggregated to form an inactive tetramer of about 800,000 molecular weight. Purified enzyme exhibited a broad pH optimum, between 6.5 and 7.5. Kinetic studies showed that the apparent Km was 0.30 mM for nitrate, and 2.2 to 2.9 microM for dithionite-reduced benzyl viologen. Azide was an effective inhibitor: the concentration required for half-maximal inhibition was 21 to 24 microM. Azide inhibition was competitive with nitrate (Ki = 2.0 microM) but uncompetitive with reduced benzyl viologen (Ki = 25 microM). Based upon spectral evidence, the purified molybdo-enzyme had no associated cytochromes but did contain nonhaem iron that responded to dithionite reduction and nitrate oxidation. The enzyme that was purified after being heat solubilized from membranes had properties essentially identical to those of the enzyme that was purified after deoxycholate solubilization.  相似文献   

7.
Nitrite reductase from Clostridium perfringens was purified by chromatographies on DEAE-cellulose, DEAE-Sephadex, Sephadex G-150, and hydroxylapatite and by isoelectric focussing to a homogeneous state, showing essentially a single protein band in disc gel electrophoresis and a single immuno-precipitation line in double diffusion against antiserum obtained from immunized rabbits. The reductase was induced in the presence of nitrate. It had a molecular weight of 54,000 and showed no absorption peak in the visible region. The pH optimum was 6.2 and Km for nitrite was 5 mM. Ferredoxin, as well as viologen dyes, was found to be an electron donor. The product of nitrite reduction was hydroxylamine. This reductase was inhibited by o-phenanthroline and azide but not by cyanide or diethyldithiocarbamate.  相似文献   

8.
NADH-nitrate reductase (EC 1.6.6.1) was purified 800-fold from roots of two-row barley ( Hordeum vulgare L. cv. Daisen-gold) by a combination of Blue Sepharose and zinc-chelate affinity chromatographies followed by gel filtration on TSK-gel (G3000SW). The specific activity of the purified enzyme was 6.2 μmol nitrite produced (mg protein)−1 min−1 at 30°C.
Besides the reduction of nitrate by NADH, the root enzyme, like leaf nitrate reductase, also catalyzed the partial activities NADH-cytochrome c reductase, NADH-ferricyanide reductase, reduced methyl viologen nitrate reductase and FMNH2-nitrate reductase. Its molecular weight was estimated to be about 200 kDa, which is somewhat smaller than that for the leaf enzyme. A comparison of root and leaf nitrate reductases shows physiologically similar or identical properties with respect to pH optimum, requirements of electron donor, acceptor, and FAD, apparent Km for nitrate, NADH and FAD, pH tolerance, thermal stability and response to inorganic orthophosphate. Phosphate activated root nitrate reductase at high concentration of nitrate, but was inhibitory at low concentrations, resulting in increases in apparent Km for nitrate as well as Vmax whereas it did not alter the Km for NADH.  相似文献   

9.
Neurospora crassa wild type STA4 NADPH-nitrate reductase (NADPH : nitrate oxidoreductase, EC 1.6.6.3) has been purified 5000-fold with an overall yield of 25--50%. The final purified enzyme contained 4 associated enzymatic activities: NADPH-nitrate reductase, FADH2-nitrate reductase, reduced methyl viologen-nitrate reductase and NADPH-cytochrome c reductase. Polyacrylamide gel electrophoresis yielded 1 major and 1 minor protein band and both bands exhibited NADPH-nitrate and reduced methyl viologen-nitrate reductase activities. SDS gel electrophoresis yielded 2 protein bands corresponding to molecular weights of 115 000 and 130 000. A single N-terminal amino acid (glutamic acid) was found and proteolytic mapping for the two separated subunits appeared similar. Purified NADPH-nitrate reductase contained 1 mol of molybdenum and 2 mol of cytochrome b557 per mol protein. Non-heme iron, zinc and copper were not detectable. It is proposed that the Neurospora assimilatory NADPH-nitrate reductase consists of 2 similar cytochrome b557-containing 4.5-S subunits linked together by one molybdenum cofactor. A revised electron flow scheme is presented. p-Hydroxymercuribenzoate inhibition was reversed by sulfhydryl reagents. Inhibitory pattern of p-hydroxymercuribenzoate and phenylglyoxal revealed accessible sulfhydryl and arginyl residue(s) as functional group(s) in the earlier part of electron transport chain as possibly the binding site of NADPH or FAD.  相似文献   

10.
Nitrate reductase was purified about 3,000-fold from spinach leaves by chromatography on butyl Toyopearl 650-M, hydroxyapatite-brushite, and blue Sepharose CL-6B columns. The purified enzyme yielded a single protein band upon polyacrylamide gel electrophoresis under nondenaturing conditions. This band also gave a positive stain for reduced methylviologen-nitrate reductase activity. The specific NADH-nitrate reductase activities of the purified preparations varied from 80 to 130 units per milligram protein. Sucrose density gradient centrifugation and gel filtration experiments gave a sedimentation coefficient of 10.5 S and a Stokes radius of 6.3 nanometers, respectively. From these values, a molecular weight of 270,000 ± 40,000 was estimated for the native reductase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the denatured enzyme yielded a subunit band having a molecular weight of 114,000 together with a very faint band possessing a somewhat smaller molecular weight. It is concluded that spinach nitrate reductase is composed of two identical subunits possessing a molecular weight of 110,000 to 120,000.  相似文献   

11.
Initial velocity studies of Chlorella nitrate reductase showed that increased ionic strength stimulated NADH:nitrate reductase activity by increasing both Vmax and Km for nitrate. Examination of the effect of ionic strength on the various partial activities of nitrate reductase revealed that while NADH:ferricyanide and reduced methyl viologen:nitrate reductase activities were unaffected by ionic strength, NADH:cytochrome c and reduced flavin:nitrate reductase activities were inhibited and stimulated by increased ionic strength, respectively. Comparison of the rates for the partial activities indicated electron transfer from heme to molybdenum to be the rate-limiting step in enzyme turnover. The pH optimum for NADH:nitrate reductase activity was found to be 7.9 while values for the partial activities ranged from 5.5 to 8.1. Phosphate was found to stimulate both NADH:nitrate and reduced methyl viologen:nitrate reductase activities indicating the molybdenum center as the site of interaction.  相似文献   

12.
The reduction of N5,N10-methylenetrahydromethanopterin (CH2 = H4MPT) to N5-methyltetrahydromethanopterin (CH3-H4MPT) is an intermediate step in methanogenesis from CO2 and H2. The reaction is catalyzed by CH2 = H4MPT reductase. The enzyme from Methanobacterium thermoautotrophicum (strain Marburg) was found to be specific for reduced coenzyme F420 as electron donor; neither NADH or NADPH nor reduced viologen dyes could substitute for the reduced 5-deazaflavin. The reductase was purified over 100-fold to apparent homogeneity. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed only one protein band at the 36-kDa position. The apparent molecular mass of the native enzyme was determined by gel filtration to be in the order of 150 kDa. The purified enzyme was colourless. It did not contain flavin or iron. The ultraviolet visible spectrum was almost identical to that of albumin, suggesting the absence of a chromophoric prosthetic group. Reciprocal plots of the enzyme activity versus the substrate concentration at different constant concentrations of the second substrate yielded straight lines intersecting at one point on the abscissa to the left of the vertical axis. This intersecting pattern is characteristic of a ternary complex catalytic mechanism. The Km for CH2 = H4MPT and for the reduced coenzyme F420 were determined to be 0.3 mM and 3 microM, respectively. Vmax was 6000 mumol.min-1.mg protein-1 (kcat = 3600 s-1). The CH2 = H4MPT reductase was stable in the presence of air; at 4 C less than 10% activity was lost within 24 h.  相似文献   

13.
The Azospirillum brasilense Sp245 napABC genes, encoding nitrate reductase activity, were isolated and sequenced. The derived protein sequences are very similar throughout the whole Nap segment to the NapABC protein sequences of Escherichia coli, Pseudomonas sp. G-179, Ralstonia eutropha, Rhodobacter sphaeroides, and Paracoccus denitrificans. Based on whole-cell nitrate reductase assays with the artificial electron donors benzyl viologen and methyl viologen, and assays with periplasmic cell-free extracts, it was concluded that the napABC-encoded enzyme activity in Azospirillum brasilense Sp245 corresponds to a periplasmic dissimilatory nitrate reductase, which was expressed under anoxic conditions and oxic conditions. A kanamycin-resistant Azospirillum brasilense Sp245 napA insertion mutant was constructed. The mutant still expressed assimilatory nitrate reductase activity, but was devoid of its periplasmic dissimilatory nitrate reductase activity.  相似文献   

14.
Summary Factors affecting the activity of nitrate reductase (E.C.1.7.7.2) from the halotolerant cyanobacterium Aphanothece halophytica were investigated. Cells grown in nitrate-containing medium exhibited higher nitrate reductase activity than cells grown in medium in which nitrate was replaced by glutamine. When ammonium was present in the medium instead of nitrate, the activity of nitrate reductase was virtually non-detectable, albeit with normal cell growth. The enzyme was localized mainly in the cytoplasm. The enzyme was purified 406-fold with a specific activity of 40.6 μmol/min/mg protein. SDS-PAGE revealed a subunit molecular mass of 58 kDa. Gel filtration experiments revealed a native molecular mass of 61 kDa. The K m value for nitrate was 0.46 mM. Both methyl viologen and ferredoxin could serve as electron donor with K m values of 4.3 mM and 5.2 μM, respectively. The enzyme was strongly inhibited by sulfhydryl-reactive agents and cyanide. Nitrite, the product of the enzyme reaction, showed little inhibition. Chlorate, the substrate analog, could moderately inhibit the enzyme activity. NaCl up to 200 mM stimulated the activity of the enzyme whereas enzyme inhibition was observed at ≥300 mM NaCl.  相似文献   

15.
In this study, we have purified and characterized the membrane bound nitrate reductase obtained from the denitrifying bacteria,Ochrobactrum anthropi SY509, which was isolated from soil samples.O. anthropi SY509 can grow in minimal medium using nitrate as a nitrogen source. We achieved an overall purification rate of 15-fold from the protein extracted from the membrane fraction, with a recovery of approximately 12% of activity. The enzyme exhibited its highest level of activity at pH 5.5, and the activity was increased up to 70°C. Periplasmic and cytochromic proteins, including nitrite and nitrous oxide reductase, were excluded during centrifugation and were verified using enzyme essay. Reduced methyl viologen was determined to be the most efficient electron donor among a variety of anionic and cationic dyestuffs, which could be also used as an electron donor with dimethyl dithionite. The effects of purification and storage conditions on the stability of enzyme were also investigated. The activity of the membrane-bound nitrate reductase was stably maintained for over 2 weeks in solution. To maintain the stability of enzyme, the cell was disrupted using sonication at low temperatures, and enzyme was extracted by hot water without any surfactant. The purified enzyme was stored in solution with no salt to prevent any significant losses in activity levels.  相似文献   

16.
Nitrite reductase (EC 1.6.6.4) has been purified 730-fold from spinach leaves. The enzyme catalyzes the reduction of nitrite to ammonia, with the use of reduced form of methyl viologen and ferredoxin. A stoichiometry of one molecule of nitrite reduced per molecule of ammonia formed has been found. KCN at 2.5×10-4 m inhibited nitrite reductase activity almost completely. Purified enzyme was almost homogeneous by disk electrophoresis with polyacrylamide gel. The molecular weight of the enzyme was estimated to be 61,000 from gel filtration. Nitrite reductase, in the oxidized form, has absorption maxima at 276, 388 and 573 mμ. Both methyl viologen and ferredoxin linked nitrite reductase activities of the enzyme were inactivated on exposure to low ionic strength.  相似文献   

17.
Nitrite oxidoreductase, the essential enzyme complex of nitrite oxidizing membranes, was isolated from cells of the nitrifying bacterium Nitrobacter hamburgensis. The enzyme system was solubilized and purified in the presence of 0.25% sodium deoxycholate. Nitrite oxidoreductase oxidized nitrite to nitrate in the presence of ferricyanide. The pH optimum was 8.0, and the apparent K m value for nitrite amounted to 3.6 mM. With reduced methyl-and benzylviologen nitrite oxidoreductase exhibited nitrate reductase activity with an apparent K m value of 0.9 mM for nitrate. NADH was also a suitable electron donor for nitrate reduction. The pH optimum was 7.0.Treatment with SDS resulted in the dissociation into 3 subunits of 116,000, 65,000 and 32,000. The enzyme complex contained iron, molydbenum, sulfur and copper. A c-type cytochrome was present. Isolated nitrite oxidoreductase is a particle of 95±30 Å in diameter.Abbreviation DOC sodium deoxycholate  相似文献   

18.
A soluble nitrate reductase from the bacterium Acinetobacter calcoaceticus grown on nitrate has been characterized. The reduction of nitrate to nitrite is mediated by an enzyme of 96000 molecular weight that can use as electron donors either viologen dyes chemically reduced with dithionite or enzymatically reduced with NAD(P)H, through specific diaphorases which utilize viologens as electron acceptors. Nitrate reductase activity is molybdenum-dependent as shown by tungstate antagonistic experiments and is sensitive to -SH reagents and metal chelators such as KCN.The enzyme synthesis is repressed by ammonia. Moreover, nitrate reductase activity undergoes a quick inactivation either by dithionite and temperature or by dithionite in the presence of small amounts of nitrate. Cyanate prevents this inactivating process and can restore the activity once the inactivation had occurred, thus suggesting that an interconversion mechanism may participate in the regulation of Acinetobacter nitrate reductase.Abbreviations EDTA ethylenediaminetetraacetate - BV benzyl viologen - MV methyl viologen - MW molecular weight - NEM N-ethylmaleimide - p-HMB p-hydroxymercuribenzoate - DCPIP 2,6-dichlorophenol-indophenol - FMN flavin mononucleotide - FAD flavin adenine dinucleotide - KCNO potassium cyanate  相似文献   

19.
Haloferax mediterranei can use nitrate as sole nitrogen source during aerobic growth. We report here the purification and biochemical characterisation of the assimilatory nitrate reductase (EC 1.6.6.2) from H. mediterranei. The enzyme, as isolated, was composed of two subunits (105+/-1.3 kDa and 50+/-1.3 kDa) and behaved as a dimer during gel filtration (132+/-6 kDa). A pH of 9 and elevated temperatures up to 80 degrees C (at 3.1 M NaCl) are necessary for optimum activity. The enzyme stability and activity of the enzyme depend upon the salt concentration. Reduced methyl viologen was as effective as the natural electron donor ferredoxin in the catalytic process. In contrast, NADPH and NADH, which are electron donors in nitrate reductases from different non-photosynthetic bacteria, were ineffective.  相似文献   

20.
Bovine brain microsomal NADH-cytochrome b5 (cyt. b5) reductase [EC 1.6.2.2] was solubilized by digestion with lysosomes, and purified 8,500-fold with a 20% recovery by procedures including affinity chromatography on 5'-AMP-Sepharose 4B. The purified enzyme showed one band of a molecular weight of 31,000 on polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS). Polyacrylamide gel electrophoresis of the purified enzyme without SDS revealed a major band with a faint minor band, both of which exhibited NADH-cyt. b5 reductase activity. The isoelectric points of these components were 6.0 (major) and 6.3 (minor). The apparent Km values of the purified enzyme for NADH and ferricyanide were 1.1 and 4.2 microM, respectively. The apparent Km value for cyt. b5 was 14.3 microM in 10 mM potassium phosphate buffer (pH 7.5). The apparent Vmax value was 1,190 mumol cyt. b5 reduced/min/mg of protein. The NADH-cyt. b5 reductase activity of the purified enzyme was inhibited by sulfhydryl inhibitors and flavin analogues. Inhibition by phosphate buffer or other inorganic salts of the enzyme activity of the purified enzyme was proved to be of the competitive type. These properties were similar to those of NADH-cyt. b5 reductase from bovine liver microsomes or rabbit erythrocytes, although the estimated enzyme content in brain was about one-twentieth of that in liver (per g wet tissue). An immunochemical study using an antibody to purified NADH-cyt. b5 reductase bovine liver microsomes indicated that NADH-cyt. b5 reductase from brain microsomes is immunologically identical to the liver microsomal enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号