首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies show that brain-derived neurotrophic factor (BDNF) decreases feeding and body weight after peripheral and ventricular administration. BDNF mRNA and protein, and its receptor tyrosine kinase B (TrkB) are widely distributed in the hypothalamus and other brain regions. However, there are few reports on specific brain sites of actions for BDNF. We evaluated the effect of BDNF in the hypothalamic paraventricular nucleus (PVN) on feeding. BDNF injected unilaterally or bilaterally into the PVN of food-deprived and nondeprived rats significantly decreased feeding and body weight gain within the 0- to 24-h and 24- to 48-h postinjection intervals. Effective doses producing inhibition of feeding behavior did not establish a conditioned taste aversion. PVN BDNF significantly decreased PVN neuropeptide Y (NPY)-induced feeding at 1, 2, and 4 h following injection. BDNF administration in the PVN abolished food-restriction-induced NPY gene expression in the hypothalamic arcuate nucleus. In conclusion, BDNF in the PVN significantly decreases food intake and body weight gain, suggesting that the PVN is an important site of action for BDNF in its effects on energy metabolism. Furthermore, BDNF appears to interact with NPY in its anorectic actions, although a direct effect on NPY remains to be established.  相似文献   

2.
Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks’ refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint.  相似文献   

3.
Neuropeptide Y strongly stimulates food intake when it is injected in the hypothalamic paraventricular (PVN) and ventromedian (VMN) nuclei. In Sprague-Dawley (SD) rats, NPY synthesis in the arcuate nucleus (ARC) is increased by food deprivation and is normalized by refeeding. We have previously shown that the obese hyperphagic Zucker rat is characterized by higher NPY concentrations in this nucleus. NPY might therefore play an important role in the development of hyperphagia. The aim of the present study was to determine if the regulation by the feeding state works in the obese Zucker rat. For this purpose, 10 weeks-old male lean (n = 30) and obese (n = 30) Zucker rats were either fed ad libitum, either food-deprived (FD) for 48 hours or food-deprived for 48 h and refed (RF) for 6 hours. NPY was measured in several microdissected brain areas involved in the regulation of feeding behavior. NPY concentrations in the ARC was about 50% greater in obese rats than in lean rats (p less than 0.02) whatever the feeding state. In the VMN, NPY concentrations were higher in the lean FD rats than in the obese FD rat (p less than 0.001). Food deprivation or refeeding did not modify NPY in the ARC, in the VMN or in the dorsomedian nucleus whatever the genotype considered. On the other hand, food deprivation induced a significant decrease in NPY concentrations in the PVN of lean rats. This decrease was localized in the parvocellular part of this nucleus (43.0 +/- 1.9 (FD) vs 54.2 +/- 2.1 (Ad lib) ng/mg protein; p less than 0.005). Ad lib levels were restored by 6 hours of refeeding. These variations were not observed in the obese rat. The regulation of NPY by the feeding state in the Zucker rat was therefore very different from that described in the SD rats. Strain or age of the animals used might explain these differences. High NPY levels and absence of regulation in obese Zucker rats could contribute to the abnormal feeding behavior of these rats.  相似文献   

4.
To endure prolonged fasting, animals undergo important acute physiological adjustments. However, whether severe fasting also leads to long-term metabolic adaptations is largely unknown. Forty-eight-hour fasting caused a pronounced weight loss in adult C57BL/6 male mice. Seven days of refeeding increased body adiposity to levels above baseline, whereas fasting-induced reductions in lean body mass and energy expenditure were not fully recovered. Respiratory exchange ratio and locomotor activity also remained altered. A fasting/refeeding cycle led to persistent suppression of Pomc mRNA levels and significant changes in the expression of histone deacetylases and DNA methyltransferases in the hypothalamus. Additionally, histone acetylation in the ventromedial nucleus of the hypothalamus was reduced by prolonged fasting and remained suppressed after refeeding. Mice subjected to 48-h fasting 30 days earlier exhibited higher body weight and fat mass compared to aged-matched animals that were never food-deprived. Furthermore, a previous fasting experience altered the changes in body weight, lean mass, energy expenditure and locomotor activity induced by a second cycle of fasting and refeeding. Notably, when acutely exposed to high-palatable/high-fat diet, mice that went through cumulative fasting episodes presented higher calorie intake and reduced energy expenditure and fat oxidation, compared to mice that had never been subjected to fasting. When chronically exposed to high-fat diet, mice that experienced cumulative fasting episodes showed higher gain of body and fat mass and reduced energy expenditure and calorie intake. In summary, cumulative episodes of prolonged fasting lead to hypothalamic epigenetic changes and long-lasting metabolic adaptations in mice.  相似文献   

5.
6.
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4–6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.  相似文献   

7.
In mammals, NPY is a key factor in the regulation of feeding behavior. In the present study, the effects of refeeding for 1-3 h in 72-75-h food deprived (FD) goldfish on the levels of NPY mRNA in telencephalon-preoptic (TEL-POA), hypothalamus (HYP) and optic tectum-thalamus (OT-THAL) were examined, using Northern blot analysis. Goldfish FD for 72 h exhibited a significant increase in NPY mRNA levels in all brain regions. At 1 h after 72-h FD (73-h FD), NPY mRNA was significantly increased in TEL-POA and OT-THAL, but remained the same as 72-h FD fish in HYP. At 3 h after 72-h FD (75 h), all brain regions exhibited a significant increase in NPY mRNA levels. However, subsequent refeeding for 1-3 h rapidly and completely reversed the effects of FD in all brain regions, reaching fed levels within 1-3 h of refeeding. Serum GH levels were highest in 72-h FD fish, but decreased significantly over 1-3 h after 72-h FD; whereas, refeeding reversed the increase in serum GH levels only at 3 h after refeeding. Taken together, these results further support that NPY is a physiological brain transducer involved in the regulation of daily appetite and feeding in goldfish.  相似文献   

8.
Kelley SP  Nannini MA  Bratt AM  Hodge CW 《Peptides》2001,22(3):515-522
The paraventricular nucleus (PVN) of the hypothalamus is known to modulate feeding, obesity, and ethanol intake. Neuropeptide-Y (NPY), which is released endogenously by neurons projecting from the arcuate nucleus to the PVN, is one of the most potent stimulants of feeding behavior known. The role of NPY in the PVN on ethanol self-administration is unknown. To address this issue, rats were trained to self-administer ethanol via a sucrose fading procedure and injector guide cannulae aimed at the PVN were surgically implanted. Microinjections of NPY and NPY antagonists in the PVN were conducted prior to ethanol self-administration sessions. All doses of NPY significantly increased ethanol self-administration and preference, and decreased water intake. The NPY antagonist D-NPY partially reduced ethanol self-administration and completely blocked the effects of an intermediate dose of NPY (10 fmol) on ethanol intake, preference, and water intake. The competitive non-peptide Y1 receptor antagonist BIBP 3226 did not significantly alter ethanol self-administration or water intake when administered alone in the PVN but it completely blocked the effect of NPY (10 fmol) on ethanol intake. NPY infused in the PVN had no effect on ethanol self-administration when tested in rats that did not have a long history of ethanol self-administration. The doses of NPY tested produced no effect on food intake or body weight measured during the 24-h period after infusion in either ethanol-experienced or ethanol-inexperienced rats. These results indicate that elevation of NPY levels in the PVN potently increases ethanol self-administration and that this effect is mediated through NPY Y1 receptors.  相似文献   

9.
In the present work the effects of fasting and refeeding on fat pad weight and alkaline phosphatase activity in the brush border of individual duodenal enterocytes have been evaluated in male Wistar rats with obesity induced by monosodium glutamate (MSG) treatment during the early postnatal period. Neonatal rats were treated subcutaneously with MSG (2 mg/g b.w.) or saline (controls) for 4 days after birth. At 4 months of age, two types of experiments were performed. In the first experiment rats, were submitted to 3 or 6 days lasting food deprivation. In the second experiment the rats were refed for 3 or 6 days ad libitum or restrictedly (60% of pre-fasting intake) after a 6 day-fasting period. Fasting and refeeding influenced the body fat and function of the duodenum in MSG-treated rats differently as compared to the controls. However, alkaline phosphatase activity and the weight of epididymal and retroperitoneal fat depots were significantly increased in MSG obese rats (P<0.001) during all the periods examined. While 3 days of food deprivation resulted in both groups in a similar loss of adipose tissue weight and alkaline phosphatase activity, the decrements of these parameters after 6 days of fasting were lower in obese rats suggesting that their capacity to spare body fat stores was enhanced. After 3 days of ad libitum refeeding, a more marked adaptational increase of food consumption and also a significantly increased alkaline phosphatase activity above the pre-fasting level (P<0.01) was observed in the MSG-treated rats. Consequently, a more rapid body fat restoration was demonstrated in these animals. Refeeding of rats at 60% of the pre-fasting intake level resulted in a significant increase of alkaline phosphatase activity in both the MSG and control group; moreover, as food restriction continued, MSG-treated rats tended to further increase the enzyme activity. Our results revealed that MSG treatment of neonatal rats may significantly change the intestinal functions. Permanently increased alkaline phosphatase activity observed in MSG obese rats during all investigated periods suggests that this functional alteration is probably not a consequence of actual nutritional variation but could be a component of regulatory mechanisms maintaining their obesity at critical values.  相似文献   

10.
Endogenous opioids, particularly dynorphins, have been implicated in regulation of energy balance, but it is not known how they mediate this in vivo. We investigated energy homeostasis in dynorphin knockout mice (Dyn(-/-) mice) and probed the interactions between dynorphins and the neuropeptide Y (NPY) system. Dyn(-/-) mice were no different from wild types with regards to body weight and basal and fasting-induced food intake, but fecal output was increased, suggesting decreased nutrient absorption, and they had significantly less white fat and lost more weight during a 24-h fast. The neuroendocrine and thermal responses to fasting were at least as pronounced in Dyn(-/-) as in wild types, and there was no stimulatory effect of dynorphin knockout on 24-h energy expenditure (kilocalories of heat produced) or physical activity. However, Dyn(-/-) mice showed increased circulating concentrations of 3,4-dihydroxyphenlacetic acid and 3,4-dihydroxyphenylglycol, suggesting increased activity of the sympathetic nervous system. The respiratory exchange ratio of male but not female Dyn(-/-) mice was reduced, demonstrating increased fat oxidation. Interestingly, expression of the orexigenic acting NPY in the hypothalamic arcuate nucleus was reduced in Dyn(-/-) mice. However, fasting-induced increases in pre-prodynorphin expression in the arcuate nucleus, the paraventricular nucleus, and the ventromedial hypothalamus but not the lateral hypothalamus were abolished by deletion of Y(1) but not Y(2) receptors. Therefore, ablation of dynorphins results in increases in fatty acid oxidation in male mice, reductions in adiposity, and increased weight loss during fasting, possibly via increases in sympathetic activity, decreases in intestinal nutrient absorption, and interactions with the NPYergic system.  相似文献   

11.
The present study aimed to identify the hypothalamic nuclei involved with food entrainment by using c-Fos-like immunoreactivity (c-Fos-IR) as a marker of functional activation. We studied rats entrained 3 wk to restricted feeding schedules (RF), their ad libitum (AL) controls, and the persistence of c-Fos-IR temporal patterns in entrained-fasted rats. In addition, we included 22-h fasting and 22-h fasting-refeeding groups as controls of fasting and refeeding acute effects. Diurnal patterns of c-Fos-IR were observed in the tuberomammilar nucleus (TM) and suprachiasmatic nucleus (SCN) in AL rats. In all nuclei, except the SCN and ventromedial nucleus (VMH), restricted feeding schedules imposed a temporal pattern of increased c-Fos-IR around mealtime. An increase in c-Fos-IR before and after meal time was observed in dorsomedial nucleus (DMH), lateral nucleus (LH), perifornical area (PeF), and TM, and a marked increase was observed in the paraventricular nucleus (PVN) after feeding. Food-entrained c-Fos-IR patterns persisted after 3 days in fasting in DMH, LH, and PeF. Present data suggest that FEO might not rely on a single nucleus and rather may be a distributed system constituted of interacting nuclei in which the PVN is mainly involved with the response to signals elicited by food ingestion and, therefore, with the entraining pathway. We can suggest that the PeF and TM may be involved with the arousal state during food anticipation and the DMH and LH with the time-keeping mechanism of FEO or its output.  相似文献   

12.
Appetite is regulated by a number of hypothalamic neuropeptides including neuropeptide Y (NPY), a powerful feeding stimulator that responds to feeding status, and drugs such as nicotine and cannabis. There is debate regarding the extent of the influence of obesity on hypothalamic NPY. We measured hypothalamic NPY in male Sprague-Dawley rats after short or long term exposure to cafeteria-style high fat diet (32% energy as fat) or laboratory chow (12% fat). Caloric intake and body weight were increased in the high fat diet group, and brown fat and white fat masses were significantly increased after 2 weeks. Hypothalamic NPY concentration was only significantly decreased after long term consumption of the high fat diet. Nicotine decreases food intake and body weight, with conflicting effects on hypothalamic NPY reported. Body weight, plasma hormones and brain NPY were investigated in male Balb/c mice exposed to cigarette smoke for 4 days, 4 and 12 weeks. Food intake was significantly decreased by smoke exposure (2.32+/-0.03g/24h versus 2.71+/-0.04g/24h in control mice (non-smoke exposed) at 12 weeks). Relative to control mice, smoke exposure led to greater weight loss, while pair-feeding the equivalent amount of chow caused an intermediate weight loss. Chronic smoke exposure, but not pair-feeding, was associated with decreased hypothalamic NPY concentration, suggesting an inhibitory effect of cigarette smoking on brain NPY levels. Thus, consumption of a high fat diet and smoke exposure reprogram hypothalamic NPY. Reduced NPY may contribute to the anorexic effect of smoke exposure.  相似文献   

13.
Objective: Chronic central administration of neuropeptide Y (NPY) has dramatic effects on energy balance; however, the exact role of the hypothalamic paraventricular nucleus (PVN) in this is unknown. The aim of this study was to further unravel the contribution of NPY signaling in the PVN to energy balance. Research Methods and Procedures: Recombinant adeno‐associated viral particles containing NPY (rAAV‐NPY) were injected in the rat brain with coordinates targeted at the PVN. For three weeks, body weight, food intake, endocrine parameters, body temperature, and locomotor activity were measured. Furthermore, effects on insulin sensitivity and expression of NPY, agouti‐related protein (AgRP), and pro‐opiomelanocortin in the arcuate nucleus were studied. Results: Food intake was increased specifically in the light period, and dark phase body temperature and locomotor activity were reduced. This resulted in obesity characterized by increased fat mass; elevated plasma insulin, leptin, and adiponectin; decreased AgRP expression in the arcuate nucleus; and decreased insulin sensitivity; whereas plasma corticosterone was unaffected. Discussion: These data suggest that increased NPY expression targeted at the PVN is sufficient to induce obesity. Interestingly, plasma concentrations of leptin and insulin were elevated before a rise in food intake, which suggests that NPY in the PVN influences leptin and insulin secretion independently from food intake. This strengthens the role of the PVN in regulation of energy balance by NPY.  相似文献   

14.
Neuropeptide Y (NPY) injected into the hypothalamic paraventricular nucleus (PVN) stimulates feeding and decreases uncoupling protein (UCP)-1 mRNA in brown adipose tissue (BAT). The present studies were undertaken to determine whether UCP-2 in white adipose tissue (WAT) and UCP-3 in muscle are regulated by NPY in the PVN. PVN-cannulated male Sprague-Dawley rats were injected with either saline or NPY (PVN, 117 pmol, 0.5 microl) every 6 h for 24 h. NPY in the PVN stimulated feeding and decreased UCP-1 mRNA in BAT independent of NPY-induced feeding. UCP-2 mRNA in WAT was unchanged by NPY. In acromiotrapezius muscle, NPY decreased UCP-3 mRNA, but this was reversed by restricting food intake to control levels. In biceps femoris muscle, NPY alone had no effect on UCP-3 mRNA, but UCP-3 mRNA was significantly increased in the NPY-treated rats that were restricted to control levels of intake. These results suggest that UCP-2 in WAT and UCP-3 in muscle are not subject to specific regulation by NPY in the PVN.  相似文献   

15.
The effects of running wheel exercise and caloric restriction on the regulation of body weight, adiposity, and hypothalamic neuropeptide expression were compared in diet-induced obese male rats over 6 wk. Compared with sedentary controls, exercising rats had reduced body weight gain (24%), visceral (4 fat pads; 36%) and carcass (leptin; 35%) adiposity but not insulin levels. Hypothalamic arcuate nucleus (ARC) proopiomelanocortin (POMC) mRNA expression was 25% lower, but ARC neuropeptide Y (NPY), agouti- related peptide, dorsomedial nucleus (DMN) NPY, and paraventricular nucleus (PVN) corticotropin- releasing hormone (CRH) expression was comparable to controls. Sedentary rats calorically restricted to 85% of control body weight reduced their visceral adiposity (24%), leptin (64%), and insulin (21%) levels. ARC NPY (23%) and DMN NPY (60%) were increased, while ARC POMC (40%) and PVN CRH (14%) were decreased. Calorically restricted exercising rats an half as much as ad libitum-fed exercising rats and had less visceral obesity than comparably restricted sedentary rats. When sedentary restricted rats were refed after 4 wk, they increased intake and regained the weight gain and adiposity of sedentary controls. While refed exercising rats and sedentary rats ate comparable amounts, refed exercising rats regained weight and adiposity only to the level of ad libitum-fed exercising rats. Thus exercise lowers the defended level of weight gain and adiposity without a compensatory increase in intake and with a very different profile of hypothalamic neuropeptide expression from calorically restricted rats. This may be due to exercise-related factors other than plasma insulin and leptin.  相似文献   

16.
Neuropeptide Y (NPY) produced by arcuate nucleus (ARC) neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change). The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase) and down-regulation (0.5-fold decrease) of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir) of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased), suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent.These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY.  相似文献   

17.
Ventricular administration of urocortin (UCN) inhibits feeding, but specific site(s) of UCN action are unknown. In the current studies we examined the effect of UCN in the hypothalamic paraventricular nucleus (PVN) on feeding. We tested UCN administered into the PVN in several paradigms: deprivation-induced, nocturnal, and neuropeptide Y (NPY)-induced feeding. We compared the effect of equimolar doses of UCN and corticotrophin releasing hormone (CRH) on NPY-induced and nocturnal feeding, determined whether UCN in the PVN produced a conditioned taste aversion (CTA) and induced changes in c-Fos immunoreactivity (c-Fos-ir) after UCN and NPY administration in the PVN. UCN in the PVN significantly decreased NPY and nocturnal and deprivation-induced feeding at doses of 1, 10, and 100 pmol, respectively. UCN anorectic effects lasted longer than those attributed to CRH. Ten and thirty picomoles UCN did not induce a CTA, whereas 100 pmol UCN produced a CTA. UCN (100 pmol) in the PVN neither increased c-Fos-ir in any brain region assayed nor altered c-Fos-ir patterns resulting from PVN NPY administration. These data suggest the hypothalamic PVN as a site of UCN action.  相似文献   

18.
To assess the role of the alpha1b-adrenergic receptor (AR) in glucose homeostasis, we investigated glucose metabolism in knockout mice deficient of this receptor subtype (alpha1b-AR-/-). Mutant mice had normal blood glucose and insulin levels, but elevated leptin concentrations in the fed state. During the transition to fasting, glucose and insulin blood concentrations remained markedly elevated for at least 6 h and returned to control levels after 24 h whereas leptin levels remained high at all times. Hyperinsulinemia in the post-absorptive phase was normalized by atropine or methylatropine indicating an elevated parasympathetic activity on the pancreatic beta cells, which was associated with increased levels of hypothalamic NPY mRNA. Euglycemic clamps at both low and high insulin infusion rates revealed whole body insulin resistance with reduced muscle glycogen synthesis and impaired suppression of endogenous glucose production at the low insulin infusion rate. The liver glycogen stores were 2-fold higher in the fed state in the alpha1b-AR-/- compared with control mice, but were mobilized at the same rate during the fed to fast transition or following glucagon injections. Finally, high fat feeding for one month increased glucose intolerance and body weight in the alpha1b-AR-/-, but not in control mice. Altogether, our results indicate that in the absence of the alpha1b-AR the expression of hypotalamic NPY and the parasympathetic nervous activity are both increased resulting in hyperinsulinemia and insulin resistance as well as favoring obesity and glucose intolerance development during high fat feeding.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号