首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animals that forage for food or dig burrows by biopedturbation can alter the biotic and abiotic characteristics of their habitat. The digging activities of such ecosystem engineers, although small at a local scale, may be important for broader scale landscape processes by influencing soil and litter properties, trapping organic matter and seeds, and subsequently altering seedling recruitment. We examined environmental characteristics (soil moisture content, hydrophobicity and litter composition) of foraging pits created by the southern brown bandicoot (Isoodon obesulus; Peramelidae), a digging Australian marsupial, over a 6‐month period. Fresh diggings typically contained a higher moisture content and lower hydrophobicity than undisturbed soil. A month later, foraging pits contained greater amounts of fine litter and lower amounts of coarse litter than adjacent undug surfaces, indicating that foraging pits may provide a conducive microhabitat for litter decomposition, potentially reducing litter loads and enhancing nutrient decomposition. We tested whether diggings might affect seedling recruitment (seed removal by seed harvesters and seed germination rates) by artificially mimicking diggings. Although there were no differences in the removal of seeds, seedling recruitment for three native plant species (Acacia saligna, Kennedia prostrata and Eucalyptus gomphocephala) was higher in plots containing artificial diggings compared with undug sites. The digging actions of bandicoots influenced soil moisture and hydrophobicity, the size distribution of litter and seedling recruitment at a local scale. The majority of Australian digging mammals are threatened, with many suffering substantial population and range contraction. However, their persistence in landscapes plays an important role in maintaining the health and function of ecosystems.  相似文献   

2.
For both Epilobium angustifolium and Anaphalis margaritacea, the two dominant species in primary succession on the Pumice Plains on Mount St. Helens, density of the seed rain far exceeds the density of colonists. To test the hypothesis that colonization rate is limited by processes occurring during seedling establishment, we investigated the effects of subsurface moisture (using a wet and a dry site), microtopography (fine and coarse pumice particles), and seed size (five size classes), and monitored the fates of seedlings originating from experimentally sown seed for 2 years. Subsurface moisture had the strongest effect on seedling emergence and survival. By the second year there were over 20 times as many seedlings in the wet site as in the dry site; survival in the latter site was nearly zero. Coarse pumice plots had greater establishment than did fine pumice plots. Emergence rate increased significantly with increasing seed size, but this initial difference disappeared by the second year. A. margaritacea established under a wider range of conditions than did E. angustifolium. We conclude that colonization by these species, and hence rate of primary succession, is limited by availability of safe sites for germination and establishment and not by seed dispersal. Safe sites are defined primarily by the level of subsurface moisture and secondarily by microtopography and seed size, and have a greater effect on seedling emergence than on seedling survival.  相似文献   

3.
Patterns of seedling recruitment may have persistent effects on population and community processes. Assuming seed availability is not limiting, the environmental sieve (i.e., the suite of factors influencing seed germination and seedling emergence and survival) determines how many seedlings establish and, most importantly, where they do so. In this study, we identify the spatial structure of some resources and abiotic conditions known to be significant for tree seedling emergence and survival and determine how these environmental factors influence the establishment of Fagus grandifolia, Acer saccharum, Fraxinus americana, and Ostrya virginiana in a deciduous forest of southern Québec (Canada). We expect an increase from Fagus, through Acer and Fraxinus, to Ostrya in the control of environmental variables on seedling emergence and survival, because of differences in the seed size of these species. Density of newly-emerged seedlings of all four species showed positive spatial autocorrelation at distances of up to ca. 10 m. Environmental variables were also structured at the same spatial scale, except for soil moisture. Acer seedling emergence pattern was positively correlated to photosynthetic photon flux density (PPFD), and the pattern of Fraxinus to soil N and moisture. Seedling survival was not spatially autocorrelated for any of the four species, although it was positively density-dependent in Acer and Fagus. In only Ostrya was seedling survival correlated (positively) to one of the environmental variables studied, i.e., PPFD. Overall, environmental variables were spatially less heterogeneous than seedling emergence and survival. Either seed availability was not saturating or factors not considered here, such as competition and predation (the intensity of which often varies with resources and/or abiotic conditions), modified the influence that the physical environment had on patterns of seedling establishment. Our prediction of a greater environmental control on seedling emergence and survival in small-seed species was not totally confirmed.  相似文献   

4.
Seed characteristics were measured in 71 Eastern Australian rainforest species representing 30 families. Sensitivity to desiccation to low moisture contents (< 10%) occurred in 42% of species. We estimate, based on findings from 100 species from this present study and previously published reports, that 49% of Eastern Australian rainforest species have non‐orthodox seeds. Germination level and time to 50% germination were not significantly different between desiccation sensitive (DS) and desiccation tolerant (DT) seeds. The estimation of seed desiccation sensitivity based on predictors is an important tool underpinning ex situ conservation efforts. Seed characteristics differed significantly between DS and DT seeds; that is, DS seeds had: (i) larger fruits (19 949 mg vs 8322 mg); (ii) larger seeds (1663 mg vs 202 mg); (iii) higher seed moisture contents (49.7% vs 35.5% fresh weight); (iv) lower oil content (7.3% vs 24.8% yield); and (v) less investment in seed coats (0.19 vs 0.48 seed coat ratio). Only 25% of DS seeded species had oily seeds compared with 87% of DT seeded species. Most green embryos were DS. Seed coat ratio was the best predictor of seed DS (80% correctly predicted). Seed moisture content at maturity was also related to germination time. Mean seed size was correlated (?0.657, P = 0.01) with mean seed oil content in 46 species. Further research on seed storage physiology of possible oily and/or DS seeded species is crucial to ensure future long‐term security of this biodiversity, particularly for species currently threatened in situ and/or of socioeconomic importance in Eastern Australian rainforests.  相似文献   

5.
Question: What is the influence of refuse dumps of leaf‐cutting ants on seedling recruitment under contrasting moisture conditions in a semi‐arid steppe? Location: Northwestern Patagonia, Argentina. Methods: In a greenhouse experiment, we monitored seedling recruitment in soil samples from refuse dumps of nests of the leaf‐cutting ant Acromyrmex lobicornis and non‐nest sites, under contrasting moisture conditions simulating wet and dry growing seasons. Results: The mean number of seedling species and individuals were higher in wet than in dry plots, and higher in refuse dump plots than in non‐nest soil plots. The positive effect of refuse dumps on seedling recruitment was greater under low moisture conditions. Both the accumulation of discarded seeds by leaf‐cutting ants and the passive trapping of blowing‐seeds seems not explain the increased number of seeds in refuse dumps. Conversely, refuse dumps have higher water retention capacity and nutrient content than adjacent non‐nest soils, allowing the recruitment of a greater number of species and individual seedlings. Conclusions: Nests of A. lobicornis may play an important role in plant recruitment in the study area, allowing a greater number of seedlings and species to be present, hence resulting in a more diverse community. Moreover, leaf‐cutting ant nests may function as nurse elements, generating safe sites that enhance the performance of neighbouring seedlings mainly during the driest, stressful periods.  相似文献   

6.
Seedling emergence is a major constraint on dryland revegetation success. In this study, we investigated seedling emergence of six framework shrub species as influenced by seed treatment, soil type and protective shelters using a large field trial in arid Western Australia. We observed the main effects of seed treatment and soil type to account for the majority of the variation in emergence. For species that exhibit pronounced dormancy, we found emergence of dormancy‐alleviated or treated (T) seed to be significantly greater than dormant or untreated (UT) seed, with responses varying across species (e.g. 41 times greater for Acacia ligulata Benth., and 10 times greater for Stylobasium spathulatum Desf.). For shallowly or nondormant species like Senna glutinosa (DC) Randall, UT seed emergence was slightly greater than for T seed. Compared to subsoil, topsoil was more receptive to infiltration (3.44 vs. 0.38 mm/min), and less prone to compaction (1.24 vs. 1.67 g/cm3) and crusting (0.6 vs. 1.3 kg/cm2); however, subsoil had greater moisture retention. Shelters failed to benefit soil moisture retention in either soil type, but enhanced emergence for most species. This study provides insight into how various cost‐effective treatments can be utilized to manipulate seed dormancy to optimize seedling emergence, the intrinsic value of topsoil as a superior growth medium and the benefit of novel, low‐cost shelters for enhancing seedling emergence. In arid environments, sowing T seed in combination with UT seed increases the likelihood of capitalizing on inherently variable precipitation events.  相似文献   

7.
Recognition that tree recruitment depends on the balance between seed arrival and seedling survival has led to a surge of interest in seed‐dispersal limitation and seedling‐establishment limitation in primary forests. Virtually unaddressed are comparisons of this balance in mature and early successional habitats. We assessed seed rain and seedling recruitment dynamics of tree species in primary forest, secondary forest and pasture released from grazing in a tropical agricultural landscape. Seed to seedling ratios (seed effectiveness; Φi) for 43 species in southern Mexico determined differences in the extent to which seeds produced seedlings by habitat, life history, and dispersal mode. Reproductive potential as estimated by the transition from seed rain to seedling recruitment, differed by habitats, and varied dramatically by life history and dispersal mode. Expected recruit densities (Eit) were higher for animal‐dispersed than wind‐dispersed species, and for non‐pioneer than pioneer species. Non‐pioneers and animal‐dispersed species had higher expected relative recruit abundance (εit) in primary forest (median of 4 seeds recruit?1) whereas in secondary forest wind‐dispersed pioneers had the highest expected relative recruit abundance (median of 16 seeds per recruit). In pastures, wind‐dispersed pioneer species were most successful with many more seeds per recruit (median of 291) than both forest habitats. Seeds per recruit (Φi) appeared to decrease with increase in seed mass for 43 species for which data were available (r = –0.55, P < 0.001). This was associated with a negative correlation of Φi with seed size in primary forest (r = –0.50, P = 0.08 for 13 species); Φi was not correlated with seed size in secondary forest (n = 16) or pasture (n = 14). Metrics of seeds per recruit, expected recruit density and expected relative recruit abundance dramatically illustrate differences in barriers to recruitment in successional habitats.  相似文献   

8.
The relationship of seed moisture content (fresh weight basis) to germination, and the effect on viability of various storage conditions were examined for five species of the tropical forest tree genus Dipterocarpus. It was shown that seeds fall into two groups with regard to desiccation tolerance. Firstly, D. obtusifolius and D. turbinatus cannot be dried below about 45% moisture content without damage; a sigmoid curve was found to fit the relationship between germination and moisture content for the latter species. Secondly, D. intricatus, D. tuberculatus and D. alatus can be safely dried to 10%, 12% and 17% moisture contents respectively, but desiccation to near 7% moisture content reduced viability by at least a half. Storage studies showed that seed of D. intricatus and D. tuberculatus possessed increased longevity as moisture contents were reduced within the range 6–20%. It was concluded that seeds in the first group are ‘recalcitrant’ and that those in the second group are ‘orthodox’ in their storage physiology, according to the categories described by Roberts (1973). Wide differences between species in seed desiccation rates were observed. In 15% relative humidity D. intricatus dried to 7% moisture content within a week, whilst D. obtusifolius retained 30% moisture content even after 5 wk; other species had intermediate desiccation rates. Seed size and structure may partly account for the differences observed. Correlations were observed between seed storage physiology and other factors which were investigated. ‘Orthodox’ seeds had quicker desiccation rates, were derived from drier habitats, and had smaller embryos than those of ‘recalcitrant’ seeds. ‘Orthodox’ seeds, with the possible exception of D. alatus, should be kept at 0–3°C with about 12% moisture content in the short term and, provided less than 10% germination is lost on freezing, at-18°C with about 8% moisture content in the long term. ‘Recalcitrant’ seeds should be stored in ventilated containers at 21°C and with moisture contents above 45–50%.  相似文献   

9.
The mean size of seeds produced by plants at the equator is two to three orders of magnitude higher than the mean size of seeds produced by plants at 60°. We compiled data from the literature to assess the possibility that this latitudinal gradient in seed size allows species to cope with more difficult seedling establishment conditions in tropical environments. We found no relationship between latitude and seedling survival through 1 week (P = 0.27, n = 112 species). There was also no evidence that a larger seed mass is required to gain a given level of seedling survival in tropical environments (P = 0.37, n = 112 species), and no relationship between latitude and the duration of the juvenile period (P = 0.57, n = 132 species). Thus, our results are not compatible with the idea that seedling establishment is more difficult in the tropics.  相似文献   

10.
Summary

The seed size that is characteristic of each plant species is of central importance for their regeneration because of its effect on dispersability and seedling establishment. The chemical composition of the stored nutrients is also important in the early stages of growth. The factors that influence individual seed size and nutrient allocation during development on the parent plant are examined, and allocation strategies are compared in different plants. Experiments to determine the effective supply of different elements in seeds are reviewed. The apparent imbalance in the seed nutrient allocation is discussed. Mineral use in early seedling growth is described and the exhaustion of internal nutrient reserves is considered as a means of defining the end of seedling growth phase.  相似文献   

11.
  • Gall inducers use these structures as shelters and sources of nutrition. Consequently, they cause multiple physiological changes in host plants.
  • We studied the impact caused by seed coat galls of a braconid wasp on the performance of fruits, seeds and seedlings of tree Inga laurina. We tested whether these seed galls are ‘nutrient sinks’ with respect to the fruit/seed of host plant, and so constrain the reproductive ability and reduce seedling longevity. We measured the influence of such galls on the secondary compounds, fruit and seed parameters, seed viability and germination and seedling performance.
  • Inga laurina has indehiscent legumes with polyembryonic seeds surrounded by a fleshy sarcotesta rich in sugars. The galls formed inside the seed coat and galled tissues presented higher phenol concentrations, around 7‐fold that of ungalled tissues. Galls caused a significant reduction in parameters such as fruit and seed size, seed weight and the number of embryos. Fluctuating asymmetry (a stress indicator) was 31% higher in leaves of galled seed plants in comparison to ungalled seed plants. However, the negative effects on fruit and seed parameters were not sufficient to reduce seed germination (except the synchronization index) or seedling performance (except leaf area and chlorophyll content).
  • We attributed these results to the ability of I. laurina to tolerate gall attack on seeds without a marked influence on seedling performance. Moreover, because of the intensity of seed galling on host plant, we suggest that polyembryony may play a role in I. laurina reproduction increasing tolerance to seed damage.
  相似文献   

12.
Questions: Is seedling emergence limited by the set of viable seeds, by incompatibility between the phenology of seed shedding and timing of mowing, or by dry weather in germination periods? Does seedling mortality fluctuate with season and weather? Location: Negrentino, southern Alps, Switzerland. Methods: Fecundity estimates of the dominant grass Bromus erectus; highly frequent counts of spontaneous seedlings by species and calculation of a community-level average mortality rate across 5 years; species-level records of seed shedding date and measurements of seed mass; measurement of soil moisture. Results: B. erectus produced 143.9 viable seeds/m2/year while the density of its seedlings was a 55 times smaller fraction. Grasses had fewer seedlings than forbs and their phenology of seed shedding was less compatible with mowing date. Soil moisture was a strong determinant of seedling emergence in spring and less so in autumn. Average seedling mortality declined with age of the populations and reached a maximum in an extremely dry summer. In relatively wet summers establishment success was positively related to seed mass. Conclusion: Community structure is susceptible to drought through mechanisms that selectively reduce recruits of coexisting plant functional groups. We propose that (1) more frequent intense droughts tend to reduce species that depend on frequent recruitment from seed, hence favour long-lived clonally spreading species, (2) drought timing selects between species with different germination phenology and drought resistance, and (3) drought impacts can be mitigated by changing management regimes that affect seed shedding.  相似文献   

13.
Seed weight, percentage germination, seedling growth, and nutrient concentrations (Mg, Na, K, Zn, Cu and P) of whole seeds, and of seed coats and embryos separately of two tree species, the native Prosopis cineraria and the invasive alien P. juliflora from semi-arid and arid areas of north and north-west India, were analysed to understand the differences in their ecology. Seeds of P. cineraria were heavier than those of P. juliflora. Percent germination was similar in the two species, but seedling growth was faster in P. juliflora than in P. cineraria. Nutrient concentrations of seeds of the two species were similar (except Cu). Nutrient concentrations in the embryo were higher in P. cineraria, while those in the seed coat were higher in P. juliflora. The relative allocation of nutrients to seed coat was higher in P. juliflora than in P. cineraria. Nutrient-rich embryos and slow growth, along with a staggered seed germination pattern in the native P. cineraria could be linked to delayed establishment as well, in the substratum. Faster growth of the nutrient-poor embryos in P. juliflora along with its simultaneous seed germination pattern, and creation of a favourable microenvironment through leaching of nutrients from a nutrient-rich seed coat can facilitate immediate and successful establishment of this alien species in the invaded habitats.  相似文献   

14.
Summary Plant demographic and root exclusion approaches were used to examine the influence of roots of adult Artemisia tridentata, Agropyron desertorum, and Agropyron spicatum individuals on seedling survival of four C3 semiarid species, three perennials, Ar. tridentata, Ag. desertorum, Ag. spicatum, and an annual, Bromus tectorum. Furthermore, height of Ar. tridentata seedlings and seed production of B. tectorum were assessed. The probability of a seedling being alive significantly depended on the seedling species, the neighboring adult species, and on the depth to which root competition was excluded. As seedlings, survival of Agropyron species did not differ, whereas survival of Ar. tridentata seedlings was higher than Ag. desertorum and was similar to Ag. spicatum. Bromus tectorum maintained significantly higher survival rates than perennial seedlings. Established individuals of Ar. tridentata reduced seedling survival more than established individuals of either Agropyron species. Seedling survival significantly increased with greater depth of root exclusion for the perennials but did not significantly affect seedling survival of B. tectorum. Height of Ar. tridentata seedlings and seed production of B. tectorum significantly increased with depth of root exclusion. Seed production of B. tectorum was highest when competing with Ag. desertorum and was lowest with Ar. tridentata. Root competition decreased the seed population of B. tectorum in the next generation even though it had no impact on survival. Competition in the upper soil horizon occurs between seedlings and established adults early in the growing season and potentially restricts root growth of seedlings. In arid and semiarid ecosystems, soil moisture is depleted from the upper horizons first, resulting in the death of seedlings that do not have access to moisture.  相似文献   

15.
To study of seed and seedling characteristics, seeds of the Himalayan Hornbeam (Carpinus viminea Wall.) were collected from low and high-elevation sites during the peak maturation period. Paired t-tests indicated that seed weight, percentage of sound seeds, and germination were significantly greater for high-elevation seeds whereas seed moisture (%) was low. Seedling growth performance was better for high-elevation seeds than for those from low elevation. This indicates that environmental conditions at high elevation may favour germination and seedling growth of the species.  相似文献   

16.
Establishment success of plants derived from large seeds has been proposed to be greater than that of those derived from smaller ones, particularly under unfavourable conditions of moisture. Therefore, the advantages conferred by large seeds in terms of seedling performance may be modulated by abiotic conditions. The effect of seed size on Cryptocarya alba seedling performance (as determined by seedling recruitment and seedling size) was evaluated under two contrasting rainfall regimes (wet and dry year regime), simulated in the laboratory. It was also determined whether the presence of a pericarp, which had been shown to reduce germination, decreases desiccation and if this counterbalances the greater recruitment of seeds without a pericarp, especially under unfavourable conditions of moisture. Large seeds had a greater probability of recruitment and their seedlings attained a greater biomass, independently of the amount of water applied. In the simulated wet year regime, seeds with a pericarp showed a greater probability of recruitment than those lacking a pericarp. However, seedlings derived from both seed types attained a similar biomass. Under the dry year regime, seeds with and without a pericarp showed similar recruitment probabilities and their seedlings had similar biomasses. These results do not support the assumption that under favourable conditions of moisture, individual differences in seed size would not matter in term of seedling performance. A possible explanation in this case, is the presence of recalcitrant seeds in C. alba, which determines a very short time period for germination following dispersal. Therefore, any attribute that increases germination (e.g., large seeds) would be advantageous, independently of the prevailing abiotic conditions.  相似文献   

17.
Soil seed bank of the waste landfills in South Korea   总被引:1,自引:0,他引:1  
Kee Dae Kim  Eun Ju Lee 《Plant and Soil》2005,271(1-2):109-121
The restoration of urban landfill is a topic of growing interest in reclamation ecology as the acreage of abandoned sites near cities increases. The goals of this study were to assess the ecological status of waste landfills and to elucidate the role of seed banks in the establishment of vegetation at these sites. The study sites were located at five landfills around Seoul and Kyongki Province. On average, soils were sampled on 20 plots per landfill in 2001 to record species composition and to estimate the number of seeds in the soil. Soil seed bank vegetation and the individual number of seedlings that germinated were recorded using the seedling emergence method. Relative density per species was calculated from the number of individual seedlings. We conducted canonical correspondence analysis (CCA) using the program CANOCO to survey the relationships between 23 environmental variables and plant importance values. Environmental variables included categorical and numerical variables (landfill age, landfill size, distance from landfill edge, human disturbance level, slope, periodic management level) and soil physico-chemical variables (bulk density, soil moisture content, organic matter content, total N, available P, K, Na, Ca, Mg, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). The mean seedling density per m 2 differed significantly among sites (P < 0.05). As landfill age increased, the mean seedling density per m 2 decreased. The mean seedling density of the Sangpaedong landfill, which was less than 1 year old, was higher than that found in 6- and 7-year-old landfills. The Sangpaedong landfill mainly contained seeds of Chenopodium albumL. and Digitaria ciliaris(L.) SCOP. With regard to early vegetative colonization in landfills, our results highlighted the importance of seed banks occurring in cover soils. Cover soils, derived from various sources, will determine landfill landscapes because of different seed banks present in them. The first axis of the CCA was correlated with landfill age, Na, and human disturbance level, while the second axis was correlated with landfill size, slope, periodic management level, Zn, total N, and organic matter content. Understanding seed banks in landfill cover soils is important, therefore, for proper landfill management and restoration.  相似文献   

18.
Temperature and moisture impact strongly on the early stages of a plant's life cycle. Global climate change is altering the environmental cues that seeds receive resulting in compromised seedling emergence and changes to seedling performance. Here, we investigate how temperature and moisture affect these early stages of plant development in four Banksia species collected from a longitudinal climate gradient in southwest Western Australia. A common garden was used to examine the between‐species and among‐population variation in seedling emergence, growth and leaf traits under two soil temperature regimes and three levels of precipitation. We predicted that reduced moisture and increased temperature would delay and reduce total seedling emergence and negatively affect seedling performance. Furthermore, we expected that within species there would be geographically structured variation in response to the treatments. Species differed significantly in all measured traits. Soil warming resulted in strong impacts on regenerative traits, significantly slowing seedling emergence in two species and reducing total seedling emergence in three species. In addition, warming altered seedling performance with significant reductions to the above‐ground leaf biomass ratio of three species. In contrast, response to soil moisture manipulation was minimal across all species but possibly due to issues regarding implementation of an effective moisture treatment. The species that showed the greatest decline in emergence under warmed conditions (B. quercifolia) also showed the smallest vegetative shift; the species with the smallest decline in emergence (B. coccinea) showed a relatively large vegetative shift. Among‐population differences were significant for many traits, however, trait differentiation was inconsistent across species and, contrary to our hypothesis, the variation we observed was not clearly associated with the climate gradient. As these among‐population differences in traits are not easy to predict, we caution the use of simple rules for choosing seed populations for conservation and restoration.  相似文献   

19.
Field experiments were conducted to investigate the effects of light, moisture, temperature, and litter on the regeneration of two early-, one mid-, and two late-successional tropical tree species. High light and litter seem to be universally good cues for regeneration, increasing seed/seedling survival for all species except for Cecropia (an early-successional species) whose small seeds may not be able to penetrate the litter layer. In addition, the high temperature environment in both artificially shaded and nonshaded areas of a natural gap exhibits less seed loss, an increase in the percent and rate of germination, and an increase in seedling survival for Dacryodes (a late-successional species), than the lower temperature environment under an intact canopy. Low soil water is also a good cue for Dacryodes germination as it is for Prestoea and Cecropia. Finally, the lower temperature environment found under the forest canopy (compared to the natural gap) leads to less seed loss and more germination for Guarea (a mid-successional species). Our results suggest that a good patch for regeneration of many species in this forest, early- as well as late-successional species, would have high light and a litter layer that moderates temperature and moisture extremes. The substantial variation in suitability among regeneration filters and species could: (1) contribute to low establishment success, i.e., most dispersed propagules do not become trees, (2) make it difficult to group species into germination strategies, and (3) make it hard to generalize about a net effect of any specific environmental variable on establishment. We suggest that tropical disturbances should be viewed in terms of their impact on a variety of environmental cues, which may signal germination and impact subsequent growth and survival.  相似文献   

20.
Variation in seed size may produce variation in seedling fitness, but the relationship is not simple. Differences in seed size within and among species may not have the same effects. We examined effects of differences in seed size within and among three species of Sesbania, S. macrocarpa, S. drummondii, and S. vesicaria, on seedling emergence and growth in the greenhouse and the field. Of the three species, the largest-seeded species, S. vesicaria, produced the largest, longest-lived seedlings in both the greenhouse and the field. Even though plant size differed, annual S. macrocarpa produced the same seed mass as annual S. vesicaria in the greenhouse. Within-species effects were less clear. In the greenhouse, S. vesicaria seedlings grown from large seeds remained largest until maturity, but the other species did not exhibit this effect. Some persistent within-species effects of seed size differences on height were observed in the field in 1981, but not in 1980, suggesting that field conditions increase the importance of seed size differences. Unscarified S. drummondii seeds germinated before seeds of the two annual species. Within species, larger seeds of the annuals and smaller seeds of the perennial germinated first. Differences among the species in the importance of seed size to seedling fitness may allow the species to have different patterns of regulation of reproduction in response to stress. Sesbania vesicaria showed the largest within-species effects of seed size and has the lowest plasticity in seed size, suggesting that patterns of plasticity have been selected such that the most important component of yield varies least.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号