首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of adipokinetic hormone (AKH) in counteracting oxidative stress elicited in the insect body is studied in response to exogenously applied hydrogen peroxide, an important metabolite of oxidative processes. In vivo experiments reveal that the injection of hydrogen peroxide (8 µmol) into the haemocoel of the firebug, Pyrrhocoris apterus L. (Heteroptera: Pyrrhocoridae) increases the level of AKH by 2.8‐fold in the central nervous system (CNS) and by 3.8‐fold in the haemolymph. The injection of hydrogen peroxide also increases the mortality of experimental insects, whereas co‐injection of hydrogen peroxide with Pyrap‐AKH (40 pmol) reduces mortality to almost control levels. Importantly, an increase in haemolymph protein carbonyl levels (i.e. an oxidative stress biomarker) elicited by hydrogen peroxide is decreased by 3.6‐fold to control levels when hydrogen peroxide is co‐injected with Pyrap‐AKH. Similar results are obtained using in vitro experiments. Oxidative stress biomarkers such as malondialdehyde and protein carbonyls are significantly enhanced upon exposure of the isolated CNS to hydrogen peroxide in vitro, whereas co‐treatment of the CNS with hydrogen peroxide and Pyrap‐AKH reduces levels significantly. Moreover, a marked decrease in catalase activity compared with controls is recorded when the CNS is incubated with hydrogen peroxide. Incubation of the CNS with hydrogen peroxide and Pyrap‐AKH together curbs the negative effect on catalase activity. Taken together, the results of the present study provide strong support for the recently published data on the feedback regulation between oxidative stressors and AKH action, and implicate AKH in counteracting oxidative stress. The in vitro experiments should facilitate research on the mode of action of AKH in relation to oxidative stress, and could help clarify the key pathways involved in this process.  相似文献   

2.
3.
Alzheimer's disease has been closely related with oxidative stress, which might be responsible for the dysfunction or death of neuronal cells that contributes to disease pathogenesis. Impaired copper homeostasis makes contribution to the oxidative stress and consequently to several neurodegenerative conditions. Inappropriate binding of Cu(II) to cellular proteins are currently being explored as sources of pathological oxidative stress in several neurodegenerative disorders. Here we report that a fragment of tau protein possesses copper reduction activity and initiates the copper-mediated generation of hydrogen peroxide. The tau peptide was found to be oxidized to form disulfide bond-linked dimer. The hydrogen peroxide generated was quantified by TCEP/DTNB (tris(2-carboxyethyl) phosphine hydrochloride/5,5'-dithio-bis(2-nitrobenzoic acid). Since the copper reduction capacity and the generation of hydrogen peroxide were believe to be a major toxicological pathway of Abeta peptide, the functional similarity shared by tau and Abeta implies a new perspective of tau pathology.  相似文献   

4.
Cytotoxic action of a variety of antitumor drugs generate oxidatively modified proteins that are predominantly metabolized via the proteasome. In the present study, a differentiation-retrodifferentiation cell system was exposed to oxidative stress by hydrogen peroxide treatment. Thus, the activity of the nuclear proteasome in proliferating human U937 leukemic cells increased by 2.5-fold after hydrogen peroxide treatment. In contrast, growth-arrested differentiated U937 cells demonstrated 40% less constitutive proteasomal activity, which was not inducible after hydrogen peroxide exposure. After a retrodifferentiation process, however, in which differentiated U937 cells resume autonomous growth again, the proteasomal activity was indistinguishable from that in U937 control cells, both constitutively and after induction of oxidative stress. Moreover, cells of TUR, a differentiation-resistant U937 subclone, expressed an elevated constitutive proteasomal activity that increased by 2.5-fold after oxidative stress. Immunoblot analysis revealed that these differences in proteasomal activities did not correlate with proteasome protein expression but with protein levels of the nuclear enzyme poly-ADP-ribose-polymerase (PARP). Further studies using specific PARP inhibitors revealed that the noninducible proteasome activity in differentiated U937 cells was PARP independent, whereas the increased activity level in oxidatively stressed TUR cells was downregulated upon PARP inhibition. Immunoprecipitation experiments demonstrated a protein-protein interaction of the functional active PARP with the proteasome in correlation with the proteasome activity. Similar results were obtained by analyzing protein carbonyls after oxidative stress. Taken together, these data suggest that proliferating, rather than growth-arrested, cells metabolize oxidatively damaged nuclear proteins via the proteasome by expressing high levels of PARP.  相似文献   

5.
Chaperone GroEL was treated with different concentrations of hydrogen peroxide. The conformational states of GroEL were monitored by protein intrinsic fluorescence, 8-anilino-1-naphthalene sulfonate fluorescence, and far-UV CD measurements. The results show that GroEL has unusual ability to resist oxidative stress. GroEL kept its quaternary structure and activity even when treated with 10 mM hydrogen peroxide. Two fragments were formed when GroEL was treated with high concentrations of hydrogen peroxide (more than 20 mM). It is suggested that GroEL, as a molecular chaperone, is related to oxidative process in vivo.  相似文献   

6.
7.
Oxidative stress can have a myriad of effects on many different cell types. The mechanisms by which these effects occur are not completely known. Chimeric proteins of the GAL4 DNA binding domain and Cdk4, or the GAL4 activation domain with p16, were expressed in the yeast two-hybrid system. Cells expressing these chimeric proteins were cultured with hydrogen peroxide and decreases in beta-galactosidase activity were observed when compared to cells incubated without hydrogen peroxide. When cells, which expressed the intact GAL4 binding protein, were cultured in the presence of hydrogen peroxide the opposite was observed. Incubation of cells with buthionine sulfoximine augmented these responses to hydrogen peroxide. These data suggest that one of the mechanisms by which oxidative stress acts is via the modulation of protein-protein interactions and demonstrate that the yeast two-hybrid system may be a model by which to study protein interactions due to oxidative stress.  相似文献   

8.
The effect of a short-time (1 h) oxidative stress on multidrug resistance (MDR) of murine leukemic P388VR cells has been investigated. We studied the production of reactive oxygen species (ROS) in cells depending on the composition of medium and the concentration of cells and hydrogen peroxide, as well as the effect of hydrogen peroxide on MDR of cells. MDR was determined from the transport of calcein acetoxymethyl ester out of the cells and from a change in cell sensitivity to vincristine. The amount of ROS arising in cells was determined using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA). It was shown that the rate of ROS formation in cells decreases after the addition of serum to the medium and with an increase of the cell number. By the action of hydrogen peroxide, the amount of ROS increases directly with its concentration. Oxidative stress generated by 30–300 μM hydrogen peroxide decreases the MDR of the cells. The effect of hydrogen peroxide increases with the treatment duration and concentration of hydrogen peroxide. MDR determined by the criterion of the efflux of calcein ester from cells is completely suppressed after 1-h exposure to 300 μM hydrogen peroxide. At a concentration of hydrogen peroxide of 60 μM and treatment duration of 1 h, the sensitivity of P388VR cells to vincristine increases to reach the sensitivity of the wild-type P388 cells. Rapid (about 1 h) suppression of MDR is caused by inhibition of the activity of transport proteins. MDR decrease induced by oxidative stress can be used in therapy of tumors resistant to anticancer drugs.  相似文献   

9.
Astrocytes are one of the predominant glial cell types in the adult central nervous system functioning as both supportive and metabolic cells for the brain. Our objective in this experiment is to study the direct effects of hydrogen peroxide induced oxidative stress on astrocytes in culture. These astrocytes were derived from both an aged mouse strain (P8) and a matched control strain (R1). The astrocytes for both the P8 and R1 strains were treated with increasing concentrations of hydrogen peroxide. Our results showed that the oxidative stress had a similar effect in both strains of astrocytes; decreases in 3-(4,5-dimethylthiazol-2-yl)-2,2-diphenyltetrazolium bromide (MTT) and glial fibrillary acidic protein (GFAP) levels, and increases in terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) staining, lactate dehydrogenase (LDH) staining, and superoxide dismutase (SOD), caspase-3 and B-cell lymphoma 2-associated protein X (bax) levels. At a hydrogen peroxide concentration of 400 microM , the differences of the above parameters between P8 cultures and R1 cultures were statistically significant (p<0.05). This strongly suggested that astrocytes derived from P8 and R1 strains reacted to oxidative stress with similar mechanisms and consequences. However, the mechanisms were not able to compensate for the oxidative stress in the P8 strain at a hydrogen peroxide concentration of 400 microM. The inability of the P8 astrocytes to counteract the oxidative stress might lead to inadequate protection from neuronal loss possibly resulting in significantly more astrocytic death. Our results suggested that the changes of astrocytes in peroxide detoxification may play a role in aging of the central nervous system, and further aging studies should examine the oxidative status of the samples.  相似文献   

10.
Exosomes are nano‐sized vesicles that are secreted into the extracellular environment. These vesicles contain various biological effector molecules that can regulate intracellular signaling pathways in recipient cells. The aim of this study was to examine a correlation between exosomal cathepsin B activity and the receptor for advanced glycation end‐products (RAGE). Type 1 alveolar epithelial (R3/1) cells were treated with or without hydrogen peroxide and exosomes isolated from the cell conditioned media were characterized by NanoSight analysis. Lipidomic and proteomic analysis showed exosomes released from R3/1 cells exposed to oxidative stress induced by hydrogen peroxide or vehicle differ in their lipid and protein content, respectively. Cathepsin B activity was detected in exosomes isolated from hydrogen peroxide treated cells. The mRNA and protein expression of RAGE increased in cultured R3/1 cells treated with exosomes containing active cathepsin B while depletion of exosomal cathepsin B attenuated RAGE mRNA and protein expression. These results suggest exosomal cathepsin B regulates RAGE in type 1 alveolar cells under conditions of oxidative stress. J. Cell. Biochem. 119: 599–606, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
The effect of hydrogen peroxide on the activity of soxRS and oxyR regulon enzymes in different strains of Escherichia coli has been studied. Treatment of bacteria with 20 μM H2O2 caused an increase in catalase and peroxidase activities (oxyR regulon) in all strains investigated. It is shown for the first time that oxidative stress induced by hydrogen peroxide causes in some E. coli strains a small increase in activity of superoxide dismutase and glucose-6-phosphate dehydrogenase (soxRS regulon). This effect is cancelled by chloramphenicol, an inhibitor of protein synthesis in prokaryotes. The increase in soxRS regulon enzyme activities was not found in the strain lacking the soxR gene. These results provide evidence for the involvement of the soxRS regulon in the adaptive response of E. coli to oxidative stress induced by hydrogen peroxide. __________ Translated from Biokhimiya, Vol. 70, No. 11, 2005, pp. 1506–1513. Original Russian Text Copyright ? 2005 by Semchyshyn, Bagnyukova, Lushchak.  相似文献   

12.
Hyperglycemia-induced oxidative stress has been suggested as a mechanism underlying diabetic complications. Oxidative stress triggers cell death in various cell types, including glomerular mesangial cells which play important roles in diabetic nephropathy. In the present study, we investigated the potential cytoprotective effect of erigeroflavanone, a novel flavanone derivative from the flowers of Erigeron annuus, in cultured mouse mesangial cells using hydrogen peroxide (H2O2) as an oxidative stress inducer. Our data show that hydrogen peroxide induced a decrease in cell viability that was attenuated by erigeroflavanone. Hydrogen peroxide treatment increased formation of dichlorofluorescein (DCF)-sensitive intracellular reactive oxygen species (ROS). This enhanced ROS formation was significantly reduced by pretreatment with erigeroflavanone in a dose-dependent manner. Hydrogen peroxide treatment also induced phosphorylation of the mitogen-activated protein kinases (MAPKs), c-Jun terminal kinase (JNK), extracellular-regulated kinase (ERK) and p38, and activated caspase-3. Pretreatment with erigeroflavanone inhibited hydrogen peroxide-induced activation of MAPKs and caspase-3. From these data we conclude that erigeroflavanone provides a protective effect against oxidative stress-induced cell death in mesangial cells that is associated with its antioxidant action and inhibition of MAPKs and caspase-3. These results suggest that erigeroflavanone has potential as a therapeutic agent in the treatment of renal diabetic complications.  相似文献   

13.
Oxidative stress can damage various cellular components of osteoblasts, and is regarded as a pivotal pathogenic factor for bone loss. Increasing evidence indicates a significant role of cell autophagy in response to oxidative stress. However, the role of autophagy in the osteoblasts under oxidative stress remains to be clarified. In this study, we verified that hydrogen peroxide induced autophagy and apoptosis in a dose- and time-dependent manner in osteoblastic Mc3T3-E1 cells. Both 3-methyladenine (the early steps of autophagy inhibitor) and bafilomycin A1 (the last steps of autophagy inhibitor) enhanced the cell apoptosis and reactive oxygen species level in the osteoblasts insulted by hydrogen peroxide. However, promotion of autophagy with either a pharmacologic inducer (rapamycin) or the Beclin-1 overexpressing technique rescued the cell apoptosis and reduced the reactive oxygen species level in the cells. Treatment with H2O2 significantly increased the levels of carbonylated proteins, malondialdehyde and 8-hydroxy-2′-deoxyguanosine, decreased the mitochondrial membrane potential, and increased the mitochondria-mediated apoptosis markers. The damaged mitochondria were cleared by autophagy. Furthermore, the molecular levels of the endoplasmic reticula stress signaling pathway changed in hydrogen peroxide-treated Mc3T3-E1 cells, and blocking this stress signaling pathway by RNA interference against candidates of glucose-regulated protein 78 and protein kinase-like endoplasmic reticulum kinase decreased autophagy while increasing apoptosis in the cells. In conclusion, oxidative damage to osteoblasts could be alleviated by early autophagy through the endoplasmic reticulum stress pathway. Our findings suggested that modulation of osteoblast autophagy could have a potentially therapeutic value for osteoporosis.  相似文献   

14.
Protein phosphorylation in a human glioblastoma cell line, T98G, was examined after exposure to oxidative stress in vitro. Hydrogen peroxide (1 mM) markedly induced tyrosine phosphorylation of focal adhesion kinase (FAK) and serine phosphorylation of Akt at 1 h after stimulation. Concommitantly, the association of FAK with phosphatidylinositide 3'-OH-kinase (PI 3-kinase) was also observed by the hydrogen peroxide stimulation. When T98G cells were incubated with wortmannin, a PI 3-kinase inhibitor, both PI 3-kinase activity and phosphorylation of Akt were inhibited, whereas apoptosis by oxidative stress was accelerated. Concomitant with apoptosis, elevated level of CPP32 protease activity (caspase-3) was observed, with decreases in Bcl-2 protein and increases in Bax protein. These results suggested that in the signal transduction pathway from FAK to PI 3-kinase, Akt promotes survival. Thus, it became apparent that FAK is the upstream signal protein of the PI 3-kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis in T98G cells.  相似文献   

15.
An efficient oxidative stress response (OSR) is important for the facultative pathogenic yeast Candida albicans to survive within the human host. We used a large scale 2-D protein gel electrophoresis approach to analyze the stress response mechanisms of C. albicans after treatment with hydrogen peroxide and the thiol oxidizing agent, diamide. Quantitation of in vivo protein synthesis after pulse labeling of the proteins with radioactive L-[35S]-methionine resulted in characteristic proteome signatures for hydrogen peroxide and diamide with significant overlap of 21 up-regulated proteins for both stressors. Among the induced proteins were enzymes with known antioxidant functions like catalase or thioredoxin reductase and a set of oxidoreductases. 2-D gel analysis of mutants in the CAP1 gene revealed that the synthesis of 12 proteins is controlled by the oxidative stress regulator Cap1p. Stressing its importance for the C. albicans OSR, all 12 proteins were also induced after oxidative challenge by hydrogen peroxide or diamide.  相似文献   

16.
Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, environmental gamma and UV radiation, as well as several chemicals also generate reactive oxygen species, which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments. Oxidative stress induces the expression of several genes in yeast Saccharomyces cerevisiae. However, the primary sensor(s) that trigger the response is unknown. This study demonstrates that primary sensors of osmotic stress, the Sln1p-Ssk1p two-component proteins, are involved in sensing oxidative stress specifically induced by hydrogen peroxide and diamide, but not by other oxidants used in the study. Wild type and sln1-ssk1 mutant were treated with hydrogen peroxide, diamide, menadione, UV, and gamma-radiation. Results show that sln1-ssk1 mutant is only sensitive to hydrogen peroxide and diamide but not to other oxidants. S. cerevisiae contains an additional cell surface osmosensor, Sho1p, that targets the osmotic signal to Hog1p. Data is presented that shows Sho1 and Hog1 proteins are also involved in signaling oxidant-specific cellular damage. Furthermore, it is demonstrated that expression of the mammalian homolog of Hog1p provides protection from oxidative stress induced by hydrogen peroxide. These results suggest that Sln1p-Ssk1p and Sho1p signal transduction pathways participate in oxidative stress response. However, this response to oxidative stress is limited to specific oxidants.  相似文献   

17.
Regional hyperthermia has potential for human cancer treatment, particularly in combination with systemic chemotherapy or radiotherapy. The mechanisms involved in heat-induced cell killing are currently unknown. Hyperthermia may increase oxidative stress in cells, and thus, oxidative stress could have a role in the mechanism of cell death. We use hydrogen peroxide as a model oxidant to improve understanding of interactions between heat and oxidative stress. Heat increased cytotoxicity of hydrogen peroxide in Chinese hamster ovary cells. Altered levels of cellular antioxidants should create an imbalance between prooxidant and antioxidant systems, thus modifying cytotoxic responses to heat and to oxidants. We determine the involvement of the two cellular antioxidant defenses against peroxides, catalase and the glutathione redox cycle, in cellular sensitivity to heat, to hydrogen peroxide, and to heat combined with the oxidant. Defense systems were either inhibited or increased. For inhibition studies, intracellular glutathione was diminished to less than 15% of its initial level by treatment with L-buthionine sulfoximine (1 mM, 24 h). Inhibition of catalase was achieved with 3-amino-1,2,4-triazole (20 mM, 2 h), which caused a 80% decrease in endogenous enzyme activity. To increase antioxidants, cells were pretreated with the thiol-containing reducing agents, N-acetyl-L-cysteine, 2-oxo-4-thiazolidine carboxylate, and 2-mercaptoethane sulfonate. These compounds increased intracellular glutathione levels by 30%. Catalase activity was increased by addition of exogenous enzyme to cells. We show that levels of glutathione and catalase affect cellular cytotoxic responses to heat and hydrogen peroxide, either used separately or in combination. These findings are relevant to mechanisms of cell killing at elevated temperatures and suggest the involvement of oxidative stress.  相似文献   

18.
Several chemical agents have been used to exert oxidative stress in the study of stress response, but differences in the effects of different reagents have received little attention. To elucidate whether such differences exist, the response of Schizosaccharomyces pombe to menadione (MD), 1-chloro-2,4-dinitrobenzene (CDNB), hydrogen peroxide and cumene hydroperoxide (CHP), which are frequently used to exert oxidative stress, was investigated. Sensitivity to these reagents differed among mutants deficient in genes involved in oxidative stress resistance. N-Acetylcysteine restored resistance to MD, CHP and hydrogen peroxide but did not change sensitivity to CDNB. The induction kinetics of genes induced by oxidative stress differed for each reagent. MD, CDNB and hydrogen peroxide caused a transient induction of genes, but the peak times of induction differed among the reagents. CHP gave quite different kinetics in that the induction continued for up to 2 h. The ctt1(+) gene was not induced by CHP. GSH rapidly decreased in the cells treated with high concentrations of these reagents, but at a low concentration only CDNB decreased GSH. These results indicated that S. pombe responded differently to the oxidative stress exerted by these different reagents.  相似文献   

19.
In this study we analyze the participation of the PKC1-MAPK cell integrity pathway in cellular responses to oxidative stress in Saccharomyces cerevisiae. Evidence is presented demonstrating that only Pkc1 and the upstream elements of the cell integrity pathway are essential for cell survival upon treatment with two oxidizing agents, diamide and hydrogen peroxide. Mtl1 is characterized for the first time as a cell-wall sensor of oxidative stress. We also show that the actin cytoskeleton is a cellular target for oxidative stress. Both diamide and hydrogen peroxide provoke a marked depolarization of the actin cytoskeleton, being Mtl1, Rom2 and Pkc1 functions all required to restore the correct actin organization. Diamide induces the formation of disulfide bonds in newly secreted cell-wall proteins. This mainly provokes structural changes in the cell outer layer, which activate the PKC1-MAPK pathway and hence the protein kinase Slt2. Our results led us to the conclusion that Pkc1 activity is required to overcome the effects of oxidative stress by: (i) enhancing the machinery required to repair the altered cell wall and (ii) restoring actin cytoskeleton polarity by promoting actin cable formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号