首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined the effects of yolk water-soluble protein (YSP) on bone resorption. YSP potently suppressed osteoclastogenesis from bone marrow-derived precursor cells driven by tumor necrosis factor-α (TNF-α). YSP (200 μg/ml) abolished the formation of tartarate-resistant acid phosphatase (TRAP)-positive osteoclasts. Furthermore, TNF-α induced TRAP activity was greatly inhibited by YSP (100 μg/ml) treatment. Our results suggest that YSP has therapeutic potential for bone-erosive diseases.  相似文献   

2.
We determined the effects of yolk water-soluble protein (YSP) on bone formation in pre-osteoblastic MC3T3-E1 cells. YSP (50-5,000 microg/ml) increased cell proliferation and collagen content. Alkaline phosphatase (ALP) activity was also increased by YSP treatment. After enhancement of ALP activity, significant augmentation of calcification was observed. These results suggest that YSP is a promising agent for the prevention and treatment of bone loss.  相似文献   

3.
Previous studies have demonstrated that dried plums which contain high amounts of polyphenols can restore bone mass and structure, and significantly increase indices of bone formation. The purpose of this study was to determine how dried plum polyphenols influence osteoblast activity and mineralized nodule formation under normal and inflammatory conditions. MC3T3-E1 cells were plated and pretreated with dried plum polyphenols (0, 2.5, 5, 10 and 20 microg/ml) and 24 h later stimulated with TNF-alpha (0 or 1.0 ng/ml). The 5, 10 and 20 microg/ml doses of polyphenols significantly increased intracellular ALP activity under normal conditions at 7 and 14 days, and restored the TNF-alpha-induced suppression of intracellular ALP activity by 14 days (P<.001). Polyphenols also increased mineralized nodule formation under normal and inflammatory conditions. In the absence of TNF-alpha, 5 microg/ml of polyphenols significantly up-regulated the growth factor, IGF-I, compared to controls, and the 5 and 10 microg/ml doses increased the expression of lysyl oxidase involved in collagen crosslinking. TNF-alpha decreased the expression of Runx2, Osterix and IGF-I, and polyphenols restored their mRNA levels to that of the controls. Although TNF-alpha failed to alter lysyl oxidase at 18 h, the polyphenols up-regulated its expression (P<.05) in the presence of TNF-alpha. As expected, TNF-alpha up-regulated RANKL mRNA and polyphenols suppressed RANKL expression without altering OPG. Based on these findings, we conclude that dried plum polyphenols enhance osteoblast activity and function by up-regulating Runx2, Osterix and IGF-I and increasing lysyl oxidase expression, and at the same time attenuate osteoclastogenesis signaling.  相似文献   

4.
We studied the effect of low molecular weight chitosan (LMWC) on the formation of osteoclast-like multinucleated cells (OCLs) in the co-culture of mouse osteoblastic cells and bone marrow cells in the presence of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. LMWC at 440 microg/ml inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive OCLs induced by 1alpha,25(OH)2D3. We prepared OCLs in the co-culture of osteoblastic cells and bone marrow cells. The effect of LMWC on pit formation by OCLs was examined using dentin slices, and LMWC inhibited pit formation at 440 microg/ml. Oral administration of the LMWC to ovariectomized rats prevented a decrease in bone mineral density (BMD) of the lumbar vertebra without affecting the body and uterus weights. These results suggested that LMWC prevented a decrease in BMD in vivo by inhibiting osteoclastic bone resorption.  相似文献   

5.
6.
7.
Hen egg is a nutritional store for a new life. We examined the effect of egg yolk proteins on longitudinal bone growth in the rat. Protein fractions from egg yolk were tested. Milk protein, casein, was used as a control. The bone growth rate was significantly increased by yolk water-soluble protein (YSP, 100 mg/kg) administration for 5 d. The bone morphogenetic protein-2 immunostaining of growth plate was also increased. Considering the results, YSP can be used as a growth-promoting factor.  相似文献   

8.
Using a nonstressed chronically catheterized rat model in which the common bile duct was cannulated, we studied endotoxin-induced alterations in hepatic function by measuring changes in the maximal steady-state biliary excretion rate of the anionic dye indocyanine green (ICG). Biliary excretion of ICG was calculated from direct measurements of biliary ICG concentrations and the bile flow rate during a continuous vascular infusion of ICG. Despite significant elevations in mean peak serum tumor necrosis factor-alpha (TNF-alpha) concentrations (90.9 +/- 16.2 ng/ml), there was no effect on mean rates of bile flow or biliary ICG clearance after administration of 100 microg/kg endotoxin at 6 or 24 h. Significant differences from mean baseline rates of bile flow and biliary ICG excretion did occur after administration of 1,000 microg/kg endotoxin (mean peak TNF-alpha 129.6 +/- 24.4 ng/ml). Furthermore, when rats were treated with up to 16 microg/kg of recombinant TNF-alpha, there was no change in mean rates of bile flow or ICG biliary clearance compared with baseline values. These data suggest that the complex regulation of biliary excretion is not mediated solely by TNF-alpha.  相似文献   

9.
10.
The effect of regucalcin, a regulatory protein in intracellular signaling pathway, on cell death and apoptosis was investigated using the cloned normal rat kidney proximal tubular epithelial NRK52E cells overexpressing regucalcin. NRK52E cells (wild type) and stable regucalcin (RC)/pCXN2 transfectants were cultured for 72 h in a medium containing 5% bovine serum (BS) to obtain subconfluent monolayers. After culture for 72 h, cells were further cultured for 24-72 h in a medium without BS containing either vehicle, tumor necrosis factor-alpha (TNF-alpha; 0.1 or 1.0 ng/ml of medium), lipopolysaccharide (LPS; 0.1 or 1.0 microg/ml), Bay K 8644 (10(-9)-10(-7) M), or thapsigargin (10(-9)-10(-7) M). The number of wild-type cells was significantly decreased by culture for 42-72 h in the presence of TNF-alpha (0.1 or 1.0 ng/ml), LPS (0.1 or 1.0 microg/ml), Bay K 8644 (10(-7)-10(-5) M), or thapsigargin (10(-8) or 10(-7) M). The effect of TNF-alpha (0.1 or 1.0 ng/ml), LPS (0.1 or 1.0 microg/ml), Bay K 8644 (10(-7)-10(-6) M), or thapsigargin (10(-7) M) in decreasing the number of wild-type cells cultured for 24-72 h was significantly prevented in transfectants overexpressing regucalcin. Agarose gel electrophoresis showed the presence of low-molecular-weight deoxyribonucleic acid (DNA) fragments of adherent wild-type cells cultured with LPS (1.0 microg/ml), Bay K 8644 (10(-7) M), or thapsigargin (10(-8) M) for 24 h, and this DNA fragmentation was significantly suppressed in transfectants. DNA fragmentation in adherent cells was not seen by culture with TNF-alpha (1.0 ng/ml). TNF-alpha-induced decrease in the number of wild-type cells was significantly prevented by culture with caspase-3 inhibitor (10(-8) M), while LPS- or Bay K 8644-induced decrease in cell number was significantly prevented by caspase-3 inhibitor or N omega-nitro-L-arginine methylester (NAME) (10(-5) M), an inhibitor of nitric oxide (NO) synthase. Thapsigargin-induced decrease in cell number was not prevented in the presence of two inhibitors. Bcl-2 and Akt-1 mRNA levels were significantly increased in transfectants cultured for 24 h as compared with those of wild-type cells, while Apaf-1, caspase-3, or glyceroaldehyde-3-phosphate dehydrogenase (G3PDH) mRNA expressions were not significantly changed in transfectants. Culture with TNF-alpha (1.0 ng/ml), LPS (1.0 microg/ml), Bay K 8644 (l0(-7) M), or thapsigargin (10(-8) M) caused a significant increase in caspase-3 mRNA levels in wild-type cells. LPS (1.0 microg/ml) significantly decreased Bcl-2 mRNA expression in the cells. Their effects on the gene expression of apoptosis-related proteins were not significantly changed in transfectants. This study demonstrates that overexpression of regucalcin has a suppressive effect on cell death and apoptosis induced by various factors which their action are mediated through many intracellular signaling pathways, and that it modulates the gene expression of apoptosis-related proteins.  相似文献   

11.
12.
The immunomodulatory and anti-inflammatory effects of thalidomide are associated with inhibition of TNF-alpha levels. However, the mechanism by which thalidomide reduces TNF-alpha production remains elusive. NF-kappaB is known to play a central role in regulating inflammatory responses in patients with inflammatory bowel disease (IBD). We tested whether thalidomide acts through inhibiting NF-kappaB activity. HT-29 cells were stimulated with LPS (1 microg/ml) alone, or after pretreatment with thalidomide (100 microg/ml), and NF-kappaB activity was determined by gel mobility shift assays. RT-PCR was used to measure expression of the proinflammatory cytokine genes TNF-alpha, IL-1beta and IL-8. The level of TNF-alpha mRNA was also analyzed by real-time quantitative RT-PCR, and TNF-alpha protein was measured by ELISA. Thalidomide pretreatment did not affect NF-kappaB activity in HT-29 cells stimulated with LPS but production of TNF-alpha was depressed. Thalidomide was found to accelerate the degradation of TNF-alpha mRNA, but had little effect on IL-1beta or IL-8. These observations suggest that the immunomodulatory effect of thalidomide in colonic epithelial cells is associated with inhibition of TNF-alpha. However, it does not act by inhibiting NF-kappaB but rather by inducing degradation of TNF-alpha mRNA.  相似文献   

13.
Previous works suggest the involvement of mast cells in the epithelialization of chronic wounds. Since heparin is a major mediator stored in the secretory granules of mast cells, the purpose of this work was to elucidate the function of heparin in epithelialization using in vitro culture models. For this, low- and high-calcium media in monolayer and epithelium cultures of keratinocytes were used. Also, an assay based on keratinocyte adherence onto plastic surface was used as well. Heparin (0.02-200 microg/ml) inhibited keratinocyte growth in a non-cytotoxic and dose-dependent manner in low- and high-calcium media, Keratinocyte-SFM and DMEM, in the absence of growth factors and serum. Also, heparin inhibited the growth of keratinocyte epithelium in the presence of 10% fetal calf serum and DMEM. Instead, in the presence of Keratinocyte-SFM and growth factors, heparin at 2 microg/ml inhibited the growth by 18% but at higher heparin concentrations the inhibition was reversed to baseline. TNF-alpha is another preformed mediator in mast cell granules and it inhibited keratinocyte growth in monolayer and epithelium cultures. Interestingly, heparin at 2-20 microg/ml augmented or even potentiated this growth-inhibitory effect of TNF-alpha. The association of TNF-alpha with heparin was shown by demonstrating that TNF-alpha bound tightly to heparin-Sepharose chromatographic material. However, heparin could not augment TNF-alpha-induced cell cycle arrest at G0/G1 phase or intercellular adhesion molecule-1 expression in keratinocytes. In the cell adherence assay, heparin at 2 microg/ml inhibited significantly by 12-13% or 33% the adherence of keratinocytes onto the plastic surface coated with fibronectin or collagen, respectively, but this inhibition was reversed back to baseline at 20 or 200 microg/ml heparin. Also, heparin affected the cell membrane rather than the protein coat on the plastic surface. In conclusion, heparin not only inhibits or modulates keratinocyte growth and adherence but it also binds and potentiates the growth-inhibitory function of TNF-alpha.  相似文献   

14.
Compounds from rhizomes of Zingiber officinale, commonly called ginger, have been purported to have anti-inflammatory actions. We have used an in vitro test system to test the anti-inflammatory activity of compounds isolated from ginger rhizome. U937 cells were differentiated and exposed to lipopolysaccharide (LPS) from Escherichia coli (1 microg/ml) in the presence or absence of organic extracts or standard compounds found in ginger (6-, 8-, 10-gingerol or 6-shogaol) for 24 h. Supernatants were collected and analyzed for the production of prostaglandin E(2) (PGE(2)) and tumor necrosis factor alpha (TNF-alpha) by standard ELISA assays. Predominant compounds in the organic extracts were identified as 6-, 8- 10-gingerols and 6-, 8-, 10-shogaols. Organic extracts or standards containing gingerols were not cytotoxic, while extracts or standards containing predominantly shogaols were cytotoxic at concentrations above 20 microg/ml. Crude organic extracts of ginger were capable of inhibiting LPS induced PGE(2) (IC(50)<0.1 microg/ml) production. However, extracts were not nearly as effective at inhibiting TNF-alpha (IC(50)>30 microg/ml). Thirty three fractions and subfractions, prepared by column chromatography, were analyzed for bioactivity. Extracts containing either predominantly gingerols or shogaols (identified by HPLC) were both highly active at inhibiting LPS-induced PGE(2) production (IC(50)<0.1 microg/ml), while extracts that contained unknown compounds were less effective (IC(50)<3.2 microg/ml). Extracts or standards containing predominantly gingerols were capable of inhibiting LPS-induced COX-2 expression while shogaol containing extracts had no effect on COX-2 expression. These data demonstrate that compounds found in ginger are capable of inhibiting PGE(2) production and that the compounds may act at several sites.  相似文献   

15.
Treatment with cyclosporin A (CsA) following solid organ transplantations such as heart or liver generally results in bone loss. However, in vitro studies show that CsA inhibits bone resorption. Our previous in vivo animal studies demonstrated that the effects of nitric oxide (NO) on bone are biphasic; at high doses, NO increases bone resorption. In this study, we have examined in an in vitro setting to determine whether the bone loss caused by CsA administration is dependent on the NO-cyclic guanosine monophosphate (cGMP) pathway. Freshly isolated osteoclast-rich neonatal rat long bone marrow cells were added to 100 microM thick dentin sections that had been seeded with neonatal-rat calvarial osteoblasts. These co-cultures were maintained for 48 hrs in a basal medium with CsA (1, 5, and 10 microg/ml), both alone and with either L-Arginine (NO substrate; 10-3M), L-NAME (NO synthase enzyme inhibitor; 10-4M), or the combination of the two. The cultures were then fixed in cold 95% ethanol and stained with tartrate resistant acid phosphatase (TRAP) to identify osteoclasts and sites of osteoclastic resorption. Preparations were analyzed using an automated histomorphometry software package. Scanning electron microscopy affirmed that the areas identified by light microscopy as resorption sites contained osteoclastic lacunae. CsA inhibited bone resorption dose-dependently. CsA at 10 microg/ml produced a 90% inhibition of bone resorption (control = 5.5 -/+2.0%; CsA = 0.64 -/+ 0.09=). L-Arginine reversed this inhibition by 90% (Arg + CsA = 4.23 -/+ 1.57%; CsA = 0.64 -/+ 0.09%). The application of NOS inhibitor L-NAME inhibited bone resorption by 87% (Arg + CsA + L-NAME = 0.55 -/+ 0.14%; Arg + CsA = 4.23 -/+ 1.5%). We conclude that NO-cGMP pathway is involved in the CsA induced bone loss.  相似文献   

16.
Beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae, has been found to enhance immune functions, especially by activating macrophages. However, a major obstacle to the clinical application of beta-(1-->3)-glucan is its low solubility in aqueous media. In this study, soluble beta-glucan, free of mannoprotein, was prepared, and its effects on TNF-alpha secretion and phagocytosis by macrophages were evaluated. Beta-glucan was first rendered soluble from the yeast cell wall by alkaline extraction (glucan-p1). The extract contained 2.8% of protein which was subsequently removed by successive DEAE-cellulose and ConA chromatography. Beta-glucan thus prepared was completely free of mannoprotein and was soluble at neutral pH (glucan-p3). The effects of beta-glucan on phagocytosis and TNF-alpha release activity were investigated. While glucan-p1 moderately induced TNF-alpha secretion at 200 microg/ml (550 pg of TNF-alpha/5 x 10(5) cells), glucan-p3 markedly stimulated macrophages at 200 microg/ml (2,860 pg of TNF-alpha/5 x 10(5) cells). Furthermore, glucan-p3 stimulated phagocytosis about 20% more than glucan-p1 did. In conclusion, we purified water-soluble beta-glucan which was completely devoid of mannoprotein and effectively stimulated the macrophage function, enabling it to be used as an intravenous injection for sepsis.  相似文献   

17.
We evaluated whether tumor necrosis factor (TNF)-alpha induces an increase in permeability of an alveolar epithelial monolayer via gelatinase secretion and basement membrane degradation. Gelatinase secretion and epithelial permeability to radiolabeled albumin under unstimulated and TNF-alpha-stimulated conditions of an A549 human epithelial cell line were evaluated in vitro. TNF-alpha induced both upregulation of a 92-kDa gelatinolytic activity (pro form in cell supernatant and activated form in extracellular matrix) and an increase in the epithelial permeability coefficient compared with the unstimulated condition (control: 1.34 +/- 0.04 x 10(-6) cm/s; 1 microg/ml TNF-alpha: 1.47 +/- 0.05 x 10(-6) cm/s, P < 0.05). The permeability increase in the TNF-alpha-stimulated condition involved both paracellular permeability, with gap formation visualized by actin cytoskeleton staining, and basement membrane permeability, with an increase in the basement membrane permeability coefficient (determined after cell removal; control: 2.58 +/- 0.07 x 10(-6) cm/s; 1 microg/ml TNF-alpha: 2.82 +/- 0.02.10(-6) x cm/s, P < 0.05). Because addition of gelatinase inhibitors [tissue inhibitor of metalloproteinase (TIMP)-1 or BB-3103] to cell supernatants failed to inhibit the permeability increase, the gelatinase-inhibitor balance in the cellular microenvironment was further evaluated by cell culture on a radiolabeled collagen matrix. In the unstimulated condition, spontaneous collagenolytic activity inhibited by addition to the matrix of 1 microg/ml TIMP-1 or 10(-6) M BB-3103 was found. TNF-alpha failed to increase this collagenolytic activity because it was associated with dose-dependent upregulation of TIMP-1 secretion by alveolar epithelial cells. In conclusion, induction by TNF-alpha of upregulation of both the 92-kDa gelatinase and its inhibitor TIMP-1 results in maintenance of the gelatinase-inhibitor balance, indicating that basement membrane degradation does not mediate the TNF-alpha-induced increase in alveolar epithelial monolayer permeability.  相似文献   

18.
The Norwegian group B meningococcal outer membrane vesicle (OMV) vaccine consists of outer membrane proteins (OMPs) as main antigens with significant amounts of lipopolysaccharide (LPS; 5-9% relative to protein). We have studied the ability of this OMV vaccine preparation to induce secretion of pro-inflammatory cytokines, tumour necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta), interleukin 6 (IL-6), interleukin 8 (IL-8) and anti-inflammatory cytokines, interleukin 4 (IL-4), interleukin 10 (IL-10) and interleukin 13 (IL-13) in a human whole blood model. Plasma levels of TNF-alpha, IL-1beta, IL-6 and IL-8 were massively increased; mean peak levels of TNF-alpha 44 696+/-7764, IL-1beta 38 043+/-5411, IL-6 10 057+/-1619 and IL-8 30 449+/-5397 pg/ml were obtained with an OMV-LPS concentration of 1 microg/ml; corresponding levels in control plasmas were below the detection limit of the assay. Mean maximal level of IL-10 (2540+/-144 pg/ml) was obtained at OMV-LPS concentration of 10 microg/ml, after 24 h; while the level in control plasma was below detection limit. OMV-LPS did not induce release of IL-4 and IL-13 in doses from 0.001-10 microg/ml. The present results show that OMVs from meningococci have potent pro-inflammatory properties and are likely to contribute to the observed local and systemic inflammatory effects.  相似文献   

19.
Major compounds of several commonly used botanicals, including turmeric, have been purported to have anti-inflammatory actions. In order to test the anti-inflammatory activity of compounds isolated from rhizomes of Curcuma longa L. (Zingiberaceae), we have established an in vitro test system. HL-60 cells were differentiated and exposed to lipopolysaccharide (LPS) from Escherichia coli (1 microg/ml) in the presence or absence of botanical compounds for 24 h. Supernatants were collected and analyzed for the production of tumor necrosis factor alpha (TNF-alpha) and prostaglandin E2 (PGE2) using standard ELISA assays. Water-soluble extracts were not cytotoxic and did not exhibit biological activity. Organic extracts of turmeric were cytotoxic only at concentrations above 50 microg/ml. Crude organic extracts of turmeric were capable of inhibiting LPS-induced TNF-alpha (IC50 value = 15.2 microg/ml) and PGE2 (IC50 value = 0.92 microg/ml) production. Purified curcumin was more active than either demethoxy- or bisdemethoxycurcumin. Fractions and subfractions of turmeric extracts collected via preparative HPLC had differing biological activity, ranging from no activity to IC50 values of < 1 microg/ml. For some fractions, subfractionation resulted in a loss of activity, indicating interaction of the compounds within the fraction to produce an anti-inflammatory effect. A combination of several of the fractions that contain the turmeric oils was more effective than the curcuminoids at inhibiting PGE2. While curcumin inhibited COX-2 expression, turmeric oils had no effect on levels of COX-2 mRNA.  相似文献   

20.
Recent evidence indicates that the decoy receptor 3 (DcR3) of the TNF receptor superfamily, which initially though prevents cytokine responses of FasL, LIGHT and TL1A by binding and neutralization, can modulate monocyte function through reverse signaling. We show in this work that DcR3 can induce osteoclast formation from human monocytes, murine RAW264.7 macrophages, and bone marrow cells. DcR3-differentiated cells exhibit characteristics unique for osteoclasts, including polynuclear giant morphology, bone resorption, TRAP, CD51/61, and MMP-9 expression. Consistent with the abrogation of osteoclastogenic effect of DcR3 by TNFR-Fc, DcR3 treatment can induce osteoclastogenic cytokine TNF-alpha release through ERK and p38 MAPK signaling pathways. We conclude that DcR3 via coupling reverse signaling of ERK and p38 MAPK and stimulating TNF-alpha synthesis is a critical regulator of osteoclast formation. This action of DcR3 might play an important role in significant osteoclastic activity in osteolytic bone metastases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号