首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mast cell microlocalization to the airway smooth muscle (ASM) bundle is a key feature of asthma, but whether these mast cells have an altered phenotype is uncertain. In this paper, we report that in vivo, mast cells within the ASM bundle, in contrast to mast cells in the bronchial submucosa, commonly expressed fibroblast markers and the number of these cells was closely related to the degree of airway hyperresponsiveness. In vitro human lung mast cells and mast cell lines cultured with fibronectin or with primary human ASM cells acquired typical fibroblastic markers and morphology. This differentiation toward a fibroblastoid phenotype was mediated by ASM-derived extracellular matrix proteins, independent of cell adhesion molecule-1, and was attenuated by α5β1 blockade. Fibroblastoid mast cells demonstrated increased chymase expression and activation with exaggerated spontaneous histamine release. Together these data indicate that in asthma, ASM-derived extracellular matrix proteins mediate human mast cell transition to a fibroblastoid phenotype, suggesting that this may be pivotal in the development of airway dysfunction in asthma.  相似文献   

2.
Chronic obstructive pulmonary disease (COPD) is a multicomponent disease characterized by emphysema and/or chronic bronchitis. The aim of this study was to investigate the effect of cigarette smoke exposure on mast cells and mast cell function in vitro and in vivo in order to get further insight in the role of mast cells in the pathogenesis of emphysema. Cigarette smoke conditioned medium (CSM) induced the expression of mast cell tryptase (MMCP-6) in primary cultured mast cells. This tryptase expression was caused by the CSM-stimulated production of TGF-β in culture and neutralization of TGF-β suppressed the CSM-induced expression of tryptase in mast cells. An increase in mast cell tryptase expression was also found in an experimental model for emphysema. Exposure of mice to cigarette smoke increased the number of mast cells in the airways and the expression of mast cell tryptase. In accordance with the in vitro findings, TGF-β in bronchoalveolar lavage fluid of smoke-exposed animals was significantly increased. Our study indicates that mast cells may be a source of TGF-β production after cigarette smoke exposure and that in turn TGF-β may change the tryptase expression in mast cells.  相似文献   

3.
Mast cells are known for their roles in allergy, asthma, systemic anaphylaxis, and inflammatory disease. IL-10 can regulate inflammatory responses and may serve as a natural regulator of mast cell function. We examined the effects of IL-10 on in vitro-cultured mouse and human mast cells, and evaluated the effects of IL-10 on FcepsilonRI in vivo using mouse models. IgE receptor signaling events were also assessed in the presence or absence of IL-10. IL-10 inhibited mouse mast cell FcepsilonRI expression in vitro through a Stat3-dependent process. This down-regulation was consistent in mice tested in vivo, and also on cultured human mast cells. IL-10 diminished expression of the signaling molecules Syk, Fyn, Akt, and Stat5, which could explain its ability to inhibit IgE-mediated activation. Studies of passive systemic anaphylaxis in IL-10-transgenic mice showed that IL-10 overexpression reduced the IgE-mediated anaphylactic response. These data suggest an important regulatory role for IL-10 in dampening mast cell FcepsilonRI expression and function. IL-10 may hence serve as a mediator of mast cell homeostasis, preventing excessive activation and the development of chronic inflammation.  相似文献   

4.
Key role for mast cells in nonatopic asthma   总被引:7,自引:0,他引:7  
The mechanisms involved in nonatopic asthma are poorly defined. In particular, the importance of mast cells in the development of nonatopic asthma is not clear. In the mouse, pulmonary hypersensitivity reactions induced by skin sensitization with the low-m.w. compound dinitrofluorobenzene (DNFB) followed by an intra-airway application of the hapten have been featured as a model for nonatopic asthma. In present study, we used this model to examine the role of mast cells in the pathogenesis of nonatopic asthma. First, the effect of DNFB sensitization and intra-airway challenge with dinitrobenzene sulfonic acid (DNS) on mast cell activation was monitored during the early phase of the response in BALB/c mice. Second, mast cell-deficient W/W(v) and Sl/Sl(d) mice and their respective normal (+/+) littermate mice and mast cell-reconstituted W/W(v) mice (bone marrow-derived mast cells-->W/W(v)) were used. Early phase mast cell activation was found, which was maximal 30 min after DNS challenge in DNFB-sensitized BALB/c, +/+ mice but not in mast cell-deficient mice. An acute bronchoconstriction and increase in vascular permeability accompanied the early phase mast cell activation. BALB/c, +/+ and bone marrow-derived mast cell-->W/W(v) mice sensitized with DNFB and DNS-challenged exhibited tracheal hyperreactivity 24 and 48 h after the challenge when compared with vehicle-treated mice. Mucosal exudation and infiltration of neutrophils in bronchoalveolar lavage fluid associated the late phase response. Both mast cell-deficient strains failed to show any features of this hypersensitivity response. Our findings show that mast cells play a key role in the regulation of pulmonary hypersensitivity responses in this murine model for nonatopic asthma.  相似文献   

5.
Mast cells are classically considered innate immune cells that act as first responders in many microbial infections and have long been appreciated as potent contributors to allergic reactions. However, recent advances in the realm of autoimmunity have made it clear that these cells are also involved in the pathogenic responses that exacerbate disease. In the murine models of multiple sclerosis, rheumatoid arthritis and bullous pemphigoid, both the pathogenic role of mast cells and some of their mechanisms of action are shared. Similar to their role in infection and a subset of allergic responses, mast cells are required for the efficient recruitment of neutrophils to sites of inflammation. Although this mast cell-dependent neutrophil response is protective in infection settings, it is postulated that neutrophils promote local vascular permeability and facilitate the entry of inflammatory cells that enhance tissue destruction at target sites. However, there is still much to learn. There is little information regarding mechanisms of mast cell activation in disease. Nor is it known how many mast cell-derived mediators are relevant and whether interactions with other cells are implicated in these diseases including T cells, B cells and astrocytes. Here we review the current state of knowledge about mast cells in autoimmune disease. We also discuss findings regarding newly discovered mast cell actions and factors that modulate mast cell function. We speculate that much of this new information will ultimately contribute to a greater understanding of the full range of mast cell actions in autoimmunity. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

6.
A potential role for apoptosis in neurodegeneration and Alzheimer's disease   总被引:23,自引:0,他引:23  
Previous studies have shown that β-amyloid (Aβ) peptides are neurotoxic. Recent data suggest that neurons undergoing Aβ-induced cell death exhibit characteristics that correspond to the classical features of apoptosis, suggesting that these cells may initiate a program of cell death. This chapter explores the criteria and precautions that must be applied to evaluate mechanisms of cell death in vitro and in vivo, discusses the evidence supporting an apoptotic mechanism of cell death in response to Aβ in cultured neurons, and describes potential correlations for these findings in the Alzheimer's disease brain. In addition, cellular signaling pathways that may be associated with apoptosis in response to Aβ are examined, and support for apoptosis as a mechanism of cell death for other neurodegeneration-inducing stimuli (e.g., oxidative injury) is described. The connection of multiple stimuli that induce neuronal cell death to an apoptotic mechanism suggests that apoptosis could play a central role in neurodegeneration in the brain.  相似文献   

7.
Several TLR agonists are effective in tumor immunotherapy, but their early innate mechanisms of action, particularly those of TLR2 agonists, are unclear. Mast cells are abundant surrounding solid tumors where they are often protumorigenic and enhance tumor angiogenesis. However, antitumor roles for mast cells have also been documented. The impact of mast cells may be dependent on their activation status and mediator release in different tumors. Using an orthotopic melanoma model in wild-type C57BL/6 and mast cell-deficient Kit(W-sh/W-sh) mice and a complementary Matrigel-tumor model in C57BL/6 mice, mast cells were shown to be crucial for TLR2 agonist (Pam(3)CSK(4))-induced tumor inhibition. Activation of TLR2 on mast cells reversed their well-documented protumorigenic role. Tumor growth inhibition after peritumoral administration of Pam(3)CSK(4) was restored in Kit(W-sh/W-sh) mice by local reconstitution with wild-type, but not TLR2-deficient, mast cells. Mast cells secrete multiple mediators after Pam(3)CSK(4) activation, and in vivo mast cell reconstitution studies also revealed that tumor growth inhibition required mast cell-derived IL-6, but not TNF. Mast cell-mediated anticancer properties were multifaceted. Direct antitumor effects in vitro and decreased angiogenesis and recruitment of NK and T cells in vivo were observed. TLR2-activated mast cells also inhibited the growth of lung cancer cells in vivo. Unlike other immune cells, mast cells are relatively radioresistant making them attractive candidates for combined treatment modalities. This study has important implications for the design of immunotherapeutic strategies and reveals, to our knowledge, a novel mechanism of action for TLR2 agonists in vivo.  相似文献   

8.
Mast cells, activated by Ag via FcεRI, release an array of proinflammatory mediators that contribute to allergic disorders, such as asthma and anaphylaxis. The KIT ligand, stem cell factor (SCF), is critical for mast cell expansion, differentiation, and survival, and under acute conditions, it enhances mast cell activation. However, extended SCF exposure in vivo conversely protects against fatal Ag-mediated anaphylaxis. In investigating this dichotomy, we identified a novel mode of regulation of the mast cell activation phenotype through SCF-mediated programming. We found that mouse bone marrow-derived mast cells chronically exposed to SCF displayed a marked attenuation of FcεRI-mediated degranulation and cytokine production. The hyporesponsive phenotype was not a consequence of altered signals regulating calcium flux or protein kinase C, but of ineffective cytoskeletal reorganization with evidence implicating a downregulation of expression of the Src kinase Hck. Collectively, these findings demonstrate a major role for SCF in the homeostatic control of mast cell activation with potential relevance to mast cell-driven disease and the development of novel approaches for the treatment of allergic disorders.  相似文献   

9.
Adenosine has been implicated to play a role in asthma in part through its ability to influence mediator release from mast cells. Most physiological roles of adenosine are mediated through adenosine receptors; however, the mechanisms by which adenosine influences mediator release from lung mast cells are not understood. We established primary murine lung mast cell cultures and used real-time RT-PCR and immunofluorescence to demonstrate that the A(2A), A(2B), and A(3) adenosine receptors are expressed on murine lung mast cells. Studies using selective adenosine receptor agonists and antagonists suggested that activation of A(3) receptors could induce mast cell histamine release in association with increases in intracellular Ca(2+) that were mediated through G(i) and phosphoinositide 3-kinase signaling pathways. The function of A(3) receptors in vivo was tested by exposing mice to the A(3) receptor agonist, IB-MECA. Nebulized IB-MECA directly induced lung mast cell degranulation in wild-type mice while having no effect in A(3) receptor knockout mice. Furthermore, studies using adenosine deaminase knockout mice suggested that elevated endogenous adenosine induced lung mast cell degranulation by engaging A(3) receptors. These results demonstrate that the A(3) adenosine receptor plays an important role in adenosine-mediated murine lung mast cell degranulation.  相似文献   

10.
Asthma is a major cause of morbidity and mortality worldwide. It is characterized by airway dysfunction and inflammation. A key determinant of the asthma phenotype is infiltration of airway smooth muscle bundles by activated mast cells. We hypothesized that interactions between these cells promotes airway smooth muscle differentiation into a more contractile phenotype. In vitro coculture of human airway smooth muscle cells with beta-tryptase, or mast cells with or without IgE/anti-IgE activation, increased airway smooth muscle-derived TGF-beta1 secretion, alpha-smooth muscle actin expression and agonist-provoked contraction. This promotion to a more contractile phenotype was inhibited by both the serine protease inhibitor leupeptin and TGF-beta1 neutralization, suggesting that the observed airway smooth muscle differentiation was driven by the autocrine release of TGF-beta1 in response to activation by mast cell beta-tryptase. Importantly, in vivo we found that in bronchial mucosal biopsies from asthmatics the intensity of alpha-smooth muscle actin expression was strongly related to the number of mast cells within or adjacent to an airway smooth muscle bundle. These findings suggest that mast cell localization in the airway smooth muscle bundle promotes airway smooth muscle cell differentiation into a more contractile phenotype, thus contributing to the disordered airway physiology that characterizes asthma.  相似文献   

11.
Cross-linking of the IgE receptor (FcεRI) on mast cells plays a critical role in IgE-dependent allergy, including allergic rhinitis, asthma, anaphylaxis, and immediate-type hypersensitivity reactions. Previous studies have demonstrated that the K(+) channel, KCa3.1, plays a critical role in IgE-stimulated Ca(2+) entry and degranulation in both human and mouse mast cells. We now have shown that the class II phosphatidylinositol-3-kinase C2β (PI3KC2β) is necessary for FcεRI-stimulated activation of KCa3.1, Ca(2+) influx, cytokine production, and degranulation of bone marrow-derived mast cells (BMMC). In addition, we found that the E3 ubiquitin ligase, tripartite motif containing protein 27 (TRIM27), negatively regulates FcεRI activation of KCa3.1 and downstream signaling by ubiquitinating and inhibiting PI3KC2β. TRIM27(-/-) mice are also more susceptible in vivo to acute anaphylaxis. These findings identify TRIM27 as an important negative regulator of mast cells in vivo and suggest that PI3KC2β is a potential new pharmacologic target to treat IgE-mediated disease.  相似文献   

12.
The leukocyte-enriched p110gamma and p110delta isoforms of PI3K have been shown to control in vitro degranulation of mast cells induced by cross-linking of the high affinity receptor of IgE (FcepsilonRI). However, the relative contribution of these PI3K isoforms in IgE-dependent allergic responses in vivo is controversial. A side-by-side comparative analysis of the role of p110gamma and p110delta in mast cell function, using genetic approaches and newly developed isoform-selective pharmacologic inhibitors, confirms that both PI3K isoforms play an important role in FcepsilonRI-activated mast cell degranulation in vitro. In vivo, however, only p110delta was found to be required for optimal IgE/Ag-dependent hypersensitivity responses in mice. These observations identify p110delta as a key therapeutic target among PI3K isoforms for allergy- and mast cell-related diseases.  相似文献   

13.
Chymases, serine proteases exclusively expressed by mast cells, have been implicated in various pathological conditions. However, the basis for these activities is not known, i.e. the in vivo substrate(s) for mast cell chymase has not been identified. In this study we show that mice lacking the chymase mouse mast cell protease 4 (mMCP-4) fail to process pro-matrix metalloprotease 9 (pro-MMP-9) to its active form in vivo, whereas both the pro and active form of MMP-9 was found in tissues of wild type mice. Moreover, the processing of pro-MMP-2 into active enzyme was markedly defective in mMCP-4 null animals. Histological analysis revealed an increase in collagen in the ear tissue of mMCP-4-deficient animals accompanied by increased ear thickness and a higher content of hydroxyproline. Furthermore, both lung and ear tissue from the knock-out animals showed a markedly increased staining for fibronectin. MMP-9 and MMP-2 are known to have a range of important activities, but the mechanisms for their activation in vivo have not been clarified previously. The present study thus indicates a key role for mast cell chymase in the regulation of pro-MMP-2 and -9 activities. Moreover, the results suggest an important role for mast cell chymase in regulating connective tissue homeostasis.  相似文献   

14.
Degranulation of IgE-sensitized rat mast cells by antigen was studied quantitatively in vitro and in vivo by electron microscopy. The inhibition of this degranulation by an anti-allergic drug, N-(3,4-dimethoxycinnamoyl)anthranilic acid (Tranilast), was also examined both in vitro and in vivo. In the in vitro study using peritoneal mast cells, alteration of the granules, cavity formation by fusion of the perigranular membrane and granule discharge due to fusion of the cavity membrane with the cell membrane were observed and were accompanied by histamine release. Scanning electron microscopy disclosed the extrusion of smooth, round bodies from pores formed on the cell surface. In the in vivo study of passive cutaneous anaphylaxis (PCA), the characteristic features of mast cell degranulation were obvious 5 min after the injection of antigen; leakage of dye increased progressively from 5 to 30 min but was not found at 6 h. From quantitative analysis of the substructure of mast cells, it was demonstrated that degranulation of IgE-sensitized mast cell induced by antigen was achieved by sequential exocytosis both in vitro and in vivo. Tranilast inhibited these changes to a remarkable extent and it was concluded that the inhibition of mast cell degranulation by this drug might play an important role in anti-allergic treatment.  相似文献   

15.
Mast cell degranulation can initiate an acute inflammatory response and contribute to the progression of chronic diseases. Alteration in the cellular programs that determine the requirement for mast cell degranulation would therefore have the potential to dramatically impact disease severity. Mast cells are exposed to increased levels of PGE2 during inflammation. We show that although PGE2 does not trigger the degranulation of dermal mast cells of young animals, in older mice, PGE2 is a potent mast cell stimulator. Intradermal administration of PGE2 leads to an EP3 receptor-dependent degranulation of mast cells, with the number of degranulated cells approaching levels observed in IgE- and Ag-treated controls. Taken together, these studies suggest that the ability of PGE2 to initiate mast cell degranulation changes in the aging animal. Therefore, elevated PGE2 levels might provide an important pathway by which mast cells are engaged to participate in inflammatory responses in the elderly patient.  相似文献   

16.
17.
Analysis of novel disease-related genes in bronchial asthma   总被引:8,自引:0,他引:8  
Bronchial asthma is a complex disease characterized by airway inflammation involving interleukin (IL)-4 and IL-13. We have applied microarray analyses to human bronchial epithelial cultures to probe for genes regulated by these cytokines and have identified a subset of disease-relevant genes by comparison with cDNA libraries derived from normal and asthmatic bronchial biopsies. Squamous cell carcinoma antigen-1 (SCCA1) and SCCA2, the cysteine and serine protease inhibitors, respectively, showed the highest expression by IL-4 and IL-13, and particularly, SCCA1 was significantly increased in the asthmatic cDNA library. STAT6 was shown to be involved in expression of SCCA1 and SCCA2 in vitro. Furthermore, serum levels of SCCA were also elevated in asthmatic patients. Taken together, it was supposed that SCCA may play some role in the pathogenesis of bronchia asthma, and measuring its serum level may be relevant for diagnosing or monitoring the status of bronchial asthma. In a complex disorder such as asthma, this combination of in vitro and in vivo genomic approaches is a powerful discriminatory method enabling identification of novel disease-related genes and their mechanisms of regulation.  相似文献   

18.
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a newly assigned member of the Ig-immunoreceptor tyrosine-based inhibitory motif superfamily, and its functional role is suggested to be an inhibitory receptor that modulates immunoreceptor tyrosine-based activation motif-dependent signaling cascades. In this study, we hypothesized that PECAM-1 plays an essential in vivo role as a counterregulator of immediate hypersensitivity reactions. We found that PECAM-1 was highly expressed on the surface of immature bone marrow mast cells and at a lower density on mature peritoneal mast cells. Examination of skin biopsies from PECAM-1(+/+) and PECAM-1(-/-) mice revealed that absence of PECAM-1 did not affect mast cell development or the capacity of mast cells to populate tissues. To examine whether the absence of PECAM-1 would influence immediate hypersensitivity reactions, PECAM-1(+/+) and PECAM-1(-/-) mice were presensitized with anti-DNP mouse IgE and then challenged 20 h later with DNP-BSA or PBS. PECAM-1(-/-) mice exhibited elevated serum histamine concentrations after Ag stimulation compared with PECAM-1(+/+) mice, indicating an increased severity of systemic IgE-mediated anaphylaxis. PECAM-1(-/-) mice have increased sensitivity to local cutaneous IgE-dependent anaphylaxis compared with PECAM-1(+/+) mice, as assessed by greater tissue swelling of their ears and mast cell degranulation in situ. PECAM-1(-/-) bone marrow mast cells showed enhanced dense granule serotonin release after Fc epsilon RI cross-linking in vitro. These results suggest that PECAM-1 acts as a counterregulator in allergic disease susceptibility and severity and negatively modulates mast cell activation.  相似文献   

19.
Mutations of the receptor tyrosine kinase, Kit, or its ligand, mast growth factor (Mgf), affect three unrelated cell populations: melanocytes, germ cells, and mast cells. Kit signaling is required initially to prevent cell death in these lineages both in vitro and in vivo. Mgf appears to play a role in the survival of some hematopoietic cells in vitro by modulating the activity of p53. Signaling by Mgf inhibits p53-induced apoptosis of erythroleukemia cell lines and suppresses p53-dependent radiation-induced apoptosis of bone marrow cells. We tested the hypothesis that cell survival in Kit mutant mice would be enhanced by p53 deficiency in vivo. Double-mutant mice, which have greatly reduced Kit receptor tyrosine kinase activity and also lack Trp53, were generated and the affected cell lineages examined. Mast cell, melanoblast, and melanocyte survival in the double Kit(W-v/W-v):Trp53(-/-) mutants was not increased compared to the single Kit(W-v/W-v):Trp53(+/+) mutants. However, double-mutant males showed an increase in sperm viability and could father litters, in contrast to their homozygous Kit mutant, wild-type p53 littermates. This germ cell rescue appears to be male specific, as female ovaries were similar in mice homozygous for the Kit mutant allele with or without p53. We conclude that defective Kit signaling in vivo results in apoptosis by a p53-independent pathway in melanocyte and mast cell lineages but that in male germ cells apoptosis in the absence of Kit is p53-dependent.  相似文献   

20.
Mast cells play a central role in both innate and acquired immunity. When activated by IgE-dependent FcεRI cross-linking, mast cells rapidly initiate a signaling cascade and undergo an extensive release of their granule contents, including inflammatory mediators. Some SNARE (soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor) proteins and SM (Sec1/Munc18) family proteins are involved in mast cell degranulation. However, the function of syntaxin binding protein 1 (STXBP1), a member of SM family, in mast cell degranulation is currently unknown. In this study, we examined the role of STXBP1 in IgE-dependent mast cell activation. Liver-derived mast cells (LMCs) from wild-type and STXBP1-deficient mice were cultured in vitro for the study of mast cell maturation, degranulation, cytokine and chemokine production, as well as MAPK, IκB-NFκB, and NFAT signaling pathways. In addition, in vivo models of passive cutaneous anaphylaxis and late-phase IgE-dependent inflammation were conducted in mast cell deficient Wsh mice that had been reconstituted with wild-type or STXBP1-deficient mast cells. Our findings indicate that STXBP1 is not required for any of these important functional mechanisms in mast cells both in vitro and in vivo. Our results demonstrate that STXBP1 is dispensable during IgE-mediated mast cell activation and in IgE-dependent allergic inflammatory reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号