首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wnt-1 belongs to the Wnt family of secreted glycoproteins inducing an intracellular signaling pathway involved in cell proliferation, differentiation, and pattern formation. The canonical branch is one of three known branches. This is also valid in vitro, and Wnts can be considered beneficial for culturing primary cells from organs, provided Wnts are available and applicable even with cells of different species. It was shown here that internally c-myc-tagged murine Wnt-1 produced in the heterologous host Escherichia coli was appropriate for inducing intracellular signaling of the canonical Wnt pathway in eukaryotic cells via stabilization of cytosolic beta-catenin. The pioneering injection of the protein into the blastocoels of Xenopus laevis embryos led to axis duplication and suppression of head formation. Applying the recombinant murine Wnt-1 to metanephric mesenchyme activated the tubulogenic program. The signal-inducing activity of the recombinant protein was also positively demonstrated in the TOP-flash reporter assay. Although Wnts were purified recently from the growth media of stably transfected eukaryotic cell lines, the production of active Wnt proteins in pro- or eukaryotic microorganisms reportedly has never been successful. Here soluble production in E. coli and translocation into the oxidizing environment of the periplasm were achieved. The protein was purified using the internal c-myc tag. The effect on the eukaryotic cells implies that activity was retained. Thus, this approach could make recombinant murine Wnt-1 available as a good starting point for other Wnts needed, for example, for maintaining and differentiating stem cells, organ restoration therapy, and tissue engineering.  相似文献   

2.
A long-term goal of developmental biology is to understand how morphogens establish gradients that promote proper tissue patterning. A number of reports describe the formation of the Wg (Wnt1) gradient in Drosophila and have shown that Porcupine, a predicted membrane-bound O-acyl transferase, is required for the correct distribution of Wg protein. The discovery that Wnts are palmitoylated on a conserved cysteine residue suggests that porcupine activity and Wnt palmitoylation are important for the generation of Wnt gradients. To establish the role of porcupine in Wnt gradient formation in vertebrates, we tested the role of porcupine/Wnt palmitoylation in human embryonic kidney 293T cells and in the chick neural tube. Our results lead us to conclude that: (1) vertebrate Wnt1 and Wnt3a possess at least one additional site for porcupine-mediated lipid-modification; (2) porcupine-mediated lipid-modification of Wnt proteins promotes their activity in 293T cells and in the chick neural tube; and (3) porcupine-mediated lipid-modification reduces the range of activity of Wnt1 and Wnt3a in the chick neural tube. These findings highlight the importance of porcupine-mediated lipid modifications in the formation of vertebrate Wnt activity gradients.  相似文献   

3.
Wnts are secreted glycoproteins that control vital biological processes, including embryogenesis, organogenesis and tumorigenesis. Wnts are classified into several subfamilies depending on the signaling pathways they activate, with the canonical subfamily activating the Wnt/beta-catenin pathway and the non-canonical subfamily activating a variety of other pathways, including the Wnt/calcium signaling and the small GTPase/c-Jun NH2-terminal kinase pathway. Wnts bind to a membrane receptor Frizzled and a co-receptor, the low-density lipoprotein receptor related protein. More recently, both canonical and non-canonical Wnts were shown to bind the Ror2 receptor tyrosine kinase. Ror2 is an orphan receptor that plays crucial roles in skeletal morphogenesis and promotes osteoblast differentiation and bone formation. Here we examine the effects of a canonical Wnt3a and a non-canonical Wnt5a on the signaling of the Ror2 receptor. We demonstrate that even though both Wnt5a and Wnt3a bound Ror2, only Wnt5a induced Ror2 homo-dimerization and tyrosine phosphorylation in U2OS human osteoblastic cells. Furthermore, Wnt5a treatment also resulted in increased phosphorylation of the Ror2 substrate, 14-3-3beta scaffold protein, indicating that Wnt5a binding causes activation of the Ror2 signaling cascade. Functionally, Wnt5a recapitulated the Ror2 activation phenotype, enhancing bone formation in the mouse calvarial bone explant cultures and potentiating osteoblastic differentiation of human mesenchymal stem cells. The effect of Wnt5a on osteoblastic differentiation was largely abolished upon Ror2 down-regulation. Thus we show that Wnt5a activates the classical receptor tyrosine kinase signaling cascade through the Ror2 receptor in cells of osteoblastic origin.  相似文献   

4.
Secreted Frizzled-related proteins (sFRPs) are modulators of the Wnt signaling pathway that plays important roles in both embryogenesis and oncogenesis. sFRPs have been proposed to antagonize Wnt activity by binding to Wnts. However, the affinity of this binding is unknown. Here we show, using surface plasmon resonance and purified proteins, that sFRP1, sFRP2, sFRP4, and Frzb bind directly to Wnt3a with affinities in the nanomolar range. However, only sFRP1 and sFRP2 antagonize Wnt3a activity by blocking Wnt3a induced β-catenin accumulation in L cells. Furthermore, sFRP2, but not Frzb, antagonizes Wnt3a signaling in an ES cell model of mesoderm differentiation. These results provide the first measurement of binding affinity of sFRPs for a Wnt, which together with the measurement of antagonistic activity of sFRPs could help understand how sFRPs regulate Wnt signaling.  相似文献   

5.
Both BMPs and Wnts play important roles in the regulation of bone formation. We examined the molecular mechanism regulating cross-talk between BMPs and Wnts in the osteoblastic differentiation of C2C12 cells. Canonical Wnts (Wnt1 and Wnt3a) but not non-canonical Wnts (Wnt5a and Wnt11) synergistically stimulated ALP activity in the presence of BMP-4. Wnt3a and BMP-4 synergistically stimulated the expression of type I collagen and osteonectin. However, Wnt3a did not stimulate ALP activity that was induced by a constitutively active BMP receptor or Smad1. Noggin and Dkk-1 suppressed the synergistic effect of BMP-4 and Wnt3a, but Smad7 did not. Overexpression of β-catenin did not affect BMP-4-induced ALP activity. By contrast, inhibition or stimulation of GSK3β activity resulted in either stimulation or suppression of ALP activity, respectively, in the presence of BMP-4. Taken together, these findings suggest that BMPs and canonical Wnts may regulate osteoblastic differentiation, especially at the early stages, through a GSK3β-dependent but β-catenin-independent mechanism.  相似文献   

6.
Wnts are secreted glycoproteins that control diverse biological processes, such as proliferation, differentiation, and apoptosis. We here found that Wnt5a inhibited apoptosis induced by serum deprivation in primary-cultured human dermal fibroblasts. Anti-apoptotic activity of Wnt5a was not inhibited by a dickkopf-1 (DKK), which blocks the canonical Wnt pathway. On the other hand, loss of function of protein kinase A (PKA), induced by treatment with PKA inhibitors, siRNA-mediated knocking down of endogenous PKA catalytic subunits, or enforced expression of dominant-negative PKA inhibited the Wnt5a anti-apoptotic activity, indicating the involvement of PKA in the Wnt5a anti-apoptotic activity. In agreement, phosphorylation levels of a cAMP response element binding protein (CREB), a representative downstream effector of PKA, the activation of which is known to lead to the pro-survival effects, was elevated by Wnt5a. In addition, Wnt5a increased the nuclear beta-catenin level and treatment with imatinib or ionomycin, either of which blocks the beta-catenin pathway, reduced the anti-apoptotic activity of Wnt5a, together suggesting the simultaneous involvement of the beta-catenin-mediated pathway in the Wnt5a anti-apoptotic activity. Based on another finding indicating that Wnt5a upregulated PKA-mediated phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) at serine 9 that caused inactivation of GSK-3beta and subsequently resulted in activation of the beta-catenin pathway, we have speculated that the Wnt5a anti-apoptotic activity may be partially mediated by PKA-mediated phosphorylation of GSK-3beta and subsequent activation of the beta-catenin pathway.  相似文献   

7.
Glypicans are a family of heparan sulfate proteoglycans that are bound to the cell surface by a lipid anchor. Six members of this family have been identified in mammals (GPC1-GPC6). Glypicans act as regulators of the activity of various cytokines, including Wnts, Hedgehogs, and bone morphogenetic proteins. It has been reported that processing by a convertase is required for GPC3 activity during convergent extension in zebrafish embryos, for GPC3-induced regulation of Wnt signaling, and for the binding of GPC3 to Wnt5a. In our laboratory, we have recently demonstrated that GPC3 promotes the growth of hepatocellular carcinomas (HCCs) by stimulating canonical Wnt signaling. Because there is increasing evidence indicating that the structural requirements for GPC3 activity are cell type specific, we decided to investigate whether GPC3 needs to be processed by convertases to stimulate cell proliferation and Wnt signaling in HCC cells. We report here that a mutant GPC3 that cannot be processed by convertases is still able to play its stimulatory role in Wnt activity and HCC growth.  相似文献   

8.
Prostate cancer (CaP) is unique among all cancers in that when it metastasizes to bone, it typically forms osteoblastic lesions (characterized by increased bone production). CaP cells produce many factors, including Wnts that are implicated in tumor-induced osteoblastic activity. In this prospectus, we describe our research on Wnt and the CaP bone phenotype. Wnts are cysteine-rich glycoproteins that mediate bone development in the embryo and promote bone production in the adult. Wnts have been shown to have autocrine tumor effects, such as enhancing proliferation and protecting against apoptosis. In addition, we have recently identified that CaP-produced Wnts act in a paracrine fashion to induce osteoblastic activity in CaP bone metastases. In addition to Wnts, CaP cells express the soluble Wnt inhibitor dickkopf-1 (DKK-1). It appears that DKK-1 production occurs early in the development of skeletal metastases, which results in masking of osteogenic Wnts, thus favoring osteolysis at the metastatic site. As metastases progress, DKK-1 expression decreases allowing for unmasking of Wnt's osteoblastic activity and ultimately resulting in osteosclerosis at the metastatic site. We believe that DKK-1 is one of the switches that transitions the CaP bone metastasis activity from osteolytic to osteoblastic. Wnt/DKK-1 activity fits a model of CaP-induced bone remodeling occurring in a continuum composed of an osteolytic phase, mediated by receptor activator of NFkB ligand (RANKL), parathyroid hormone-related protein (PTHRP) and DKK-1; a transitional phase, where environmental alterations promote expression of osteoblastic factors (Wnts) and decreases osteolytic factors (i.e., DKK-1); and an osteoblastic phase, in which tumor growth-associated hypoxia results in production of vascular endothelial growth factor and endothelin-1, which have osteoblastic activity. This model suggests that targeting both osteolytic activity and osteoblastic activity will provide efficacy for therapy of CaP bone metastases.  相似文献   

9.
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) offer immense value in studying cardiovascular regenerative medicine. However, intrinsic biases and differential responsiveness of hPSCs towards cardiac differentiation pose significant technical and logistic hurdles that hamper human cardiomyocyte studies. Tandem modulation of canonical and non-canonical Wnt signaling pathways may play a crucial role in cardiac development that can efficiently generate cardiomyocytes from pluripotent stem cells. Our Wnt signaling expression profiles revealed that phasic modulation of canonical/non-canonical axis enabled orderly recapitulation of cardiac developmental ontogeny. Moreover, evaluation of 8 hPSC lines showed marked commitment towards cardiac-mesoderm during the early phase of differentiation, with elevated levels of canonical Wnts (Wnt3 and 3a) and Mesp1. Whereas continued activation of canonical Wnts was counterproductive, its discrete inhibition during the later phase of cardiac differentiation was accompanied by significant up-regulation of non-canonical Wnt expression (Wnt5a and 11) and enhanced Nkx2.5+ (up to 98%) populations. These Nkx2.5+ populations transited to contracting cardiac troponin T-positive CMs with up to 80% efficiency. Our results suggest that timely modulation of Wnt pathways would transcend intrinsic differentiation biases of hPSCs to consistently generate functional CMs that could facilitate their scalable production for meaningful clinical translation towards personalized regenerative medicine.  相似文献   

10.
Wnt signaling in development and adult tissue homeostasis requires tight regulation to prevent patterning abnormalities and tumor formation. Here, we show that the maternal Wnt antagonist Dkk1 downregulates both the canonical and non-canonical signaling that are required for the correct establishment of the axes of the Xenopus embryo. We find that the target Wnts of Dkk activity are maternal Wnt5a and Wnt11, and that both Wnts are essential for canonical and non-canonical signaling. We determine that Wnt5a and Wnt11 form a previously unrecognized complex. This work suggests a new aspect of Wnt signaling: two Wnts acting in a complex together to regulate embryonic patterning.  相似文献   

11.
Wnt proteins are members of a conserved family of secreted signaling ligands and play crucial roles during development and in tissue homeostasis. There is increasing evidence that aberrant Wnt production is an underlying cause of dysregulated Wnt signaling, however little is known about this process. One protein known to play a role in secretion is the transmembrane protein Wntless (Wls). However, the mechanism by which Wls promotes Wnt secretion is a riddle. It is not known which Wnt family members require Wls and what the structural requirements are that make some of them reliant on Wls for secretion. Here we present a systematic analysis of all known Drosophila Wnt family members with respect to their dependence on Wls function for secretion. We first show that the glycosylation status of Wg at conserved sites does not determine its dependence on Wls. Moreover, in apparent contrast to murine wls, Drosophila wls is not a target gene of canonical Wnt signaling. We then show that all Wnts, with the exception of WntD, require Wls for secretion. All Wnts, with the exception of WntD, also contain a conserved Serine residue (in Wg S239), which we show to be essential for their functional and physical interaction with Wls. Finally, all Wnts, with the exception of WntD, require the acyltransferase Porcupine for activity and for functionally interacting with Wls. Together, these findings indicate that Por-mediated lipidation of the S239-equivalent residue is essential for the interaction with, and secretion by, Wls.  相似文献   

12.
Proteins of the Wnt family are secreted signaling molecules that regulate multiple processes in animal development and control tissue homeostasis in the adult. Wnts spread over considerable distances to regulate gene expression in cells located at distant sites. Paradoxically, Wnts are poorly mobile because of their posttranslational modification with lipids. Recent evidence suggests that several pathways exist that are capable of transforming hydrophobic, insoluble Wnts into long‐range signaling molecules. Furthermore, the discovery of Wntless as a protein specifically required for the secretion of Wnt suggests that Wnt trafficking through the secretory pathway is already under special scrutiny. Here, we review recent data on the molecular machinery that controls Wnt secretion and discuss how Wnts can be mobilized for long‐range signaling.  相似文献   

13.
Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1) and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.  相似文献   

14.
Glypicans are heparan sulfate proteoglycans that are attached to the cell surface by a GPI (glycosylphosphatidylinositol)anchor. Glypicans regulate the activity of Wnts, Hedgehogs,bone morphogenetic proteins and fibroblast growth factors. In the particular case of Wnts, it has been proposed that GPI-anchored glypicans stimulate Wnt signalling by facilitating and/or stabilizing the interaction between Wnts and their cell surface receptors. On the other hand, when glypicans are secreted to the extracellular environment, they can act as competitive inhibitors of Wnt. Genetic screens in Drosophila have recently identified a novel inhibitor of Wnt signalling named Notum. The Wnt inhibiting activity of Notum was associated with its ability to release Dlp [Dally (Division abnormally delayed)-like protein; a Drosophila glypican] from the cell surface by cleaving the GPI anchor. Because these studies showed that the other Drosophila glypican Dally was not released from the cell surface by Notum,it remains unclear whether this enzyme is able to cleave glypicans from mammalian cells. Furthermore, it is also not known whether Notum cleaves GPI-anchored proteins that are not members of the glypican family. Here, we show that mammalian Notum can cleave several mammalian glypicans. Moreover, we demonstrate that Notum is able to release GPI-anchored proteins other than glypicans. Another important finding of the present study is that,unlike GPI-phospholipase D, the other mammalian enzyme that cleaves GPI-anchored proteins, Notum is active in the extracellular environment. Finally, by using a cellular system in which GPC3 (glypican-3) stimulates Wnt signalling, we show that Notum can act as a negative regulator of this growth factor.  相似文献   

15.
Lin C  Lu W  Zhai L  Bethea T  Berry K  Qu Z  Waud WR  Li Y 《FEBS letters》2011,585(19):3120-3125
Mesd is a specialized chaperone for Wnt co-receptor low-density lipoprotein receptor-related protein-5 (LRP5) and LRP6, which contain four β-propeller/epidermal growth factor modules, named E1 to E4 from N- to C-terminal, in their extracellular domains. Herein, we demonstrated that recombinant Mesd protein is a general Wnt inhibitor that blocks Wnt/β-catenin signaling induced not only by LRP6 E1-E2-binding Wnts but also by LRP6 E3-E4-binding Wnts. We also found that Mesd suppressed Wnt/β-catenin signaling induced by Wnt1 in prostate cancer PC-3 cells, and inhibited tumor growth in PC-3 xenograft model. Our results indicate that Mesd is a universal inhibitor of Wnt/LRP signaling on the cell surface.  相似文献   

16.
This study examines the role of Wnt signaling events in regulating the differential potential of mesenchymal stem cells (MSCs) from adult bone marrow (BM). Immunohistochemical analysis of BM revealed co-localization of Wnt5a protein, a non-canonical Wnt, with CD45(+) cells and CD45(-) STRO-1(+) cells, while Wnt3a expression, a canonical Wnt, was associated with the underlying stroma matrix, suggesting that Wnts may regulate MSCs in their niche in BM. To elucidate the role of Wnts in MSC development, adult human BM-derived mononuclear cells were maintained as suspension cultures to recapitulate the marrow cellular environment, in serum-free, with the addition of Wnt3a and Wnt5a protein. Results showed that Wnt3a increased cell numbers and expanded the pool of MSCs capable of colony forming unit -- fibroblast (CFU-F) and CFU -- osteoblast (O), while Wnt5a maintained cell numbers and CFU-F and CFU-O numbers. However, when cells were cultured directly onto tissue culture plastic, Wnt5a increased the number of CFU-O relative to control conditions. These findings suggest the potential dual role of Wnt5a in the maintenance of MSCs in BM and enhancing osteogenesis ex vivo. Our work provides evidence that Wnts can function as mesenchymal regulatory factors by providing instructive cues for the recruitment, maintenance, and differentiation of MSCs.  相似文献   

17.
Glycogen synthase kinase-3 (GSK-3) is essential for many signaling pathways and cellular processes. As Adenomatous Polyposis Coli (APC) functions in many of the same processes, we investigated a role for APC in the regulation of GSK-3-dependent signaling. We find that APC directly enhances GSK-3 activity. Furthermore, knockdown of APC mimics inhibition of GSK-3 by reducing phosphorylation of glycogen synthase and by activating mTOR, revealing novel roles for APC in the regulation of these enzymes. Wnt signaling inhibits GSK-3 through an unknown mechanism, and this results in both stabilization of β-catenin and activation of mTOR. We therefore hypothesized that Wnts may regulate GSK-3 by disrupting the interaction between APC and the Axin-GSK-3 complex. We find that Wnts rapidly induce APC dissociation from Axin, correlating with β-catenin stabilization. Furthermore, Axin interaction with the Wnt co-receptor LRP6 causes APC dissociation from Axin. We propose that APC regulates multiple signaling pathways by enhancing GSK-3 activity, and that Wnts induce APC dissociation from Axin to reduce GSK-3 activity and activate downstream signaling. APC regulation of GSK-3 also provides a novel mechanism for Wnt regulation of multiple downstream effectors, including β-catenin and mTOR.  相似文献   

18.
The regulation of mitochondrial dynamics is vital in complex cell types, such as neurons, that transport and localize mitochondria in high energy-demanding cell domains. The Armcx3 gene encodes a mitochondrial-targeted protein (Alex3) that contains several arm-like domains. In a previous study we showed that Alex3 protein regulates mitochondrial aggregation and trafficking. Here we studied the contribution of Wnt proteins to the mitochondrial aggregation and dynamics regulated by Alex3. Overexpression of Alex3 in HEK293 cells caused a marked aggregation of mitochondria, which was attenuated by treatment with several Wnts. We also found that this decrease was caused by Alex3 degradation induced by Wnts. While the Wnt canonical pathway did not alter the pattern of mitochondrial aggregation induced by Alex3, we observed that the Wnt/PKC non-canonical pathway regulated both mitochondrial aggregation and Alex3 protein levels, thereby rendering a mitochondrial phenotype and distribution similar to control patterns. Our data suggest that the Wnt pathway regulates mitochondrial distribution and dynamics through Alex3 protein degradation.  相似文献   

19.
Multiplicity of the interactions of Wnt proteins and their receptors   总被引:11,自引:0,他引:11  
Wnts are secreted proteins that are essential for a wide array of developmental and physiological processes. They signal across the plasma membranes by interacting with serpentine receptors of the Frizzled (Fz) family and members of the low-density-lipoprotein receptor-related protein (LRP) family. Recent advances in the Wnt signaling field have revealed that Wnt-unrelated proteins activate or suppress Wnt signaling by binding to Fzs or LRP5/6 and that atypical receptor tyrosine kinases mediate Wnt signaling independently of Fz and/or function as a Fz co-receptor. This review highlights recent progress in our understanding of the multiplicity of Wnts and their receptors. We discuss how the interaction between the ligands and receptors activate distinct intracellular signaling pathways. We also discuss how intracellular trafficking of Wnt signaling components can regulate the sensitivity of cells to Wnts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号