首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In vitro generation of infectious scrapie prions   总被引:21,自引:0,他引:21  
Castilla J  Saá P  Hetz C  Soto C 《Cell》2005,121(2):195-206
Prions are unconventional infectious agents responsible for transmissible spongiform encephalopathy (TSE) diseases. They are thought to be composed exclusively of the protease-resistant prion protein (PrPres) that replicates in the body by inducing the misfolding of the cellular prion protein (PrPC). Although compelling evidence supports this hypothesis, generation of infectious prion particles in vitro has not been convincingly demonstrated. Here we show that PrPC --> PrPres conversion can be mimicked in vitro by cyclic amplification of protein misfolding, resulting in indefinite amplification of PrPres. The in vitro-generated forms of PrPres share similar biochemical and structural properties with PrPres derived from sick brains. Inoculation of wild-type hamsters with in vitro-produced PrPres led to a scrapie disease identical to the illness produced by brain infectious material. These findings demonstrate that prions can be generated in vitro and provide strong evidence in support of the protein-only hypothesis of prion transmission.  相似文献   

2.
The practice of validating processes for their capacity to inactivate a range of non-enveloped and enveloped viruses also provides confidence that plasma products will be safe from emerging viral pathogens with known aetiology. Of greater concern are diseases of unknown or poorly defined aetiology such as the group of neurological diseases collectively called the transmissible spongiform encephalopathies (TSEs), or prion diseases, for which the best known human disease is Creutzfeldt-Jakob Disease (CJD) and its variant form (vCJD). The goal of the current study was to investigate the potential for manufacturing steps used in the production of albumin and immunoglobulin products by Kistler-Nitschmann fractionation, and the utility of nanofiltration of immunoglobulin to remove TSE agents. Two different scrapie model systems were used. In the first system infectious material used for spiking was scrapie sheep brain homogenate with infectivity titres being measured in hamsters. In the second system purified scrapie agent was used (PrP fibrils) with Western blot analysis measuring reduction in the proteinase K resistant form being used as a measure of removal. The data demonstrated substantial removal of the infectious agent by the manufacturing process in both model systems although some differences were observed in partitioning of the two different infectious materials. The hamster infectivity studies were shown to be approximately 1000 fold more sensitive than the Western Blot assay. The data from both studies provide added confidence that these plasma products are safe with respect to their potential to transmit TSE.  相似文献   

3.
Three transgenic mouse lines designated Tg 69, 71, and 81 were produced harboring a Syrian hamster (Ha) prion protein (PrP) gene; all expressed the cellular HaPrP isoform in their brains. Inoculation of Tg 81 mice or hamsters with Ha prions caused scrapie in integral of 75 days; nontransgenic control mice failed to develop scrapie after greater than 500 days. Tg 71 mice inoculated with Ha prions developed scrapie in integral of 170 days. Both Tg 71 and Tg 81 mice exhibited spongiform degeneration and reactive astrocytic gliosis, and they produced the scrapie HaPrP isoform in their brains. Tg 81 brains also showed HaPrP amyloid plaques characteristic of Ha scrapie and contained integral of 10(9) ID50 units of Ha prions based on Ha bioassays. Our findings argue that the PrP gene modulates scrapie susceptibility, incubation times, and neuropathology; furthermore, they demonstrate synthesis of infectious scrapie prions programmed by a recombinant DNA molecule.  相似文献   

4.
Since variant Creutzfeldt-Jakob disease (vCJD) has been suspected to be attributable to the infectious agents associated with bovine spongiform encephalopathy (BSE), it is important to prevent the transmission of pathogenic forms of prion protein (PrP(Sc)) through contaminated feeding materials such as meat and bone meal (MBM). Here, we demonstrate that the Maillard reaction employing a formulation of glucose in combination with sodium hydrogen carbonates effectively reduced the infectivity (approximately 5.9-log reduction) of a scrapie-infected hamster brain homogenate. In addition to a bioassay, a protein misfolding cyclic amplification (PMCA) technique, in which PrP(Sc) can be amplified in vitro, was used as a rapid test for assessing PrP(Sc) inactivation. The PMCA analysis also indicated that the PrP(Sc) level in the infected material significantly decreased following the Maillard reaction. Therefore, the Maillard reaction can be employed for the decontamination of large amounts of byproducts such as MBM.  相似文献   

5.
The transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of a pathological form of a host protein known as prion protein (PrP). The validation of abnormal PrP detection techniques is fundamental to allow the use of high-throughput laboratory based tests, avoiding the limitations of bioassays. We used scrapie, a prototype TSE, to examine the relationship between infectivity and laboratory based diagnostic tools. The data may help to optimise strategies to prevent exposure of humans to small ruminant TSE material via the food chain. Abnormal PrP distribution/accumulation was assessed by immunohistochemistry (IHC), Western blot (WB) and ELISA in samples from four animals. In addition, infectivity was detected using a sensitive bank vole bioassay with selected samples from two of the four sheep and protein misfolding cyclic amplification using bank vole brain as substrate (vPMCA) was also carried out in selected samples from one animal. Lymph nodes, oculomotor muscles, sciatic nerve and kidney were positive by IHC, WB and ELISA, although at levels 100–1000 fold lower than the brain, and contained detectable infectivity by bioassay. Tissues not infectious by bioassay were also negative by all laboratory tests including PMCA. Although discrepancies were observed in tissues with very low levels of abnormal PrP, there was an overall good correlation between IHC, WB, ELISA and bioassay results. Most importantly, there was a good correlation between the detection of abnormal PrP in tissues using laboratory tests and the levels of infectivity even when the titre was low. These findings provide useful information for risk modellers and represent a first step toward the validation of laboratory tests used to quantify prion infectivity, which would greatly aid TSE risk assessment policies.  相似文献   

6.
The persistence of infectious biomolecules in soil constitutes a substantial challenge. This holds particularly true with respect to prions, the causative agents of transmissible spongiform encephalopathies (TSEs) such as scrapie, bovine spongiform encephalopathy (BSE), or chronic wasting disease (CWD). Various studies have indicated that prions are able to persist in soil for years without losing their pathogenic activity. Dissemination of prions into the environment can occur from several sources, e.g., infectious placenta or amniotic fluid of sheep. Furthermore, environmental contamination by saliva, excrements or non-sterilized agricultural organic fertilizer is conceivable. Natural transmission of scrapie in the field seems to occur via the alimentary tract in the majority of cases, and scrapie-free sheep flocks can become infected on pastures where outbreaks of scrapie had been observed before. These findings point to a sustained contagion in the environment, and notably the soil. By using outdoor lysimeters, we simulated a contamination of standard soil with hamster-adapted 263K scrapie prions, and analyzed the presence and biological activity of the soil-associated PrP(Sc) and infectivity by Western blotting and hamster bioassay, respectively. Our results showed that 263K scrapie agent can persist in soil at least over 29 months. Strikingly, not only the contaminated soil itself retained high levels of infectivity, as evidenced by oral administration to Syrian hamsters, but also feeding of aqueous soil extracts was able to induce disease in the reporter animals. We could also demonstrate that PrP(Sc) in soil, extracted after 21 months, provides a catalytically active seed in the protein misfolding cyclic amplification (PMCA) reaction. PMCA opens therefore a perspective for considerably improving the detectability of prions in soil samples from the field.  相似文献   

7.
Prions are unique infectious agents which have been shown to be transmitted iatrogenically through contaminated surfaces. Surface contamination is a concern on reusable medical devices and various industrial surfaces, but there is currently no standard, accepted model to evaluate surface prion decontamination. In this report, a set of both in vitro and in vivo methods were investigated based on the contamination of surface through artificial exposure to infected brain. An in vitro surface contamination protocol was developed with subsequent biochemical detection of the prion protein (PrPres). In parallel, the in vivo investigations included the contamination of different types of surface materials (stainless steel or plastic wires) with different prion strains (scrapie strain adapted to hamsters 263K or bovine spongiform encephalopathy strain adapted to mouse 6PB1). The in vivo models with various prion strains and brain homogenate dilutions reproducibly transmitted the disease and a relationship was established between the infectivity titre, the transmission rate and the incubation period. Moreover, the in vivo models were studied for their ability to demonstrate the efficacy of heat and chemical-based decontamination methods, with similar results. The in vivo scrapie method described is proposed as a standard to evaluate existing and developing prion decontamination technologies.  相似文献   

8.
Transmissible spongiform encephalopathy or prion diseases are fatal neurodegenerative disorders characterized by the conversion of the cellular prion protein (PrPC) into the infectious scrapie isoform (PrPSc). We have recently demonstrated that anti-prion intrabodies targeted to the lumen of the endoplasmic reticulum provide a simple and effective means to inhibit the transport of PrPC to the cell surface. Here, we report that they completely block the traffic of mature full-length PrPC molecules, impair prion lysosomal degradation, and interfere with the early phase of scrapie formation. Since anti-prion intrabodies efficiently block PrPSc accumulation in vitro, we investigated whether they could also antagonize scrapie infectivity in vivo. We found that mice intracerebrally injected with KDEL-8H4-NGF-differentiated PC12 cells infected with scrapie neither develop scrapie clinical signs nor brain damage. Furthermore, no protease-resistant PrPSc is detectable in brains of inoculated animals. These results indicate that anti-prion intrabody strategy may be effective against prion infection.  相似文献   

9.
We produced transgenic mice expressing the sheep prion protein to obtain a sensitive model for sheep spongiform encephalopathies (scrapie). The complete open reading frame, with alanine, arginine, and glutamine at susceptibility codons 136, 154, and 171, respectively, was inserted downstream from the neuron-specific enolase promoter. A mouse line, Tg(OvPrP4), devoid of the murine PrP gene, was obtained by crossing with PrP knockout mice. Tg(OvPrP4) mice were shown to selectively express sheep PrP in their brains, as demonstrated in mRNA and protein analysis. We showed that these mice were susceptible to infection by sheep scrapie following intracerebral inoculation with two natural sheep scrapie isolates, as demonstrated not only by the occurrence of neurological signs but also by the presence of the spongiform changes and abnormal prion protein accumulation in their brains. Mean times to death of 238 and 290 days were observed with these isolates, but the clinical course of the disease was strikingly different in the two cases. One isolate led to a very early onset of neurological signs which could last for prolonged periods before death. Independently of the incubation periods, some of the mice inoculated with this isolate showed low or undetectable levels of PrPsc, as detected by both Western blotting and immunohistochemistry. The development of experimental scrapie in these mice following inoculation of the scrapie infectious agent further confirms that neuronal expression of the PrP open reading frame alone is sufficient to mediate susceptibility to spongiform encephalopathies. More importantly, these mice provide a new and promising tool for studying the infectious agents in sheep spongiform encephalopathies.  相似文献   

10.
The infectivity of hamster scrapie strain 263K was measured in platelets isolated from blood pooled from six hamsters with clinical scrapie. The total number of infectious doses present in the blood pool was 220, out of which only 3.5 infectious doses were associated with platelets. A larger proportion of the total infectivity was recovered from the mononuclear leukocyte fraction. This result indicates that platelets are not the source of blood-borne infectivity in transmissible spongiform encephalopathy-infected hamsters.  相似文献   

11.
Abnormal tubulovesicular particles in brains of hamsters with scrapie   总被引:2,自引:0,他引:2  
Abnormal tubulovesicular particles of an average diameter of 23 nm have been observed in brains of mice with scrapie as well as in other animals with spongiform encephalopathies, but they were thought to be absent from the brains of hamsters with scrapie in which the highest known concentrations of the infectious agent occur. We observed in neuronal processes of hamsters as well as mice clusters of those tubulovesicular structures, most often in postsynaptic terminals. Such particles have now been seen regularly in both experimental and natural scrapie in all species examined as well as in other spongiform encephalopathies.  相似文献   

12.
Prion infectivity and its molecular marker, the pathological prion protein PrP(Sc), accumulate in the central nervous system and often also in lymphoid tissue of animals or humans affected by transmissible spongiform encephalopathies. Recently, PrP(Sc) was found in tissues previously considered not to be invaded by prions (e.g., skeletal muscles). Here, we address the question of whether prions target the skin and show widespread PrP(Sc) deposition in this organ in hamsters perorally or parenterally challenged with scrapie. In hamsters fed with scrapie, PrP(Sc) was detected before the onset of symptoms, but the bulk of skin-associated PrP(Sc) accumulated in the clinical phase. PrP(Sc) was localized in nerve fibres within the skin but not in keratinocytes, and the deposition of PrP(Sc) in skin showed no dependence from the route of infection and lymphotropic dissemination. The data indicated a neurally mediated centrifugal spread of prions to the skin. Furthermore, in a follow-up study, we examined sheep naturally infected with scrapie and detected PrP(Sc) by Western blotting in skin samples from two out of five animals. Our findings point to the skin as a potential reservoir of prions, which should be further investigated in relation to disease transmission.  相似文献   

13.
BACKGROUND: It has been proposed that the prion, the infectious agent of transmissible spongiform encephalopathies, is PrPSc, a post-translationally modified form of the normal host protein PrPC. We showed previously that mice devoid of PrPC (Prn-p0/0) are completely resistant to scrapie. We now report on the unexpected response of heterozygous (Prn-p0/+) mice to scrapie infection. MATERIALS AND METHODS: Prn-p0/+, Prn-p0/0 and Prn-p+/+ mice were obtained from crosses of Prn-p0/+ mice. Mice were inoculated intracerebrally with mouse-adapted scrapie agent and the clinical progression of the disease recorded. Mice were sacrificed at intervals, PrPSc was determined as protease-resistant PrP and the prion titer by the incubation time assay. RESULTS: Prn-p0/+ mice, which have about half the normal level of PrPC in their brains, show enhanced resistance to scrapie, as manifested by a significant delay in onset and progression of clinical disease. However, while in wild type animals an increase in prion titer and PrPSc levels is followed within weeks by scrapie symptoms and death, heterozygous Prn-p0/+ mice remain free of symptoms for many months despite similar levels of scrapie infectivity and PrPSc. CONCLUSIONS: Our findings extend previous reports showing an inverse relationship between PrP expression level and incubation time for scrapie. However, contrary to expectation, overall accumulation of PrPSc and prions to a high level do not necessarily lead to clinical disease. These findings raise the question whether high titers of prion infectivity could also persist for long periods under natural circumstances in the absence of clinical symptoms.  相似文献   

14.
Scrapie prion infectivity can be enriched from hamster brain homogenates by using limited proteolysis and detergent extraction. Purified fractions contain both scrapie infectivity and the protein PrP 27-30, which is aggregated in the form of prion rods. During purification, PrP 27-30 is produced from a larger membrane protein, PrPSc, by limited proteolysis with proteinase K. Brain homogenates from scrapie-infected hamsters do not contain prion rods prior to exposure to detergents and proteases. To determine whether both detergent extraction and limited proteolysis are required for the formation of prion rods, microsomal membranes were prepared from infected brains in the presence of protease inhibitors. The isolated membranes were then detergent extracted as well as protease digested to evaluate the effects of these treatments on the formation of prion rods. Neither detergent (2% Sarkosyl) extraction nor limited proteinase K digestion of scrapie microsomes produced recognizable prion amyloid rods. Only after combining detergent extraction with limited proteolysis were numerous prion rods observed. Rod formation was influenced by the protease concentration, the specificity of the protease, and the duration of digestion. Rod formation also depended upon the detergent; some combinations of protease and detergent did not produce prion amyloid rods. Similar results were obtained with purified PrPSc fractions prepared by repeated detergent extractions in the presence of protease inhibitors. These fractions contained amorphous structures but not rods; however, prion rods were produced upon conversion of PrPSc to PrP 27-30 by limited proteolysis. We conclude that the formation of prion amyloid rods in vitro requires both detergent extraction and limited proteolysis. In vivo, amyloid filaments found in the brains of animals with scrapie resemble prion rods in their width and their labeling with prion protein (PrP) antisera; however, filaments are typically longer than rods. Whether limited proteolysis and some process equivalent to detergent extraction are required for amyloid filament formation in vivo remains to be established.  相似文献   

15.
Scrapie and Creutzfeldt-Jakob disease are transmissible, degenerative neurological diseases caused by prions. Considerable evidence argues that prions contain protease-resistant sialoglycoproteins, designated PrPSc, encoded by a cellular gene. The prion protein (PrP) gene also encodes a normal cellular protein designated PrPC. We established clonal cell lines which support the replication of mouse scrapie or Creutzfeldt-Jakob disease prions. Mouse neuroblastoma N2a cells were exposed to mouse scrapie prions and subsequently cloned. After limited proteinase K digestion, three PrP-immunoreactive proteins with apparent molecular masses ranging between 20 and 30 kilodaltons were detected in extracts of scrapie-infected N2a cells by Western (immuno-) blotting. The authenticity of these PrPSc molecules was established by using monospecific antiserum raised against a synthetic peptide corresponding to a portion of the prion protein. Those clones synthesizing PrPSc molecules possessed scrapie prion infectivity as measured by bioassay; clones without PrPSc failed to demonstrate infectivity. Detection of PrPSc molecules in scrapie-infected N2a cells supports the contention that PrPSc is a component of the infectious scrapie particle and opens new approaches to the study of prion diseases.  相似文献   

16.
Prions are pathogens with an unusually high tolerance to inactivation and constitute a complex challenge to the re-processing of surgical instruments. On the other hand, however, they provide an informative paradigm which has been exploited successfully for the development of novel broad-range disinfectants simultaneously active also against bacteria, viruses and fungi. Here we report on the development of a methodological platform that further facilitates the use of scrapie prions as model pathogens for disinfection. We used specifically adapted serial protein misfolding cyclic amplification (PMCA) for the quantitative detection, on steel wires providing model carriers for decontamination, of 263K scrapie seeding activity converting normal protease-sensitive into abnormal protease-resistant prion protein. Reference steel wires carrying defined amounts of scrapie infectivity were used for assay calibration, while scrapie-contaminated test steel wires were subjected to fifteen different procedures for disinfection that yielded scrapie titre reductions of ≤10(1)- to ≥10(5.5)-fold. As confirmed by titration in hamsters the residual scrapie infectivity on test wires could be reliably deduced for all examined disinfection procedures, from our quantitative seeding activity assay. Furthermore, we found that scrapie seeding activity present in 263K hamster brain homogenate or multiplied by PMCA of scrapie-contaminated steel wires both triggered accumulation of protease-resistant prion protein and was further propagated in a novel cell assay for 263K scrapie prions, i.e., cerebral glial cell cultures from hamsters. The findings from our PMCA- and glial cell culture assays revealed scrapie seeding activity as a biochemically and biologically replicative principle in vitro, with the former being quantitatively linked to prion infectivity detected on steel wires in vivo. When combined, our in vitro assays provide an alternative to titrations of biological scrapie infectivity in animals that substantially facilitates the use of prions as potentially highly indicative test agents in the search for novel broad-range disinfectants.  相似文献   

17.
To assess scrapie infectivity associated with caprine-origin tissues, bioassay can be performed using kids, lambs or transgenic mice expressing caprine or ovine prion (PRNP) alleles, but the incubation periods are fairly long. Although several classical ovine scrapie prion permissive cell lines with the ability to detect brain-derived scrapie prion have been available, no classical caprine scrapie permissive cell line is currently available. Therefore, the aims of this study were to generate a rabbit kidney epithelial cell line (RK13) stably expressing caprine wild-type PRNP (cpRK13) and then to assess permissiveness of cpRK13 cells to classical caprine scrapie prion propagation. The cpRK13 and plasmid control RK13 (pcRK13) cells were incubated with brain-derived classical caprine scrapie inocula prepared from goats or ovinized transgenic mice (Tg338, express ovine VRQ allele) infected with caprine scrapie. Significant PrPSc accumulation, which is indicative of scrapie prion propagation, was detected by TSE ELISA and immunohistochemistry in cpRK13 cells inoculated with classical caprine scrapie inocula. Western blot analysis revealed the typical proteinase K-resistant 3 PrPres isoforms in the caprine scrapie prion inoculated cpRK13 cell lysate. Importantly, PrPSc accumulation was not detected in similarly inoculated pcRK13 cells, whether by TSE ELISA, immunohistochemistry, or western blot. These findings suggest that caprine scrapie prions can be propagated in cpRK13 cells, thus this cell line may be a useful tool for the assessment of classical caprine prions in the brain tissues of goats.  相似文献   

18.
A Unal  J Thyer  E Uren  D Middleton  M Braun  D Maher 《Biologicals》2007,35(3):161-164
Sodium hydroxide (NaOH) has been shown to reduce the infectivity of transmissible spongiform encephalopathy (TSE) agents. This study investigated the efficacy of sodium hydroxide at 0.1M, 0.25M and 0.5M concentrations for the inactivation of mouse-adapted scrapie strain ME7. Times and temperatures modelled conditions used in an industrial plasma fractionation plant for sanitisation of ultrafilters, and the sodium hydroxide component of Clean In Place sanitisation. The concentration of scrapie ME7 brain homogenate in NaOH test solutions was 1% (w/v). At the end of incubation periods, the samples were adjusted to neutral pH prior to intracerebral inoculation into mice for bioassay. The conditions of 0.1M NaOH at 60 degrees C for 2min and 0.25M NaOH at 30 degrees C for 60min were found to inactivate 3.96 and 3.93logs of scrapie, respectively. Use of 0.5M NaOH at 30 degrees C for 60 or 75min was found to inactivate >or=4.23 and 4.15logs of scrapie. This indicates that the use of these conditions in an industrial process would substantially reduce prion infectivity.  相似文献   

19.
Prion protein gene expression in cultured cells   总被引:6,自引:0,他引:6  
A single copy gene encodes both the scrapie (PrPSc) and cellular (PrPC) isoforms of the prion protein (PrP). Cultured cell lines were found to express the endogenous PrP mRNA at levels comparable to those observed in the brains of adult rodents; however, these cells were invariably found to express greatly reduced levels of PrP. In all the cell lines examined, PrP was undetectable by Western immunoblot analysis. These cells were also poor recipients for expression constructs linking the hamster PrP gene open reading frame to several strong eukaryotic promoters; stable clones derived by transfection of these expression vectors failed to show elevated expression of PrP. When extremely high levels of PrP mRNA were produced using either an insect baculovirus or a mammalian SV40 based vector, significant quantities of PrP were produced, although in both cases the proteins were apparently processed differently from the PrPC observed in brains. In an expression system using an SV40 late promoter vector in monkey COS-7 cells, a significant fraction of PrP was transported to the cell surface where PrPC is found in vivo. PrP synthesized by the baculovirus vector failed to induce scrapie in hamsters and did not possess the characteristics of the PrPSc isoform associated with infectivity. The SV40 late promoter vector system may permit experiments designed to elucidate the role of PrPSc during scrapie infection as well as the function of PrPC in normal metabolism.  相似文献   

20.
Macroautophagy is an important process for removing misfolded and aggregated protein in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of macroautophagy in prion diseases remain obscure. Here we demonstrated that in the terminal stages of scrapie strain 263K-infected hamsters and human genetic prion diseases, the microtubule-associated protein 1 light chain 3 (LC3) was converted from the cytosolic form to the autophagosome-bound membrane form. Macroautophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins were downregulated in the brains of sick individuals, indicating enhanced macroautophagic protein degradation. The levels of mechanistic target of rapamycin (MTOR) and phosphorylated MTOR (p-MTOR) were significantly decreased, which implies that this enhancement of the macroautophagic response is likely through the MTOR pathway which is a negative regulator for the initiation of macroautophagy. Dynamic assays of the autophagic system in the brains of scrapie experimental hamsters after inoculation showed that alterations of the autophagic system appeared along with the deposits of PrPSc in the infected brains. Immunofluorescent assays revealed specific staining of autophagosomes in neurons that were not colocalized with deposits of PrPSc in the brains of scrapie infected hamsters, however, autophagosome did colocalize with PrPSc in a prion-infected cell line after treatment with bafilomycin A1. These results suggest that activation of macroautophagy in brains is a disease-correlative phenomenon in prion diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号